ON SOME ASYMPTOTICALLY NONPARAMETRIC COMPETITORS
OF HOTELLING’S 72!

By PeTER J. BickeL

Unaversity of California, Berkeley

1. Summary. In a previous paper [2] the author investigated some alternative
estimates of shift in the p-variate one-sample problem. This paper examines the
properties of tests for shift similar to Hotelling’s 7% based on (I) asymptotically
normal estimates, in particular those of the type considered in [2], and (II) the
originating univariate test statistics of the latter group. The notation, similar to
that used in [2], and the tests are introduced in Section 2. In the third section the
asymptotic distribution of such test statistics for sequences of alternatives tend-
ing to 0 as 7~ is found to be noncentral x%. The tests of type I and, often simpler,
tests of type II have the same asymptotic distribution. In Section 4 we find that
the Pitman efficiency of two such tests depends, in general, on the direction in
which the origin is approached. The efficiency, in terms of ‘‘generalized variance,”
of the estimates of [2] lies between the maximum and minimum Pitman effi-
ciencies of the corresponding tests of type I (maximum and minimum being taken
over direction).

This “generalized variance” efficiency is found to be equal to the efficiency of
the tests as defined in terms of a criterion of goodness introduced by Isaacson
[9] (D-optimality ). In case the coordinates are identically distributed, if correla-
tion effects alone are taken into account, it is shown that whatever two tests are
considered, there always exists a direction in which one improves the other.

Section 5 continues with a discussion of the tests based on the estimates in-
troduced in [2] in relation to Hotelling’s 7°. Their desirable properties and
pathologies are found to be similar to those of the parent estimates. The remain-
ing sections deal with the case p = 2. Under normality the minimum Pitman
efficiency with respect to T° of the tests mentioned above behaves like the
efficiency of the parent estimates with respect to the mean.

2. Introduction and definitions. Asin [2]let X; = (X4, -+, X,), 1 £ 7 < n,
be a sample from F(x; — 61, -+, x, — 6,) where F is symmetric about 0,
the zero vector, 8 = (6:, - - -, 6,) is unknown, and F has absolutely continuous
marginals F;, ---, F, with corresponding densities fi, -, f,.

We are, in this paper, concerned with the properties of test statistics for the
hypothesis H: 8 = 0 versus the alternatives 6 # 0.

X, , M, and W, denote, as before, the vector mean, median and median of
averages of pairs. In addition, 8, will be used as a generic notation for an estimate
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of 8 of the form (6,(Xu, -+, Xw), -+, 0.(Xp, ---, X)) where
0,(Xa, -+, Xin) is a univariate translation invariant estimate of 6, .

Let € denote the class of (sequences of) estimates 6, of the above type which
are asymptotlcally nonsingular p-variate normal under the hypothesis 6 = 0,
ie., £(0, n%,) — @0, [|8;]]] as n — «. Here ®[6 0, [|8.;l]] denotes the p-variate
normal distribution with mean 6 and covariance matrix II8:il, and £(0, Z) the
law of Z under Py . This class includes 4, which are generated as maximum likeli-
hood estimates (under suitable regularity conditions), the very wide class of
estimates introduced by Huber ([8], Lemma 5) and those estimates of the type
introduced by Hodges and Lehmann in [7], whose associated umivariate test
statistics are asymptotically normal. By this we mean, following Hodges and
Lehmann, that,

1) 20,( X, oo+, Xin) = sup {0: h(Xaa — 0, -+, Xin — 0) >
+inf {0: A(Xa— 6, -+, Xin — 0) < pn}
and that, if h(X;, ---, n) denotes the vector whose 7ith component is
h(Xa, -+, Xwu)and 6, = n "a, then
(22)  2{ow, i, oK) = wal} = Precsar a1 -
Here, wn = (ua, *+, ) = Eoh(Xy, -+, Xu)],a = (a1, -+, a,), and the

¢; and ||,/ are fixed. Ey denotes that the expectation is being taken under
Py . 8, of the above type will be said to constitute class D.

A simple extension of Theorem 5 of [7], to be stated in the next section, shows
that ® C €.

Finally we remark that if 4, & € and n’6, — & then £(, , n'd,) — (5.5, -

Under the supplementary assumption that F is p-variate nonsingular normal
with unknown covariance matrix ||oy;||, the test that is usually employed in the
testing situation we are interested in is Hotelling’s T?. This test takes the form:
Reject H if T,° = n(X,||6" /

= (1/n - 1>ZZ=1 (Xia - X'u)(X]'a - X])

and Xi. = (1/n)2 01 Xia .
The above expressions are well defined, since, when F is nonsingular normal,
645l is known to be nonsingular a.s., and in fact has a Wishart distribution. In

is nonsingular. We may then define T’ as a test statistic for H in the framework
of our model if ”a”” is invertible.

Suppose now that 0. € € and there exists a consistent sequence ||3* || of estimates
of 8]l = ||8:lI”"(||8:]] nonsingular) i.e., Py lim, [|87] = ||6”] as 6 — 0.

Then a natural generalization of Hotelhng s idea leads us to consider tests of
the form “Reject if nd,[|57||6," > c.” We shall refer to such tests as Hotelling
tests of type I. For 6, ¢ D a different class of test statistics readily presents itself.
Let h(X,, - -+, X,) be the vector of test statistics associated with &, by (2 1)
Then, (2.2) suggests, if ||#] is a sequence of consistent estimates of flrss]) ™
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H7r“||, (|7l nonsmgular) usrng as a critical region “nh(X;, -+, Xa) — wail-
[#9)|h(Xy, -+, Xa) — ma]” > ¢.”” Such sequences of tests will be referred to as
Hotelling tests of type I1. There is, of course, a natural relation between Hotelling
tests of type I and II whose corresponding bases are related by (2.1), which will
be given in the next section.

From [2] it follows that (a) X, , (b) W,, (¢) M, are members of © with co-
variance matrices [|8s|| given respectively by

(21_) S) = 0y = Eo(Xﬂ le)

Eo[Fi(Xn — 3)(F; (le) 3)]

(¢) @ _ Bl (Xa) — $) I (Xp) — —)]
Y fi(0)f3(0)

where IT(z) = 1forz = 0, 0 otherwise. The corresponding test statistics (a) hy
(b) hy, (c) h; are given by (see [7]),

(a‘) hl(X17 7Xﬂ) = Xﬂ’
(24) (b) Xy, -, Xl = [2/n(n + D] X 1giziza I (Xai + Xis),
(C) [h3(xl y T Xn)]k = n_lz':;l I+(sz),

where [h]; denotes the kth component of h. These statistics are asymptotically
equivalent to the ¢, Wilcoxon, and sign statistics, respectively.

In the derivation of (2.3) (see [1]) one obtains the asymptotic covariance
matrices |7 of hy, hy, and hs which are given by;

(b) By =

)

(2.3)

(a) Ti;) = 0ij,
2.5) (b) 7P = 8P [Zafi(x) dufZs £ (2) da,
(e) m$y = B1:(0)f,(0).

The Hotelling tests of type I and II for (a), if the natural unbiased estimate of
o' is used, is Hotelling’s T°. We shall use as generlc notatlon for the tests of type
I correspondlng to (b) and (¢) the symbols W,’ and ar,” and for those of type II,
W, and 9,%. The vagueness in our definition rests on the choice of [|3”]|. As we
shall see, however, for 91,° and W, * natural candidates present themselves, and
in any case asymptotically the choice is of no importance.

3. Asymptotic theory. We first note the following lemma which is an imme-
diate consequence of Theorem 4.2 of [1].

LEMM& 3.1. Suppose £[0,, n*(h, — w.)] — ®[(cdr, -+, Cdp), |lmill] as
0, = n ' — 0. Then if 6, and h, are related by (2 1) £(0,, ,nle ) = ®rg, mijoici 11 -

Remark. Hence the asymptotic means of W, and M, are given respectively
by (32 £(2) s, -+ , 0,0 15} (2) de) and (3f2(0), -+, Ef,(0)).

Let x,-(\?) denote the dlstrlbutlon function of the noncentral x* distribution
with noncentrality parameter > and p degrees of freedom.
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Then we have
TuEOREM 3.1. (a) Let §,¢€ with nonsingular asymptotic covariance ||Bil,
8, = 7' — 0. Then £(8, , nd,]|7]|8,") — x, (8]87]5").

(b) Let 8, & D, 8, <> h with nonsingular asymptotic covariance ||r;| = |lcic;B4l|
and mean (61, -+, Cpbp).
Then,

£{0,, nh(Xy1, -+, X)) — wll#BEX:, o, Xa) — wl} — x(8]878).
Proor. Let ;]| be the asymptotic correlation matrix of 8, . Then ||g”|| =
lIdsill i3l | disl| where

dij = 0, T j}
= 1/Bsu = ¢i/mis, =7
Similarly, [|7”]| = [|d%]l[|r:|~|ld¥] where df; = di,/c; . Henee (cid1, -« , cpfp)-
7% (eidr, -+, cx8p)" = 8]|87]|8" and (a) = (b). To prove (a) we remark first
that
(81)  nb,|IB78," — nbaI87)0," = 2 Tia (B — BV)nlballbl;

which converges to 0 in probability as n%6, — & since 5 — 8% converges to 0 in
probability and [néé,,]i[néé,,] ; converges in distribution.

We now employ the following standard lemma on convergence in law, to n%, .

LemMmA. Let X, b a sequence of random vectors which converge in law to a random
vector X. Let g be a continuous function on R* to R?. Then g(X,) converges to g(X)
i law.

Hence,

(32) lim, P(nb,|8"]0," = z) = P(X|87|X' < z),

where X has a &[5, ||8,]|] distribution. Since X||8”/||X has a x,’(5/|8%||8") distribu-
tion the result follows from (3.1) and (3.2).

Two important conclusions may be drawn from this theorem. First, the choice
of 8% is of no importance #n the limst and, secondly, the tests of type I and IT
are equivalent.

4. Efficiency considerations. We employ a measure of the efficiency of two
test statistics with respect to each other due to Pitman. Since there is a slight
generalization involved in considering a vector hypothesis we give a definition
of this quantity.

DerINITION 4.1. Let {¢,}, {¢n"} be two sequences of test statistics for H:0 = 0,
versus 0 7 0, which are of asymptotic size . Let 0, be a sequence of alternatives
converging to 8, and 8,(0,), 8.*(8,) be the power of ¢, , ¢,” respectively against
0,, . Then if for any two sequences of integers {n;} and { N;} such that lim;.., 8.;(0;)
= limi,e B;"G,.(O,-) = B, where 8 % 0 or 1, lim,,,, N;/n; exists and is unique, we
call this limit the Pitman efficiency of ¢, with respect to ¢,* for level , power 8
and sequence 0, . It is denoted by e(¢, , ¢,*) where the dependence on 6, , o and
B is understood.
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A well-known theorem of Hannan [5] states that,

If ¢u , b tend in law to xo (M), xp-( \o") for a given sequence {0,}, then e( ¢, , ")
= N/\, which is independent of o but depends on 8 and the sequence 8, through
A and Ao

Now let ¢, , ¢." be two Hotelling tests of type I or II, with associated es-
timates 0, , 6, such that if n'0, — 8, £(0,, ¢a) — x5 (8/I7"[[3), £(6. , ¢.*) —

2 il
Xp (5”)\ ”5 ).

Then by Hannan’s theorem,

(4.1) e(bn, da”)(8) = 8||v7|[3'/3]]\"]%,

which depends on the direction & in which the origin is approached.

On the other hand in [2], we gave as a reasonable definition of the asymptotic
efficiency of two consistent asymptotically normal estimates 8, , 8,* the ratio of
sample sizes required to reach equal asymptotic generalized variances. This
quantity will be denoted by e(8, , 0,%). In [2] we found,

(42)  e(b., 8,%) = [det [yl /det NI = [det [[vINTY
where det denotes determinant.

In the case p = 1, Hodges and Lehmann found [7] that e(8, , ,*) = e(¢n , ¢u")
is independent of &.

In general we have

TuEOREM 4.1. infguye(dn, ¢ )(3) = (8, 0.°) = supseeldn, ¢n')(d)
with strict inequality holding unless | N;|| = ¢||vijl| where ¢ is a scalar.

Proor. We employ the following classical theorem of Courant (see Bodewig
[4]).

TueorREM. The maximal and minimal values of xAx' /xBx', where A and B
are nonnegative definite, and B is nonsingular, are given by the maximal and minimal
eigenvalues of AB™.

By (4.2) e(8,, 6,%) is equal to the geometric mean of the eigenvalues of
[lv“IlIAY]| ™" which certainly lies between the maximum and minimum eigenvalues,
with equality holding if and only if all of the eigenvalues are equal, i.e.,
& cllv7|l|Ngll = I (the identity) < [lvi]l = cl[Nij]|. The theorem is established.

ReMmark. If equality holds the efficiency is independent of both & and p. A
simple sufficient condition for equality is that 8, , 8, have totally symmetric
distributions under the hypothesis [see (2)] and that X; has identically distrib-
uted components. ,

In the latter case (identically distributed components) we can now state a
curious theorem whose gist is that there is always a direction in which one can
lose by going to higher dimensions. More specifically, in this case, let |74 be
the asymptotic correlation matrix of 8, , ||| that of 8,%, and [r"]l, [|#7] their
respective inverses. Then,

(4.3) e(bn, dn", 8) = 8|l7|[8'/8)7]8" Ny/711 -

The first factor of this product may be interpreted as the “multivariate portion”
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of the efficiency. We have
TueOREM 4.2. For F with identically distributed components if e(¢n , ¢u") )
18 not constant,

infg e(¢n , én", 8) < Mi/vi < supg e(én, ¢, 8).

Proor. It suffices to prove one of the inequalities since the other follows
by reversing ¢, and ¢,*. Suppose that infg., 8]]7’“”8'/8]]7””8' = 1. Now the
eigenvalues of ||7||[|7] ™" are the same as those of [|7;;]||I7:;]| ™ and by the classical
theorem of Courant, 1 < mf.-#o 87718 /8]|77]18" = infgq 8]|7:]|8/8]|7:;]|8 . This
holds, if and only if, & ||r;; — 7:;]|8 = 0foralld > 0, that is, if and only if |r,; — 7|
is nonnegative definite. But, ||r,; — 7.;|| has trace equal to 0. The theorem follows.

In other words, as far as the “multivariate portion’ of the efficiency vs concerned,
there always exists a direction in which one does worse than in 1 dimension
whatever estimate one chooses (and necessarily one in which one does better).
Of course, the efficiency as a whole can still remain above or below 1 for all
directions. Illustrations of what can happen are provided by the behavior of
>, W, and T, given in Sections 5 and 6.

We also remark that if the argument of the theorem is applied to [[\;;]| and
Ilv.5]l we find, as might be expected, that if N;; > «,; for all ¢, then

SuPgs<o0 €(¢" ) ¢n*: 5) > 1:

and similally the inf is <1 if \;; < . for all 7. It is also interesting to remark
that if 8, , 6,* are (1) invariant under the nonsingular group of transformations
and (2) glve uncorrelated estimates for F with uncorrelated components, we
may obtain a simple characterization of the maximum and minimum Pitman
efficiencies. In this case, it may readily be shown that ming., (¢, , ¢n*, 3),
e(8,, 8,%), maxgee(dn, ¢a", 8) are constant on the pencil of distributions
obtained from a given F by nonsingular transformations of X; when 6 = 0. In
particular, condition (2) is satisfied on the p-variate normal pencil by any es-
timates of the structure proposed which satisfy condition (1) and it follows that
in this situation, the univariate efficiency is independent of ¢°, and coincides with
all three measures of multivariate efficiency whatever be ”0'””

There is an interesting connection between e(8, , 6,*) and a criterion of test
optimality introduced by Isaacson [9]. We first introduce a reformulation of
the structure surrounding asymptotic efficiency considerations in our context.
The extension to the general hypothesis testing problem in R” is immediate.

Let ¢, , ¢,, be as above. Define 8(8) = P[x, (6]\"]|6’) = xa], B*(0) =
Plx, (0]ly"]|6") = x,] where z, is the (1 — a) percentile of the x, dlstrlbutlon
Then, by a slight extension of Theorem 3 it follows that 8,(6,) — 8(8) if n'e, — 0.
Equivalently, B.(n*0) — B(8) uniformly on compacta in 8, since 8(8) is con-
tinuous. Then, if A/n — p, Ba(n?0) — B(p0). We shall call the function
B(8) the asymptotic power structure (APS) of {¢,} to scale 7, Thus, the APS

f {¢pa} to scale ntis B( p_%ﬁ).
In this context the Pitman efficiency for the alternative sequence {8n7*} be-
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comes the limit of 7/n for those sequences {7} for which {¢s} and {¢,*} have
equal APS at 4.

Then it may readily be derived from [9] that e(d, , *) = e(¢,, , ¢a") is the
limit of 7/n for those sequences {#} for which {¢s} and {¢,*} have APS with
equal Gaussian curvature at 0.

Upon requiring that all partial derivatives up to the second order in components
of 0 of 3, (n_’}o) evaluated at 0 also converge to the corresponding partlal denva-
tives of B(0) evaluated at 0 and imposing similar conditions on 8,* and g8* we
obtain that this characteristic is indeed asymptotic, namely, that #/n is the
limit of the ratios of sample sizes required to give 8,(8) and 8,*(8) equal Gaussian
curvature at 0.

5. Existence of W.2 W,%, 9N,% 91, and general efficiency properties. To
establish existence of these test statistics we need only find consistent estimates
of 185717, I=511 7, k=1, 2, 3.

The follovvlng lemma, from the theory of matrices which we state without
proof shows that, in general, it suffices that [|8;;]| (and hence ||7;;]| ) be nonsingular
and that consistent estimates |8 exist.

LemMa 5.1, If |lasj|| is any nonsingular matriz and € > 0, then there exists a
constant 8(||a;l|) such that if |bi; — ail| < 8(||asl|) for every i and j, then ||by]|

is tnvertible, and if ||bi]| ™" = [[b]], llasl ™ = ||a”|| then [b" — a*| < e for every
% and j. -
For if we now define [|8”]] = ||8:]™" if ||B:]| is nonsingular and equal to the

identity otherwise (or to a close nonsingular matrix), then PQ[IB“ — B89 =4 =
PyllBi; — Biil = 6(]|Bss])) for some ¢ and j] by Lemma, 5.1 and the last term con-
verges to 0 by hypothesis.
We remark that natural estimates of ||7{?||, 7 = 1, 2, 3, exist, namely,
#7 = 64,

(51) wf = [/n(n — 1)(n — 220 Fu(x)Fi(y) dF:i(z, y) — 1, i # 3,
w7 = F.;00,0) — 4, i # s

I

where F'; , F;, F'; ; are the sample cumulative distribution functions of X , X »
and (X, Xj), respectively, 1 < k& < n. If ¢ = j the last two estimates trivially
reduce to % and % respectively. These estimates may be shown to be U.M.V
unbiased for the family of all distributions F. The second has an alternative form
1/n(n — 1)(n — 2) it IT'(Xir — Xio, Xip — Xji) where I'(z, y) = 1 if
z > 0and y > 0, and O otherwise. The consistency of all three follows from the
consistency of U-statistics (Lehmann [12]) (in the first and third case the law
of large numbers). Hence, natural choices of 9%, and W, exist.

In [16] for p = 2 Sen and Chatterjee have independently obtained interesting
versions of the two-sample analogues of 91, and W, (corresponding to the two-
sample Wilcoxon and Mood’s median test respectively ), which may be used in
the construction of genuinely nonparametric tests of H. They are at present
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extending these results to the sign test and the c-sample problem. Essentially it
follows from their work that, for instance, given the sign of X1;Y3; for each <,
the sign statistic A3 has a nonparametric distribution under the hypothesis. The
conditional covariance matrix is given by

#2 = 11 + 2P(0,0) — F,(0) — Fy(0)} — %

which is the U.M.V. unbiased estimate of ={ for the family of all symmetric F.
The W, which is evolved by this procedure, however, involves a #{3 which is not
U.M.V. unbiased in either sense. The nonparametric application of this test is
quite complicated.

On the other hand, no one simple consistent estimate of either f;(0) or
[2.f(2x) dz is known. The reader is referred to Rosenblatt [15] for consistent
estlmates of the former and Lehmann [13] for the latter. Thus, although W, , 90, ,
M, , W, , can all be satisfactorily defined asymptotically, the latter seem simpler
and more usable. Moreover, for a unified theory of testing and estimation in this
problem, it would seem reasonable to wish to have our tests and estimates in-
vplve the same statistics, a criterion fulfilled by W,’ and 9%,’ but not 9%, and
W

We might also remark that the error in estimating ||={7 ||, ||={?| ™" should be
small unless ||#{?||, & = 2, 3 are practically degenerate (i.e., unless det ||z is
very close to 0) since 7/ = 1/det ||z ([|mjll]:; , where [Hai,-ll]kl is the cofactor
of 179 in ”(l,,”

We now turn to the efficiency of W,” and 7%

By (3.3),
(5.2) (W', Ta', ) = o]|8S7 [ 78" /3)l0"[3,
' e(IM,:, To', 8) = 8]|B7 )78 /5]|0 ™15,

In the event that ||8;;] for £ = 1, 2, 3 are diagonal matrices, for instance in the
totally symmetric case, our expressions simplify considerably and we obtain,

12> ( [ : F(@) dx>2 %

(5.3) e(Wn2, Tn27 6) = = i 6'2

=108

and a similar expression for e(9,°, T,’, ). Thus, usually only in the case when
the components of ' are identically distributed as well as totally symmetric do
(5.2) and (5.3) become independent of 3.

Nonetheless in the totally symmetric case we do have two results analogous to
(4.7) and (4.8) of [2]:

(5.4) inf reg infy e(W,°, T’y 8) = .86,
(5.5) inf pege infy e(M,", Tw', 3) = .33,

Il

where § is the family of all totally symmetric p-variate distributions whose
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marginal densities exist, and §* is the family of all totally symmetric p-variate
distributions with unimodal densities continuous at 0.

These follow from the previously quoted theorem of Courant and the Hodges-
Lehmann univariate results [7]. Behavior in this situation is thus good.

We also have, for p = 3,

(5.6) infae, infy e(W,", Tw'y 8) = 0,
and for p = 2,
(5.7) infa., infg e(M,", Tw’, 8) = 0,

where ¢ is the family of all p-variate nonsingular normal distributions.

These relations follow upon applying Theorem 3.1 to the family of distribu-
tions defined in Proposition 4.1 of [2] for (5.6) and to the bivariate normal family
for (5.7). Thus the pathologies of [2] carry over, including

(5.8) inf pey infg e(W,%, T2%, 8) = 0,

where Y is the family of all nonsingular bivariate distributions. This too follows
upon applying Theorem 3.1 to the results of [2]. However, the desirable properties
also carry over.

Define
Fer(t, oo, a5) = (1 — e)A(x1, -+, 2p + &f(@1/71, -+, Tp/7p),
where ¢ = (1, - -+, 1), and A and ¢ are symmetric nonsingular distributions.

Call e(W,%, T\, 8), e1(e, ©) when F. . is the underlying distribution under the null
hypothesis, and define es(e, =) similarly for 91,”. Then, we have, for ¢ > 0,

(5.9) infs#o 64;(6, «:) —>

as any coordinate of = tends to < for ¢ = 1, 2. The proof is similar to that of
Theorem 6.1 in [2]. Thus, these tests are much better than Hotelling’s T" in
cases where heavy tails are to be expected. Of course, this is also true whenever
W.., M, are close to a degenerate distribution but X, is not, for instance, if the
distributions are close to ones satisfying (3.6) but not (3.5) of [2].

Let us now consider the special case in which the distribution of (X1, X;1) is
independent of 7 and j. In this case,

(k) (k) . .
i = PP, 1,

ok . .
= P11, =17

(5.10)

fork = 1,2, 3. p is defined by the above relation. It then follows from the theorem
of Courant and the discussion for Theorem 3.2 that infg e(W,, T.', ) and
infs e(9M,", T.", ) are given by the smallest \ satisfying

(5.11) det ||857 — M85l = 0,

and hence in this case,



COMPETITORS OF HOTELLING'’s T2 169
3 2 2
infg. e(W", Th', 8)

(5.12) ® 2 o 1l=p 14— n
= 12on (f_wfl () d”") i (1 0’ T (- 1),,2\)

and similarly for supg,, , and M,

Therefore, e(W,’, T2 8) = 120u[[Ze fi’(z) dz]* min (1 — py, 1/p). The
bound is not sharp. A similar statement holds for e(91,°, T.’, 8).

A particular case of the above is X;; = Z;y1 — Z; where the Z,’s are independ-
ent, identically distributed random variables for 6 = 0, for7 = 1, --- | p.

This admittedly very artificial situation might arise for instance in a testing
for trend situation where the first reading of an instrument is unavailable and
subsequent readings are possible only as differences from the first.

In this situation we have,

(5.13) 32(0)oy £ e, Tx%, 8) £ 4.5 1,5(0)oy,

(5.14) 6ol [Ze fi2(x) da)* < e(W.5, TWh, 8) < 120ul[Z fi'(2) da)”.

The last statement is a consequence of Lehmann [14] (Theorem 2). Typical
lower bound values are .925 for Z; normal, .88 for Z; rectangular.

Clearly if Z, is available this test is foolish, but so is Hotelling’s 7°. Lehmann
in [12] has obtained a nonparametric analogue to the usual analysis of variance
test in this situation, whose efficiency to it is somewhat better than the usual
Wilcoxon univariate efficiency.

In a subsequent paper we intend to explore models related to the last example
more fully.

We remark that all the preceding, by Theorem 3.1, also applies to W, and
M,".

As in [2] we continue with the case p = 2.

6. Efficiency in the Normal case (p = 2). In the case p = 2, the Pitman
efficiency of W, with respect to 7',’, for the sequence 8, = &n~* and distribution
F(z, y), which is the same as the efficiency of W,” with respect to 7,°, will be
denoted by e; (8, F) and is given by the following specialization of (5.2):

(6.1) (8, F) = [Qu(81/01%, 62/02™))/[Qu(81/01, 82/a2)],

1 1
where o; = (02,)}, o.* = 2]},

Qz,y) = (1 — p")7 [ + & — 2p2y]
and
Q(z,y) = (1 — p")'[2" + v* — 2pay]

where p; is given in (5.10).
Similarly, the Pitman efficiency of 9, with respect to 7',°, will be denoted by
ex(8, F') and is given by
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(6.2) ex(8, F) = [Qs(x/o1™™, y/a2"")/[Qu(8:/01, 8/ 02)],

where o;** = (8{7) and, Qu(x, y) = (1 — ps") 2" + ¥ — 2pa2yl.

Let e, (F) equal maxg ei(3, F), e1"(F) = minge:(3, F) and similarly define
€2M(F) and egm(F).

.The bivariate normal situation is described in the following two theorems
analogous to Theorems 5.1 and 5.2 of [2].

TeEOREM 6.1. If F = ®(0, 01, 02, p) then,

(1 —p)
2 cos™! p(1 — (cos™ p)/m)
i I:t12 + t22 —_ 2(1 - (2/71’) COS_1 p)t1 tz]
b2+ 12 — 2pti by ’

62(8, F) =
(6.3)

where t, = §;/0;,1 = 1,2, and

- e (F) = (1 + p)/(r — cos™ p), 0=p<1,
' = (1 — p)/(cos™ p), —1<p=0,
e"(F) = (1 — p)/(cos™ p), 0=p<1,

(6.5) .
= (1 + p)/(x — cos™ p), —1<p=0.

The following two relations also hold:

(1) 2/7 £ &"(F) £ .65 < 1, where the minimum is reached for p = 0,
and approached as |[p| — 1, and the maximum of .65 is reached for p = .7. e,” is
symmetric about p = 0, and concave, as a function of p, between 0 and 1 and 0
and —1.

(2) e™(F), considered as a function of p is symmetric about p = 0 and mono-
tone decreasing to its minimum of 0 as p ranges from 0 to 1.

Proor. (6.3) follows upon employing Sheppard’s relation as in Theorem 5.1
of [2]. (6.4) and (6.5) follow either from the classical theorem of Courant, or
directly by partial differentiation with respect to ¢; and ¢, . The extreme points are
found to be given by ¢; = =t;. Upon substituting p = (cos™ p)/x in (5.3) we
can differentiate between the extremes by using the inequalities

cos pr = 1 — 2p, 0<p =3
(6.6)
=1 — 2p, 3=p<L

Upon making the above substitution we obtain the analytically simpler form.
(67) e"(p) = (1 + cos pr)/(w(1 — p)), 0<p=3
’ = (1 — cos pr)/7p, 1=p<l,

and a similar expression for e;"(p).
We now give the proof of statement (1). (2) may be proved similarly. The first
part of (1) is a consequence of the second, where the value and location of the
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maximum are obtained by the numerical solution of the equations [e,” (p)]’ = 0.
Hence we need prove only the second statement. Since,

(68) [e"(p)]' = (—=7*(1 — p) sin pr + x(1 + cos pr))/7*(1 — p)*

for0 < p = 3, and [e,(0)] > 0, and €, (3) = limp.o e (p) = 2/, it follows
that it suffices to show that

(6.9) v(p) = —x(1 — p) + = cse pr + 7 cot pr

changes sign exactly once for 0 < p < 1. But we readily find »”(p) < 0 in this
range. Hence v is concave and changes sign at most twice. Our result follows since
v(0) = +«,9(3) = 0. We remark that Theorem 6.1 implies (5.7).

A similar result holds for e;(3, F).

THEOREM 6.2.

3 (1 —p)
o 1) = T o0 = @) e

. [tl2 + & — 6(1 — (2/7) cos ! ot tz]
tlz + t22 - 2pt1 tz ’

(6.10)

where t; = §;/0:,1 = 1, 2.

o 3 14+»
61(F>=— — —1 ) 0=r<1
611) T 2(2 — (3/7) cos™! (p/2))
=3 1-»
7 2((3/7) cos™! (3p — 1))’
m 3 1—0»p
el(F)="" 1 (1, ’ 0=r<1
(612) m 2((3/) cos™! (3p — 1))
_ 3 14 14 —1<p= 0.

- w22 = 3/m) cos (p/2)’

The following two relations also hold.

(1) 3/m S &™(F) £ .96 < 1. As a function of p, &, (F) is symmetric about
p = 0, concave for 0 = p < 1 and —1 < p = 0, attains its minimum of 3/x at
p = 0, approaches it as |p| tends to 1, and attains its maximum of .96 at p = .78.

(2) e”(F) considered as a function of p is also symmetric about 0, and de-
creases monotonely from a maximum of 3/7 at p = 0, to an infimum of sin =/3
(.87) as p tends to 1. '

Proor. The proof is analogous to that of Theorem 6.1 and Theorem 7.2
of [2], upon observing the inequalities

2 cos pr = 3(1 — 2p), t<p=si
(6.13)
2 cos pr = 3(1 — 2p), 1<p<y

and making the substitution p = cos™ p/2/r in (6.7) and (6.8).
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We remark that in both cases, ' and ¢” are independent of ¢; and a» but the
values of p for which they are assumed depend on o, and o only and are in fact
given by 6, = ==(01/02)d: .

7. Conclusmns. Our general conclusmns in the testing problem for W ,? and
M, W, and 9T, as compared to T,” are similar to those we reached in [2] for
W, and M, as compared to X, . They seem to be definitely better in the presence
of gross errors than 7',°, but they should be used with caution in a situation in
which considerable degeneracy is present. Section 4 also points up the need for a
satisfactory criterion of what is meant by better, independent of &. If D-op-
timality, an attractive criterion in many ways (Kiefer [11]) is used, Theorem 6
of Hodges and Lehmann [7] giving the equality of the asymptotic efficiency for
tests and their derived univariate estimates generalizes to give the equality of
the efficiency of the estimates and their derived type I and II tests.

Comparison of these tests with the other nonparametric tests available in this
context, Hodges’ bivariate sign test [6] and Blumen’s sign test [3], does not seem
readlly feasible since the asymptotic distribution of these tests for alternatives

7% are not known. The author has been able to show that the asymptotic dis-
trlbutlon of the Hodges test does exist in this sense, but we can characterize it
only in terms of the distribution of the maximum of certain Gaussian processes
with nonlinear trend. This would suggest that the Pitman efficiency of the former
with respect to 77,° and hence W, and 917, does not exist. The Bahadur efficiency
of this test for normal F has also been computed by Klotz and Joffe [10] and
shown to be independent of p and to tend to 2/x as 6 — 0. This would indicate
that although for |p| close to 1, 9,” may be worse than the Hodges test, W,
is always better. More precise information on these points would be of interest.
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