NOTE ON ESTIMATING ORDERED PARAMETERS

By Ester Samuel

Hebrew University

1. Introduction. We consider the problem of estimating a set of k real valued parameters, $\mathbf{0} = (\theta_1, \dots, \theta_k)$ where $\theta_i \in S$, $i = 1, \dots, k$. Let \mathbf{X} be the (usually vector valued) random variable with values \mathbf{x} , the distribution of which depends upon $\mathbf{0}$ and let $\mathbf{\delta} = \mathbf{\delta}(\mathbf{X}) = (\delta_1(\mathbf{X}), \dots, \delta_k(\mathbf{X}))$ be an estimator of $\mathbf{0}$. Since $\mathbf{0}$ is known to belong to S^k , the k-fold Cartesian product of S, we shall restrict $\mathbf{\delta}$ to belong to S^k with probability one.

We assume that the loss incurred by saying δ when the parameter is θ is

(1)
$$L(\boldsymbol{\delta}, \boldsymbol{\theta}) = \sum_{i=1}^{k} \phi(|\boldsymbol{\delta}_i - \boldsymbol{\theta}_i|)$$

where $\phi(t)$, $t \ge 0$, is a monotone increasing function.

The problem described above is usually called an estimation problem only if S is an interval. We shall however not put any restrictions on S except (to avoid trivialities) that it contains at least two elements. Thus, e.g., when S is finite we consider what is usually called a multidecision problem. We shall also allow randomized procedures, but in order not to complicate the notation we shall not introduce a special notation when δ is randomized. Thus, in what follows, δ should be interpreted to be the value of the estimator after the randomization experiment has been carried out.

Suppose now that θ is known to belong to Ω , a subset of S^k . Is it then necessary for δ to belong to Ω in order for δ to be admissible? That is, must

(2)
$$P(\delta \varepsilon \Omega; \theta) = 1$$
 for every $\theta \varepsilon \Omega$

in order for δ to be admissible?

In this generality, the answer is known to be in the negative. Robbins in [2] considers the (nonsequential) compound decision problem where for $i=1, \dots, k$ one has observations X_i from a normal population with variance 1 and mean, $\theta_i \in \{-1, 1\}$, and the X_i 's are independent. Thus here $\mathbf{X} = (X_1, \dots, X_k)$, and S^k contains 2^k points. The only values of $\phi(t)$ of interest here are $\phi(0)$ and $\phi(2)$, which are taken to be 0 and 1 respectively. Suppose it is known that exactly one of the parameters θ_i equals 1 and the k-1 others equal -1. Thus Ω contains the k points having one coordinate +1 and the others -1. In [2], p. 138, it is shown that for k > 2 the Bayes rule δ with respect to the a priori distribution which assigns equal probability 1/k to each element of Ω takes the value $\delta = (-1, \dots, -1)$ with positive probability under every $\theta \in \Omega$, and hence clearly fails to satisfy (2). Since this Bayes rule is essentially unique the rule obtained certainly is admissible for the restricted problem of deciding on $\theta \in \Omega$. (This result is actually not too surprising. $\delta(\mathbf{x})$ takes the value $(-1, \dots, -1)$ when all x_i 's are nearly equal. In that case assigning the value +1 to some

Received 31 December 1963; revised 2 November 1964.

www.jstor.org

 δ_i has high (posterior) probability of causing a loss of 2, rather than the (certain) loss of 1 incurred by $\delta(\mathbf{x}) = (-1, \dots, -1)$.)

In this note we consider the restriction to the set

$$\Omega^* = \{ \boldsymbol{\theta} \colon \boldsymbol{\theta} \in S^k, \, \theta_1 \leq \theta_2 \leq \cdots \leq \theta_k \}.$$

This restriction is of interest e.g. when θ_i is the p_i th percentile point of some distribution function F and $0 \le p_1 \le \cdots \le p_k \le 1$, or when $\theta_i = F(t_i)$ and $-\infty < t_1 < t_2 < \cdots < t_k < \infty$, or whenever it is known a priori that the parameters under consideration are ordered as in Ω^* .

2. A theorem.

Theorem 1. Let the loss function be given in (1) with $\phi(t)$, $t \ge 0$ a monotone increasing strictly convex function. Then the class of estimators δ satisfying

(3)
$$P(\delta \varepsilon \Omega^*; \theta) = 1 \quad \text{for every } \theta \varepsilon \Omega^*$$

is essentially complete. If S is an interval, the class is complete.

Proof. Suppose first k = 2. Let $\delta = (\delta_1, \delta_2)$ be such that for some $\theta^* \varepsilon \Omega^*$

$$(4) P(\delta_1 > \delta_2; \boldsymbol{\theta}^*) > 0.$$

Define $\delta^* = (\delta_1^*, \delta_2^*)$ by

$$\delta_1^* = \min (\delta_1, \alpha \delta_1 + (1 - \alpha) \delta_2), \quad \delta_2^* = \max (\delta_2, (1 - \alpha) \delta_1 + \alpha \delta_2)$$

for some fixed $0 \le \alpha \le \frac{1}{2}$. Notice that $\delta = \delta^*$ whenever $\delta \varepsilon \Omega^*$. Since for $\alpha = 0$ (3) holds for δ^* , the first part of the theorem follows for k = 2 if we show that for every $\delta \varepsilon \Omega^*$

(5)
$$L(\delta, \theta) \ge L(\delta^*, \theta).$$

When S is an interval (3) holds for δ^* for all values of α satisfying $0 \le \alpha \le \frac{1}{2}$. Actually we shall show that whenever $\delta \not\in \Omega^*$ (5) holds with strict inequality unless $\theta_1 = \theta_2$ and $\alpha = 0$. Hence, if (4) holds, δ^* is a true improvement over δ if we may chose some $\alpha > 0$, and the second part of the theorem follows for k = 2.

Let $\phi^*(t) = \phi(|t|), -\infty < t < \infty$. Then by our assumptions ϕ^* is strictly convex and (5) is equivalent to

(6)
$$\phi^*(\delta_1 - \theta_1) + \phi^*(\delta_2 - \theta_2)$$

 $\geq \phi^*(\alpha \delta_1 + (1 - \alpha)\delta_2 - \theta_1) + \phi^*((1 - \alpha)\delta_1 + \alpha \delta_2 - \theta_2).$

A well-known inequality for convex functions states

(7)
$$\phi^*(t) + \phi^*(s) \ge \phi^*(t - u) + \phi^*(s + u)$$
 when $t - s \ge u > 0$, where (7) holds with strict inequality when $t - s > u$. Now (6) is obtained from (7) upon substituting $t = \delta_1 - \theta_1$, $s = \delta_2 - \theta_2$ and $u = (\delta_1 - \delta_2)(1 - \alpha)$, and clearly the strict inequality holds unless $\theta_1 = \theta_2$ and $\alpha = 0$.

Suppose now that k > 2. If δ violates (3) for some θ^* , then there exist $i, j, 1 \le i < j \le k$, such that $P(\delta_i > \delta_j; \theta^*) > 0$. Then by the preceding argu-

ment (δ_i, δ_j) can be replaced by (δ_i', δ_j') satisfying $P(\delta_i' \leq \delta_j'; \theta) = 1$ for all $\theta \in \Omega^*$, thereby either strictly decreasing the sum of the losses for the *i*th and *j*th component, or leaving it unchanged. After a finite number of steps we obtain a rule δ^* satisfying (3) with losses satisfying (5). (5) is satisfied with strict inequality unless both (I): δ violates (3) by satisfying $P(\delta \in \Omega^*; \theta) < 1$ only for vectors θ having some coordinates equal, and (II): one is forced to choose $\alpha = 0$.

It should be noticed that whenever δ^* dominates δ , the domination is in the strong sense; viz., for every **x** the *loss* of δ^* is smaller than (or equal to) the *loss* of δ . Usual domination of decision functions considers *risks* only.

If the parametric family is such that for every measurable set A, $P(\mathbf{X} \varepsilon A; \boldsymbol{\theta}) > 0$ for some $\boldsymbol{\theta} \varepsilon \Omega^*$ implies $P(\mathbf{X} \varepsilon A; \boldsymbol{\theta}) > 0$ for every $\boldsymbol{\theta} \varepsilon \Omega^*$, then the above proof shows that, irrespective of the structure of S, the class of $\boldsymbol{\delta}$'s satisfying (3) is complete.

We remark that Katz in [1] considers the above situation with k=2, $\Omega^*=\{0 \leq \theta_1 \leq \theta_2 \leq 1\}$ where **X** is a vector of 2n independent Bernoulli random variables, n of which having parameter θ_1 and the other n having parameter θ_2 . Our Theorem 1 and its proof are generalizations of Theorem 1 in [1].

An immediate question arising is whether the theorem remains true when $\phi(t)$, $t \ge 0$, is assumed to be monotone increasing but not necessarily strictly convex. The general answer is in the negative, as we shall now show.

If S contains only 2 elements and ϕ is monotone increasing, the class satisfying (3) is always essentially complete, or complete, respectively. This follows since then only two values of ϕ , viz. at 0 and at some point $\lambda > 0$ are of interest, and for any two such given values with $\phi(0) < \phi(\lambda)$ there exists a convex function ϕ' such that $\phi'(0) = \phi(0)$ and $\phi'(\lambda) = \phi(\lambda)$ and Theorem 1 is applicable.

Suppose now that S contains 3 elements $\lambda_1 < \lambda_2 < \lambda_3$, and for definiteness let $\lambda_2 - \lambda_1 \leq \lambda_3 - \lambda_2$. We may without loss of generality assume $\phi(0) = 0$. Thus let

(8)
$$\phi(0) = 0$$
, $\phi(\lambda_2 - \lambda_1) = a$, $\phi(\lambda_3 - \lambda_2) = b$, $\phi(\lambda_3 - \lambda_1) = c$,

where $0 < a \le b \le c$. Suppose k = 2. We shall show that in certain cases $(\delta_1, \delta_2) = (\lambda_2, \lambda_1)$ can be admissible even when $\theta \in \Omega^*$. Table 1 indicates the losses suffered by saying $(\delta_1, \delta_2) = (\lambda_1, \lambda_2)$ or (λ_2, λ_1) respectively, when the true value is (θ_1, θ_2) . It is immediately seen that unless c < a + b the first row in Table 1 dominates the second.

TABLE 1

(δ_1,δ_2)	$(heta_1, heta_2)$					
	(λ_1, λ_1)	(λ_1,λ_2)	(λ_1, λ_3)	(λ_2,λ_2)	(λ_2,λ_3)	(λ_3,λ_3)
$(\lambda_1 \ , \ \lambda_2)$	a	0	b	a	a + b	b + c
$(\lambda_2 \ , \ \lambda_1)$	\boldsymbol{a}	2a	a + c	a	\boldsymbol{c}	b+c

Let S be countable and denote its elements by λ_1 , λ_2 , \cdots . In order to show that a rule is admissible we shall show that it is a Bayes rule with respect to some a *priori* distribution.

$$P(\theta_1 = \lambda_i, \theta_2 = \lambda_j) = p(\lambda_i, \lambda_j) = 0$$
 if $\lambda_i > \lambda_j$

= positive otherwise.

Let \mathbf{x} be a value such that $P(\mathbf{X} = \mathbf{x}; \boldsymbol{\theta}) = p(\mathbf{x} | \theta_1, \theta_2) > 0$ for some $\boldsymbol{\theta} \in \Omega^*$. In order that the Bayes rule with respect to the given a priori distribution be $(\delta_1(\mathbf{x}), \delta_2(\mathbf{x})) = (\lambda_2, \lambda_1)$ it is sufficient that

(9)
$$\sum_{i} \phi(|\lambda_2 - \lambda_i|) g_1(\lambda_i | \mathbf{x}) < \sum_{i} \phi(|\lambda_i - \lambda_i|) g_1(\lambda_i | \mathbf{x})$$
 for all $j \neq 2$ and

$$(10) \quad \sum_{i} \phi(|\lambda_{1} - \lambda_{i}|) g_{2}(\lambda_{i} | \mathbf{x}) < \sum_{i} \phi(|\lambda_{j} - \lambda_{i}|) g_{2}(\lambda_{i} | \mathbf{x}) \quad \text{for all } j \neq 1,$$

where $g_r(\lambda_i \mid \mathbf{x})$ r = 1, 2 is proportional to the posterior distribution of θ_r given \mathbf{x} . Thus in the example where S consists of the 3 elements $\lambda_1 < \lambda_2 < \lambda_3$ we find that if $p(\mathbf{x} \mid \lambda_i, \lambda_j)$ is a constant for $1 \leq i \leq j \leq 3$ and $p(\theta_i, \theta_j)$ is given by Table 2 where the margins are proportional to g_1 and g_2 , respectively, then (9) and (10) hold, i.e. $(\delta_1(\mathbf{x}), \delta_2(\mathbf{x})) = (\lambda_2, \lambda_1)$, both when a = b = c = 1 and when a = 99, b = 100, c = 101. This shows that the convexity condition in Theorem 1 cannot generally be weakened. (Obviously $p(x \mid \lambda_i, \lambda_j)$ was chosen to be a constant only to simplify the computations.)

 θ_2 θ_1 λ_1 λ_2 λ_3 g_1 .35 .01 .01 .37 λ_1 0 .10 .40 λ_2 .30 0 .23 .23 λ_3 .35 .31 .34 1 q_2

TABLE 2

From the above counterexample one can easily obtain counterexamples for S of any finite or denumerable cardinality. The writer has no counterexamples when S is an interval, but she believes that such counterexamples can be obtained.

We remark that whenever the class of extended Bayes rules for our problem is complete then Theorem 1 remains valid if (1) is replaced by

(11)
$$L^*(\boldsymbol{\delta}, \boldsymbol{\theta}) = \sum_{i=1}^k \left[d_i \phi(|\boldsymbol{\delta}_i - \boldsymbol{\theta}_i|) + e_i \right]$$

with $d_i > 0$, where $\phi(t)$ for $t \ge 0$ is a monotone increasing strictly convex function. (This is e.g. the case when S is finite, or when S is a closed bounded interval and **X** has a density which is continuous in θ .) This follows since δ is a Bayes rule

with respect to some prior distribution for loss function (1) if and only if it is a Bayes rule with respect to the same prior distribution for loss function (11).

It thus follows that whenever S contains only two elements and the loss on every component i is greater for a wrong decision than for a correct one, the class of decision functions δ satisfying (3) is essentially complete, since in that case the loss can always be written as (11).

(11) is a particular case of

(12)
$$L(\mathbf{\delta}, \boldsymbol{\theta}) = \sum_{i=1}^{k} \phi_i(|\delta_i - \theta_i|)$$

where $\phi_i(t)$ for $t \geq 0$ are monotone increasing strictly convex functions' $i=1,\cdots,k$. One may be tempted to believe that for finite S the class of rules satisfying (3) is essentially complete also when the loss has structure (12). That this conclusion is false follows if we consider S containing 3 elements, and let $a_1=10, b_1=40, c_1=100, a_2=10, b_2=20, c_2=31$ where these values are defined for ϕ_1 and ϕ_2 by (8). Then for $p(\mathbf{x}\mid\mathbf{\theta})$ equal a constant and the prior distribution of Table 3, it follows that (9) and (10) hold, with ϕ replaced by ϕ_1 and ϕ_2 , respectively.

 θ_2 θ_1 λ_1 λ_2 λ_3 g_1 λ_1 .55 .01 .01 .57 0 .01 .01 .02 λ_2 .41 .41 λ_3 .55 .02 .43 1 g_2

TABLE 3

Acknowledgment. The author is indebted to the referee for pointing out some errors in an earlier version of this note.

REFERENCES

- [1] Katz, Morris W. (1963). Estimating ordered probabilities. Ann. Math. Statist. 34 967-972.
- [2] Robbins, Herbert (1951). Asymptotic subminimax solutions of compound statistical decision problems. Proc. Second Berkeley Symp. Math. Statist. Prob. 131-148. Univ. of California Press.