NOTE ON ESTIMATING ORDERED PARAMETERS

By ESTER SAMUEL
Hebrew Unaversity

1. Introduction. We consider the problem of estimating a set of & real valued
parameters, 6 = (6, ---, 6;) where 6, ¢ S,¢ =1, --- , k. Let X be the (usually
vector valued) random variable with values x, the distribution of which de-
pends upon 0 and let 8 = 8(X) = (8(X), -+, &(X)) be an estimator of 6.
Since 0 is known to belong to S*, the k-fold Cartesian product of S, we shall
restrict & to belong to S* with probability one.

We assume that the loss incurred by saying & when the parameter is 6 is

(1) L(3, 0) = D_i1o(|6; — 64

where ¢(t), ¢t = 0, is a monotone increasing function.

The problem described above is usually called an estimation problem only if
S is an interval. We shall however not put any restrictions on S except (to avoid
trivialities) that it contains at least two elements. Thus, e.g., when S is finite
we consider what is usually called a multidecision problem. We shall also allow
randomized procedures, but in order not to complicate the notation we shall
not introduce a special notation when & is randomized. Thus, in what follows, &
should be interpreted to be the value of the estimator after the randomization
experiment has been carried out.

Suppose now that 0 is known to belong to @, a subset of S*. Is it then necessary
for & to belong to Q in order for & to be admissible? That is, must

(2) P(be;0) =1 for every 6 ¢ @

in order for & to be admissible?
In this generality, the answer is known to be in the negative. Robbins in [2]

considers the (nonsequential) compound decision problem where fors =1, --- | k
one has observations X; from a normal population with variance 1 and mean,
9; e {—1, 1}, and the X/s are independent. Thus here X = (X, ---, Xy),

and S* contains 2* points. The only values of ¢(¢) of interest here are ¢(0) and
¢(2), which are taken to be 0 and 1 respectively. Suppose it is known that ex-
actly one of the parameters 6; equals 1 and the £ — 1 others equal —1. Thus @
contains the k& points having one coordinate 41 and the others —1. In [2],
p. 138, it is shown that for £ > 2 the Bayes rule & with respect to the a prior:
distribution which assigns equal probability 1/k to each element of Q takes the
valued = (—1, - -+, —1) with positive probability under every 0 ¢ Q, and hence
clearly fails to satisfy (2). Since this Bayes rule is essentially unique the rule
obtained certainly is admissible for the restricted problem of deciding on 6 ¢ Q.
(This result is actually not too surprising. 5(x) takes the value (—1, ---, —1)
when all z’s are nearly equal. In that case assigning the value 41 to some
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8: has high (posterior) probability of causing a loss of 2, rather than the (certain)
loss of 1 incurred by 8(x) = (—1, ---, —1).)
In this note we consider the restriction to the set

Q* ={0:0c8,0, <6, < - <0).

This restriction is of interest e.g. when 6, is the p.th percentile point of some
distribution function # and 0 < p;1 £ --- < p, £ 1, or when 6; = F(¢;) and
—oo <t <l < -+ < < o,or whenever it is known a prior: that the param-
eters under consideration are ordered as in Q*.

2. A theorem.
THEOREM 1. Let the loss function be given in (1) with ¢(t), t = 0 a monotone
increasing strictly convex function. Then the class of estimators & satisfying

(3) P(eQ%0) =1 for every 0 & Q*

is essentially complete. If S is an interval, the class is complete.
Proor. Suppose first k = 2. Let & = (8 , 8;) be such that for some 6* ¢ Q*

(4) P(8; > 8,;0%) > 0.
Define * = (8, 8,") by
5% = min (&, ady + (1 — a)d), 8" = max (8, (1 — a)é, + ady)

for some fixed 0 £ o < 1. Notice that & = 8" whenever & ¢ 2%, Since for « = 0
(3) holds for 8%, the first part of the theorem follows for £ = 2 if we show that
for every 0 £ Q@

(5) L(3,0) = L(3% ).

When S is an interval (3) holds for 8™ for ail values of « satisfying 0 < o < 1.
Actually we shall show that whenever 822" (5) holds with strict inequality
unless 6, = 6, and & = 0. Hence, if (4) holds, " is a true improvement over
8 if we may chose some o > 0, and the second part of the theorem follows for
k=2

Let ¢*(t) = ¢(Jt|), —© < t < . Then by our assumptions ¢ is strictly
convex and (5) is equivalent to

(6) ¢"(6 — 6) + 6" (8 — )

2 ¢*(ad 4 (1 — a)ds — 6:) + ™ (1 — )b + ads — 65).
A well-known inequality for convex functilons states
(7) o*(t) + ¢*(s) = ¢"(t — u) + ¢*(s + u) whent—s=u>0,

where (7) holds with strict inequality when ¢ — s > u. Now (6) is obtained from
(7) upon substituting t = 6 — 61,8 = & — G and u = (8§ — 6)(1 — «a),
and clearly the strict inequality holds unless 6; = 6; and « = 0.

Suppose now that & > 2. If & violates (3) for some 0%, then there exist
4,7, 1 £ ¢ < j <k, such that P(8; > 8, ;6%) > 0. Then by the preceding argu-
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ment (8;, 8,;) can be replaced by (8;, 8;') satisfying P(5; < 8,;6) = 1 for all
0 £ Q¥ thereby either strictly decreasing the sum of the losses for the sth and
jth component, or leaving it unchanged. After a finite number of steps we obtain
a rule 8" satisfying (3) with losses satisfying (5). (5) is satisfied with strict
inequality unless both (I): & violates (3) by satisfying P(5¢Q*;0 ) < 1 only
for vectors 6 having some coordinates equal, and (II): one is forced to choose
a = 0.

Tt should be noticed that whenever * dominates 8, the domination is in the
strong sense; viz., for every x the loss of 8" is smaller than (or equal to) the loss
of 8. Usual domination of decision functions considers risks only.

If the parametric family is such that for every measurable set A, P(X ¢ A; 0)
> 0 for some 6 ¢ Q" implies P(X e A;8) > 0 for every 6 ¢ Q*, then the above
proof shows that, irrespective of the structure of S, the class of &’s satisfying (3)
is complete.

We remark that Katz in [1] considers the above situation with & = 2, @* =
{0 = 6, < 6, = 1} where X is a vector of 2n independent Bernoulli random vari-
ables, n of which having parameter 6; and the other n having parameter 6, .
Our Theorem 1 and its proof are generalizations of Theorem 1 in [1].

An immediate question arising is whether the theorem remains true when
(1), t = 0, is assumed to be monotone increasing but not necessarily strictly
convex. The general answer is in the negative, as we shall now show.

If S contains only 2 elements and ¢ is monotone increasing, the class satisfying
(3) is always essentially complete, or complete, respectively. This follows since
then only two values of ¢, viz. at 0 and at some point A > 0 are of interest, and
for any two such given values with ¢(0) < ¢(\) there exists a convex function
¢ such that ¢'(0) = ¢(0) and ¢’ (A\) = ¢(\) and Theorem 1 is applicable.

Suppose now that S contains 3 elements \; < A; < A3, and for definiteness
let 2 — A1 = N3 — Xo. We may without loss of generality assume ¢(0) = 0.
Thus let

(8) ¢(0) =0, oM — N) =a, ¢(Ns — N2) =D, o(A\s — \1) = ¢

where 0 < @ = b £ ¢. Suppose £ = 2. We shall show that in certain cases
(81, 82) = (M2, \1) can be admissible even when 6 ¢ Q*. Table 1 indicates the
losses suffered by saying (81, 62) = (A1, A2) or (A2, A1) respectively, when the
true value is (6;, 6:). It is immediately seen that unless ¢ < a + b the first row
in Table 1 dominates the second.

TABLE 1

(61, 62)

My N) (A, M) (M, M) (A2, A2) (M2, M) (N3, Ng)

(81, 82)

A1, N2) a 0 b a a+b b+ec
M2y A1) a 2a a+c a c b+c¢
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Let S be countable and denote its elements by A\;, N2, --- . In order to show
that a rule is admissible we shall show that it is a Bayes rule with respect to some
a priort distribution.

P(01=)\j,02=)\]>=p()\i,)\j)=0 if)\i>)\j

= positive otherwise.
Let x be a value such that P(X = x; 08) = p(x|6:, ) > 0 for some 6 e Q¥
In order that the Bayes rule with respect to the given a priort distribution be
(6:(x), 62(x)) = (N2, A1) it is sufficient that

(9) Zi¢(,)\2 — MDa(n ] x) < Zid’(,)\j — NN | x) for all j = 2

and

(10)  Did(h — A)ga(ni|x) < 2ia(\ — m[’)gz(mx) for all j # 1,

where g,(\; | x) » = 1, 2 is proportional to the posterior distribution of ¢, given x.

Thus in the example where S consists of the 3 elements \; < A\» < A\; we find
that if p(x | \s, \;) isa constant for 1 < ¢ = 7 < 3 and p(6:, 0,) is given by Table
2 where the margins are proportional to ¢g; and ¢», respectively, then (9) and
(10) hold, i.e. (8:(x), 62(x)) = (N2, A1), both when ¢ = b = ¢ = 1 and when
a = 99, b = 100, ¢ = 101. This shows that the convexity condition in Theorem
1 cannot generally be weakened. (Obviously p(z | X\:, \;) was chosen to be a
constant only to simplify the computations.)

TABLE 2
0
0
A\ Ao A3 81

M .35 .01 .01 .37
A2 0 .30 .10 .40
s 0 0 .23 .23
g2 .35 .31 .34 1

From the above counterexample one can easily obtain counterexamples for
S of any finite or denumerable cardinality. The writer has no counterexamples
when S is an interval, but she believes that such counterexamples can be ob-
tained. ‘

We remark that whenever the class of extended Bayes rules for our problem is
complete then Theorem 1 remains valid if (1) is replaced by

(11) L¥*(8,0) = > ici[di([8: — 0:]) + ed]

with d; > 0, where ¢(¢) for ¢ = 0 is a monotone increasing strictly convex func-
tion. (This is e.g. the case when S is finite, or when S is a closed bounded interval
and X has a density which is continuous in 0.) This follows since § is a Bayes rule
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with respect to some prior distribution for loss function (1) if and only if it is a
Bayes rule with respect to the same prior distribution for loss function (11).
It thus follows that whenever S contains only two elements and the loss on every
component t is greater for a wrong decision than for a correct one, the class of decision
functions & satisfying (3) is essentially complete, since in that case the loss can
always be written as (11).
(11) is a particular case of

(12) L(8,0) = 2 iz ¢:([6: — 6:)

where ¢.(t) for ¢ = 0 are monotone increasing strictly convex functions’
i =1, ---,k One may be tempted to believe that for finite S the class of rules
satisfying (3) is essentially complete also when the loss has structure (12). That
this conclusion is false follows if we consider S containing 3 elements, and let
a; = 10, by = 40, ¢, = 100, a; = 10, by = 20, ¢c; = 31 where these values are de-
fined for ¢; and ¢. by (8). Then for p(x | 0) equal a constant and the prior dis-
tribution of Table 3, it follows that (9) and (10) hold, with ¢ replaced by ¢,
and ¢ , respectively.

TABLE 3
(23
0,
)\1 )\2 )\3 141

M .55 .01 .01 .57
Ao 0 .01 .01 .02
s 0 0 .41 .41
g2 .55 .02 .43 1

Acknowledgment. The author is indebted to the referee for pointing out some
errors in an earlier version of this note.
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