NOTES # NOTE ON DECISION PROCEDURES FOR FINITE DECISION PROBLEMS UNDER COMPLETE IGNORANCE #### By Bradley Efron ### Stanford University - 1. Summary. The decision procedures suggested in [1] for finite matrix games are shown to extend successfully to closed and bounded convex S-games, and, with some loss of desirable properties, to the general decision situation. - **2.** Introduction. In their paper "Decision Procedures for Finite Decision Problems Under Complete Ignorance", Atkinson, Church, and Harris, [1], postulate eight desirable criteria for decision procedures on finite matrix games $A = (u_{ij}), u_{ij}$ representing here the loss to the statistician when he takes action i against state of nature $j, i = 1, 2, \dots, m, j = 1, 2, \dots, n$. If A is given the usual S-game representation in n-space, ([2], p. 47), and Q(A) denotes the optimum rules under some decision procedure, then the eight criteria are - (1) Q(A) is always non-empty. - (2) Permuting the columns of the matrix A induces the same permutation on the coordinates of each point in Q(A). - (3) Every point in Q(A) is admissible. - (4) Q(A) is convex. - (5) If $A = (u_{ij})$ and $A' = (\lambda u_{ij} + c_j)$, $\lambda > 0$, then $Q(A') = {\lambda x + (c_1, c_2, \dots, c_n) : x \in Q(A)}$. - (6) Deleting a column of A which is a convex combination of the other columns affects Q(A) by deleting the corresponding coordinate of each point. - (7) If A_1 and A_2 have the same admissible points, then $Q(A_1) = Q(A_2)$. - (8) If $A^N \to A$ (entry-wise), and $s^N \in Q(A^N)$ for all N, then $s^N \to s$ implies $x \in Q(A)$. A class of decision procedures, which might be called "iterated minimax regret rules", is shown to satisfy all eight criteria. These rules are described as follows: Let $\{\epsilon_h\}$ be a sequence of positive numbers tending to zero, and let Q_1 be the convex hull of the row vectors of A (Q_1 is the "S-figure" representing the game A in n-space). Define $$v_1(j) = \min_{x \in Q_1} x(j),$$ where $x = (x(1), \dots, x(n))$, and $$z_1 = \min_{x \in Q_1} d(v_1, x),$$ where $v_1 = (v_1(1), v_1(2), \dots, v_1(n))$, and $d(\cdot, \cdot)$ is the distance function $$d(v_1, x) = \max_{1 \leq j \leq n} |v_1(j) - x(j)|.$$ Received 12 May 1964; revised 22 September 1964. Now let Q_2 be the closed convex set $$Q_2 = \{x \in Q_1, d(v_1, x) \leq z_1 + \epsilon_1 z_1\}.$$ Iterating this procedure yields sequences of sets Q_h , vectors v_h , and numbers z_h , described by $$v_h(j) = \min_{x \in Q_h} x(j),$$ $j = 1, 2, \dots, n,$ $z_h = \min_{x \in Q_h} d(v_h, x)$ and $$Q_{h+1} = \{x \in Q_h, d(v_h, x) \leq z_h + \epsilon_h z_1\}.$$ It is shown that the sets Q_h decrease to a single point s, the iterated minimax regret point, and that the eight criteria are satisfied for every choice of the ϵ_h . The purpose of this note is two-fold: First of all it is shown that the iterated minimax regret procedures continue to satisfy the eight criteria when applied to arbitrary finite-dimensional closed and bounded S-games (that is, games where the statistician is allowed an infinite number of strategies, or equivalently, where the figure Q_1 is an arbitrary closed and bounded convex set). Secondly, counterexamples are given to show that the procedure does not satisfy Criterion 1 when there are an infinite number of states of nature, although Criteria 2-8 continue to hold in the general decision situation. 3. Iterated minimax regret for arbitrary S-games. Let A be an S-game described by Q_1 , a closed and bounded convex figure in n-dimensional space. Criteria 1-7 are still meaningful when applied to such games, (certain obvious changes should be made in the statements of 2, 5, and 6). Criterion 8 is also meaningful, when convergence of games is interpreted as convergence of the corresponding S-figure under the metric $$d(R, S) = \max \{ \max_{r \in R} \min_{s \in S} d(r, s), \max_{s \in S} \min_{r \in R} d(r, s) \}.$$ Lemma 0. The iterated minimax regret procedures satisfy Criteria 1-7 when applied to the class of closed and bounded convex S-games. For each such game the closed convex sets Q_h decrease to a single point s, the numbers z_h decrease to 0, and the vectors v_h increase component-wise to s. Proof. The proofs in [1] of the statements above do not depend on Q_1 being polyhedral (that is, the set of decisions available to the statistician being finite) and hence can be applied here without change. It remains to verify Criterion 8. Fix a sequence $\{\epsilon_h\}$ of positive numbers tending to zero. Let $\{Q_1^N\}$ be the S-figures representing a sequence of closed and bounded convex S-games in n-space, with corresponding superscripts for the various elements of the iterated minimax decision procedure, Q_h^N , v_h^N , z_h^N , etc. LEMMA 1. $\lim_{N\to\infty} d(Q_1^N, Q_1) = 0$ implies that for every value of h - (i) $\lim_{N\to\infty} v_h^N(j) = v_h(j)$ for $j = 1, 2, \dots, n$, (ii) $\lim_{N\to\infty} z_h^N = z_h$, and - (iii) $\lim_{N\to\infty} d(Q_h^N, Q_h) = 0.$ Proof. It is sufficient to verify the lemma for h=1, the general result following by iteration. (i) For each j, $1 \leq j \leq n$, there exists a vector x in Q_1 such that $x(j) = \min_{y \in Q_1} y(j) \equiv v_1(j)$. If $d(Q_1^N, Q_1) < \delta_0$ for all sufficiently large N, then for each such N there exists x^N in Q_1^N such that $d(x^N, x) < \delta_0$, and thus $$v_1^{N}(j) \equiv \min_{y \in Q_1^{N}} y(j)$$ $$\leq x^{N}(j) \leq x(j) + \delta_0 = v_1(j) + \delta_0.$$ Letting N go to infinity gives $$\lim \sup_{N} v_1^{N}(j) \leq v_1(j) + \delta_0 \quad \text{for all} \quad \delta_0 > 0,$$ while, by a symmetric argument, $$\lim \inf_{N} v_1^N(j) \ge v_1(j) - \delta_0 \quad \text{for all} \quad \delta_0 > 0,$$ or, equivalently, $\lim_{N} v_1^{N}(j) = v_1(j)$. (ii) Choose x in Q_1 such that $d(v_1, x) = z_1$. Let δ_0 and the sequence x^N be defined as above. Then $z_1^N \leq d(v_1^N, x^N) \leq d(v_1^N, v_1) + d(v_1, x) + d(x, x^N)$. Letting N approach infinity and applying part (i), $$\lim \sup_{N} z_1^{N} \leq z_1 + \delta_0 \quad \text{for all} \quad \delta_0 > 0.$$ A symmetric argument gives $$\lim \inf_{N} z_1^N \ge z_1 - \delta_0 \quad \text{for all} \quad \delta_0 > 0,$$ or, equivalently, $\lim_N z_1^N = z_1$. (iii) If $z_1 = 0$ the result follows from (i) and (ii). By Criterion 5 it may therefore be assumed, without loss of generality, that $z_1 = 1$. Assume that $\lim_N d(Q_1^N, Q_1) = 0$, but $\lim \sup_N d(Q_2^N, Q_2) = \delta_0 > 0$. There then exists an infinite sequence of positive integers, $\{N'\} \equiv I'$, and a sequence of vectors $\{w^N'\}$, such that either (a) $$w^{N'} \varepsilon Q_2$$, $\min_{x \in Q_2^{N'}} d(w^{N'}, x) > \frac{3}{4} \delta_0$ for all $N' \varepsilon I'$ or (b) $$w^{N'} \varepsilon Q_2^{N'}$$, $\min_{x \varepsilon Q_2} d(w^{N'}, x) > \frac{3}{4} \delta_0$ for all $N' \varepsilon I'$. The two cases will be treated separately. Case (a). The infinite sequence of points $\{w^{N'}\}$ in Q_2 has at least one accumulation point w in Q_2 . Assume first that $d(v_1, w) < z_1 + \epsilon_1$. Since $d(Q_1^N, Q_1)$ is going to zero, there exists a sequence of points $\{y^N\}$, $y^N \in Q_1^N$, such that $\lim_N d(w, y^N) = 0$. By the definition of w, (*) $$\min_{y \in Q_2^{N'}} d(w, y) \ge \min_{y \in Q_2^{N'}} d(w^{N'}, y) - d(w^{N'}, w) > \frac{1}{2} \delta_0$$ for some infinite subsequence of N' in I', and therefore $y^N \, \varepsilon \, Q_1^N - Q_2^N$ infinitely often. However (i) and (ii) imply that for N sufficiently large, $$d(v_1, v_1^N) < \frac{1}{4}[z_1 + \epsilon_1 - d(v_1, w)]$$ and $$|z_1 - z_1^N| < \frac{1}{4}[z_1 + \epsilon_1 - d(v_1, w)],$$ and therefore $$\inf_{y \in Q_1^N - Q_2^N} d(w, y) \ge \inf_{y \in C^N} d(w, y)$$ $$\ge \inf_{y \in C} d(w, y) - \frac{1}{4} [z_1 + \epsilon_1 - d(v_1, w)]$$ $$\ge \frac{1}{2} [z_1 + \epsilon_1 - d(v_1, w)]$$ where $C^N \equiv \{x: d(v_1^N, x) > z_1^N + \epsilon_1\}$ and $C \equiv \{x: d(v_1, x) > z_1 + \epsilon_1\}$. Thus $y^N \not \in Q_1^N - Q_2^N$ for all sufficiently large N, a contradiction, and $d(v_1, w)$ must equal $z_1 + \epsilon_1$. Define the vector u in Q_2 by $$u = \lambda s + (1 - \lambda)w, \qquad \lambda = \frac{1}{4}\delta_0(z_1 + \epsilon_1)^{-1},$$ where s is any vector in Q_1 such that $d(v_1, s) = z_1$. Then $$d(v_1, u) \leq \lambda d(v_1, s) + (1 - \lambda) d(v_1, w)$$ = $z_1 + \epsilon_1 - \frac{1}{4} \delta_0(\epsilon_1/(z_1 + \epsilon_1)) < z_1 + \epsilon_1$, while $$d(u, w) = \lambda d(s, w)$$ $\leq \lambda(z_1 + \epsilon_1)$ [Since both s and $w \in Q_2$] $= \frac{1}{4}\delta_0$. The last inequality and a previously described property of w, (*), imply that for an infinite subsequence of I', $$\min_{x \in Q_2^{N'}} d(u, x) \ge \min_{x \in Q_2^{N'}} d(w, x) - \frac{1}{4} \delta_0 > \frac{1}{4} \delta_0.$$ The first argument may now be repeated with w replaced by u and δ_0 replaced by $\frac{1}{2}\delta_0$, yielding $d(v_1, u) = z_1 + \epsilon_1$, a contradiction. Case (b). Let w be an accumulation point of the infinite bounded sequence $\{w^{N'}\}$, with some subsequence $\{w^{N''}\} \equiv I''$ tending to w. By parts (i) and (ii), $$d(v_{1}, w) \leq \limsup_{N'' \in I''} d(v_{1}, v_{1}^{N''}) + \limsup_{N'' \in I''} d(v_{1}^{N''}, w^{N''})$$ $$+ \lim \sup_{N'' \in I''} d(w^{N''}, w)$$ $$\leq z_{1} + \epsilon_{1}.$$ By the definition of w, $$\min_{x \in Q_2} d(w, x) \ge \min_{x \in Q_2} d(w^{N''}, x) - d(w, w^{N''})$$ $$\ge \frac{1}{2} \delta_0 \quad \text{for sufficiently large} \quad N'' \in I''.$$ Thus $w \, \varepsilon \, Q_2$, which implies $w \, \varepsilon \, Q_1$, since $d(v_1, w) \leq z_1 + \epsilon_1$. Because of the closure of Q_1 , $\min_{x \in Q_1} d(w, x) = \delta_1 > 0$. Then for all N'' such that $d(w^{N''}, w) < \frac{1}{2}\delta_1$, $$d(Q_1^{N''}, Q_1) \ge \min_{x \in Q_1} d(w^{N''}, x)$$ $$\ge \min_{x \in Q_1} d(w, x) - d(w, w^{N''}) \ge \frac{1}{2} \delta_1,$$ a contradiction. This verifies Lemma 1. Theorem 1. The iterated minimax regret procedures satisfy Criteria 1–8 when applied to the class of closed and bounded convex S-games. Proof. Suppose that $\lim_N d(Q_1^N, Q_1) = 0$, and $\lim_N d(s^N, x) = 0$, where s^N is the iterated minimax regret point for the game Q_1^N . For each s^N there exists x^N in Q_1 such that $d(s^N, x^N) \leq d(Q_1^N, Q_1)$. Taking limits in $d(x, x^N) \leq d(x, s^N) + d(s^N, x^N)$ gives $\lim_N d(x, x^N) = 0$, and so $x \in Q_1$ by closure. Assume that $x \in Q_h$. The relationship $$d(v_h, x) \leq d(v_h, v_h^N) + d(v_h^N, s^N) + d(s^N, x)$$ implies, by Lemma 1, that $d(v_h, x) \leq z_h + \epsilon_h$, and hence $x \in Q_{h+1}$. By induction, $x \in \bigcap_{h=1}^{\infty} Q_h$ and is therefore the iterated minimax regret point for Q_1 . **4.** Extensions and counter-examples. The examples constructed in this section will be representable as closed, bounded, and convex S-games in a countably-infinite dimensional vector space. That is, the statistician's decision consists of the choice of a vector in Q_1 , a closed, bounded, and convex set in the l_{∞} space over some infinite subset I of the integers. Nature's decision is the choice of a coordinate. The distance function in $l_{\infty}(I)$ is $d(x, y) = \sup_{j \in I} |x(j) - y(j)|$ and the iterated minimax regret decision rules are well-defined (with infimums replacing minimums in the definitions of the v_h and z_h). First, let $I = I^+$, the non-negative integers, and define the vectors b_p by $b_p = (0, 0, \dots, 0, 1 + (1/2^{p-1}), 1 + (1/2^{p-1}), \dots)$, where there are p 0's. LEMMA 2. Let $C\{b_k\}$ be the convex hull of the vectors b_k , $k=1, 2, 3, \cdots$, and Q_1 the closure in $l_{\infty}(I^+)$ of $C\{b_k\}$. Then the iterated minimax regret rule with $\epsilon_h=2^{-h}$ yields no decisions. (That is, $\bigcap_{h=1}^{\infty} Q_h=\phi$.) Proof. It is easily seen that $v_h = 0 \equiv (0, 0, 0, \cdots)$ and $z_h = 1$ for all h. Suppose that $x \in \bigcap_{h=1}^{\infty} Q_h$, implying that d(0, x) = 1. By the definition of Q_1 , there exists a sequence $\{x_{\alpha}\} \subset C\{b_k\}$ such that $d(x, x_{\alpha}) \to 0$. Let x(j) be the first non-zero coordinate of x, so $x_{\alpha}(j) \to x(j)$. If $x_{\alpha} = \sum_{k=1}^{k_{\alpha}} \lambda_{\alpha k} b_k$, $\lambda_{\alpha k} \geq 0$, k = 1, $2, \dots, k_{\alpha}$, $\sum_{k=1}^{k_{\alpha}} \lambda_{\alpha k} = 1$, then, defining $\lambda_{\alpha k} = 0$ for $k > k_{\alpha}$, $$x_{\alpha}(j) = \sum_{k=1}^{j-1} \lambda_{\alpha k} [1 + (1/2^{k-1)})] \rightarrow x(j),$$ (since $b_k(j) = 0$ for $k \ge j$). This implies $$p \equiv \lim \inf_{\alpha} \sum_{k=1}^{j-1} \lambda_{\alpha k} \ge \frac{1}{2} x(j) > 0.$$ But for $i > k_{\alpha}$, $$x_{\alpha}(i) = \sum_{k=1}^{k_{\alpha}} \lambda_{\alpha k} b_{k}(i)$$ $$= 1 + \sum_{k=1}^{k_{\alpha}} (\lambda_{\alpha k} / 2^{k-1})$$ $$\geq 1 + (1/2^{j-2}) \sum_{k=1}^{j-1} \lambda_{\sigma k},$$ yielding $$\lim\inf_{\alpha}\left(\lim\sup_{i}x_{\alpha}(i)\right)\geq 1+(p/2^{j-2}).$$ This shows that $$d(0, x) = \lim_{\alpha} d(0, x_{\alpha})$$ $$\geq \liminf_{\alpha} (\limsup_{\alpha} x_{\alpha}(i)) \geq 1 + (p/2^{j-2}),$$ a contradiction. Two objections may be raised to this example. First of all, no point in Q_1 is admissible, and secondly, there is no minimax regret point. To answer the first objection, let I now be the entire set of integers, and b_k the vector $$(\cdots \frac{1}{4} - (1/2^{k+1}), \frac{1}{4} - (1/2^{k+1}),$$ $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \cdots \frac{1}{2}, 0, 0 \cdots 0, 1 + (1/2^{k-1}), 1 + (1/2^{k-1}), \cdots),$ where there are k ½'s and k 0's. That is, b_k ' is b_k augmented by $(\frac{1}{2}, \frac{1}{2}, \cdots) - \frac{1}{4}b_k$ in the negative coordinates. Let Q_1 ' be the closure of $C\{b_k'\}$, $k=1, 2, \cdots$. By symmetry, every point in Q_1 ' is admissible. Inspection reveals that $z_h'=1$ for all h, $v_h'(j)=0$ for $j\geq 0$ for all h, and $d(v_h',b_k')=d(v_h,b_k)$ for all k and k. Therefore the iterated minimax regret procedure is identical at every step with the previous case, and yields no rules in the limit. A similar argument shows that the game formed from the closure of the convex hull of the vectors $$(-4, x, x, x, x, \cdots), x > 15,$$ $$(-1, 3, 3, 3, 3, \cdots),$$ $$(-\frac{1}{2}, 0, 2, 2, 2, \cdots),$$ $$(-\frac{1}{2}, 0, 0, 1\frac{1}{2}, 1\frac{1}{2}, \cdots),$$ $$\vdots$$ $$(-\frac{1}{2}, 0, \cdots, 0, 1 + (1/2^{k-1}), 1 + (1/2^{k-1}), \cdots),$$ $$\vdots$$ has $(-1, 3, 3, 3, \cdots)$ for a minimax regret point, but yields no vector by iterated minimax regret (with $\epsilon_h = \frac{1}{3}2^{-h}$). It has been shown that Criterion 1 does not hold when there are an infinite number of states of nature. Consider now the general decision situation, which, for the purposes here, may be thought of as a convex S-game in the space $L_{\infty}(\Omega)$, where Ω is the state of nature space. It will be assumed that the set of points in $L_{\infty}(\Omega)$ available to the statistician, Q_1 , is uniformly bounded below in every coordinate (say by zero), in addition to being non-empty and convex. The definition of the iterated minimax regret procedures extends in an obvious way to the general situation, as do the statements of the eight criteria. (Criterion 7 should now read: If there exists a set C which is a complete class for both of the games A_1 and A_2 , then $Q(A_1) = Q(A_2)$. Criterion 8 is defined as before in terms of the symmetric distance function between sets.) Theorem 2. In the general decision situation, the iterated minimax regret procedures satisfy Criteria 2–7. Criterion 8 is also satisfied in the sense that if $A^N \to A$ ($\lim_N d(Q_1^N, Q_1) = 0$) and $\lim_N d(x^N, x) = 0$, where each $x^N \in Q(A^N)$, then x is in the closure of Q_h for every h. **5. Discussion.** The verification of Criteria 2–7 differs only slightly in detail from that given in [1]. Lemma 1 remains true as stated in the general situation. A proof can be constructed along very similar lines to the one given, the lack of compactness, and therefore convenient limiting points and values, being paid for in additional ϵ 's and δ 's. The proof given for Theorem 1 then goes through as before. It should be noted that none of the more common decision procedures satisfy Criterion 1 in the general situation. The usual resolution of this dilemma works equally well here: the class of " ϵ_h -iterated minimax regret procedures" is defined naturally as $Q_{h+1}(A)$, and by Lemma 1 will satisfy Criterion 8. The other 7 criteria continue to hold, 3 in the usual ϵ_h definition, 7 in the sense that if A_1 and A_2 have the same complete class, then $d(Q_{h+1}(A_1), Q_{h+1}(A_2)) \leq \epsilon_{h+1}$. #### REFERENCES - ATKINSON, F. V., CHURCH, J. D. and HARRIS, B. (1964). Decision procedures for finite decision problems under complete ignorance. Ann. Math. Statist. 35 1644-1655. - [2] Blackwell, D. and Girshick, M. (1954). Theory of Games and Statistical Decisions. Wiley, New York.