NOTES

NOTE ON DECISION PROCEDURES FOR FINITE DECISION
PROBLEMS UNDER COMPLETE IGNORANCE

By BrapLEY ErFroN
Stanford University

1. Sumxhary. The decision procedures suggested in [1] for finite matrix games
are shown to extend successfully to closed and bounded convex S-games, and,
with some loss of desirable properties, to the general decision situation.

2. Introduction. In their paper “Decision Procedures for Finite Decision
Problems Under Complete Ignorance”, Atkinson, Church, and Harris, [1], postu-
late eight desirable criteria for decision procedures on finite matrix games
A = (uij), u,; representing here the loss to the statistician when he takes action 7
against state of naturej, 7 = 1,2, --- ,m,j = 1,2, - -+, n. If A is given the usual
S-game representation in n-space, ([2], p. 47), and Q(A4) denotes the optimum
rules under some decision procedure, then the eight criteria are

(1) Q(A) is always non-empty.

(2) Permuting the columns of the matrix A4 induces the same permutation on
the coordinates of each point in Q(A).

(3) Every point in Q(A) is admissible.

(4) Q(A) is convex.

(6) If A = (ui;) and A" = (g + ¢;), N > 0, then Q(4") = {Ax + (e,
Cay sty )i e QAN

(6) Deleting a column of A which is a convex combination of the other columns
affects @(A) by deleting the corresponding coordinate of each point.

(7) If Ay and A, have the same admissible points, then Q(A4;) = Q(4.,).

(8) If A — A (entry-wise), and s" ¢ Q(A") for all N, then s¥ — s implies
rzeQ(A).

A class of decision procedures, which might be called “iterated minimax regret
rules”, is shown to satisfy all eight criteria. These rules are described as follows:
Let {e} be a sequence of positive numbers tending to zero, and let Q; be the con-
vex hull of the row vectors of A (Q: is the “S-figure” representing the game 4 in
n-space). Define ‘

Ul(j) = minzte x(])y

where x = (x(1), -+, 2(n)), and
21 = MiDgeq, d(v1, ),
where v; = (v1(1), v:(2), - -+, i(n)), and d(-, -) is the distance function
d(v, ) = maxigjca [0:(7) — z(5)].
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Now let Q. be the closed convex set
Q:={xeQ,dv,z) <21+ azl.

Iterating this procedure yields sequences of sets @, , vectors vy, , and numbers z;, ,
described by
u(j) = mingq, 2(j), J=14L2 -, n

mingeq, d(vs , )

Zn
and
Qi1 = {zeQ,d(on,x) = zn + ez}

It is shown that the sets @, decrease to a single point s, the iterated minimax
regret point, and that the eight criteria are satisfied for every choice of the ¢, .

The purpose of this note is two-fold: First of all it is shown that the iterated
minimax regret procedures continue to satisfy the eight criteria when applied to
arbitrary finite-dimensional closed and bounded S-games (that is, games where
the statistician is allowed an infinite number of strategies, or equivalently, where
the figure Q, is an arbitrary closed and bounded convex set). Secondly, counter-
examples are given to show that the procedure does not satisfy Criterion 1 when
there are an infinite number of states of nature, although Criteria 2-8 continue to
hold in the general decision situation.

3. Iterated minimax regret for arbitrary S-games. Let A be an S-game
described by @1, a closed and bounded convex figure in n-dimensional space.
Criteria 1-7 are still meaningful when applied to such games, (certain obvious
changes should be made in the statements of 2, 5, and 6). Criterion 8 is also
meaningful, when convergence of games is interpreted as convergence of the cor-
responding S-figure under the metric

d(R, S) = max {max,.r Ming.s d(r, $), MaXses Min,r d(7, s)}.

LemMma 0. The iterated minimazx regret procedures satisfy Criteria 1-7 when ap-
plied to the class of closed and bounded convex S-games. For each such game the
closed convex sets Q) decrease to a single point s, the numbers z;, decrease to 0, and the
veclors vy, tncrease component-wise o s.

Proor. The proofs in [1] of the statements above do not depend on @, being
polyhedral (that is, the set of decisions available to the statistician being finite)
and hence can be applied here without change.

It remains to verify Criterion 8. Fix a sequence {e,} of positive numbers tending
to zero. Let {Q;"} be the S-figures represénting a sequence of closed and bounded
convex S-games in m-space, with corresponding superscripts for the various
elements of the iterated minimax decision procedure, @, v,~, z.", ete.

LeMMA 1. limy., d(Q", Q) = 0 implies that for every value of h

(1) lin]N-wo U/LN(j) = vh(j) fO’?' 7 = 1) 27 e, N,
(i1) limyow 2, = 21, and

(iii) limyae (@, Q1) = 0.

Proor. It is sufficient to verify the lemma for A = 1, the general result follow-
ing by iteration.
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(i) TFor each j, 1 < j =< n, there exists a vector z in @; such that z(j) =
ming.o, ¥(j) = v:(j). I d(@:", @) < & for all sufficiently large N, then for each
such N there exists 2" in @," such that d(z", z) < & , and thus

0" (§) = mingeo} ¥(7)
2¥(j) = 2(f) + 8 = vi(5) + bo.
Letting N go to infinity gives

lim supy 21" (7) £ 0(§) + 6 for all 6 > 0,

lIA

while, by a symmetric argument,
lim infy 2" (5) = w(5) — 6 for all 6 > 0,
or, equivalently, limy v () = v(7).
(ii) Choose z in @, such that d(vi, z) = 21. Let § and the sequence z" be de-

fined as above. Then 2" < d(v", 2V) £ d(0", n) + d(w, z) + d(z, z"). Let-
ting N approach infinity and applying part (i),

limsupy 2" < 21+ 6  forall & > 0.
A symmetric argument gives

lim infy2,¥ = 23 — & forall & > 0,

or, equivalently, limy 2" = 2.

(iii) If2; = O the result follows from (i) and (ii). By Criterion 5 it may there-
fore be assumed, without loss of generality, that z, = 1.

Assume that limy d(Q:", @) = 0, but lim supy d(Q.", Q;) = 8 > 0. There
then exists an infinite sequence of positive integers, {N'} = I’, and a sequence of
vectors {w" }, such that either

(a) w" £Q,, mingo d(w",z) > 35 forall N' eI’
or
(b) w" € Q") mingeq, d(w” , &) > 28, forall N' e I'.

The two cases will be treated separately.

Cask (a). The infinite sequence of points {wN’} in Q. has at least one accumu-
lation point w in @ . Assume first that d(v;, w) < z1 + e . Since d(Q", Q1) is
going to zero, there exists a sequence of points {y"}, y" ¢ @:", such that
limy d(w, ¥") = 0. By the definition of w,

™ ming.o d(w, y) = ming.e dw",y) — dw"', w) > L&

for some infinite subsequence of N” in I’, and therefore 3" ¢ @, — Q." infinitely
often. However (i) and (ii) imply that for N sufficiently large,

d(l)l , 7)1N> < ’};[Zl + a — d(vl ’ w)]
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and
]z1 — le, < %[Zl + & — d(yl ) w)]7

and therefore

%

infyeCN d(w; y)
infyec d(w, y) - %[Zl +ea— d(vl ) w)]
%[Zl + € — d(v1 , ’w)

where €Y = {z:d(»n", ) > " + &} and C = {2:d(v1, ) > 21 + «}. Thus
" 2 Q" — @ for all sufficiently large N, a contradiction, and d(v;, w) must
equal 21 + € .

Define the vector u in @, by

u=x4+ (1 —Nw, A= 5z + ),

infyeq) oy d(w, )

v

v

where s is any vector in @; such that d(v;, s) = z;. Then
dlvi,u) = Nd(vi,s) + (1 —N)d(v, w)
=za+a— (a/(a+a)) <a + e,

while

Il

d{u, w) = Nd(s, w)

NNz + @) [Since both s and w e Qy

IIA

I

1
150 .

The last inequality and a previously described property of w, (*), imply that for
an infinite subsequence of I’,

mian’;” d{u, z) = minuo’z‘" dw, ) — 18 > 16 .

The first argument may now be repeated with w replaced by « and §, replaced
by %0, yielding d(v1, u) = 21 + e, a contradiction.
Case (b). Let w be an accumulation point of the infinite bounded sequence
{w""}, with some subsequence {w" } = I” tending to w. By parts (i) and (ii),
d(vi, w) < lim supyrer d(vr, 01" ) + lim supyrer d(o, W)
+ lim supy» ez~ d(wN”, w)
SEatea.

By the definition of w,

%

MiNgeq, d(W, ) = Ming.q, d(wN”, z) — d(w, wN”)

1\%

15, for sufficiently large N” eI”.

Thus w £ Q- , which implies w £ @, since d(v;, w) = 21 + & . Because of the
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closure of @, ming.q, d(w, ) = & > 0. Then for all N” such that d (w™"
1
201,

yw) <

v

d(Qlle Q1> = minZSQl d<wN ) x)
2 Mingeq, d(w, z) — d(w, w"") = L5,

a contradiction. This verifies Lemma 1.

TuEOREM 1. The iterated minimax regret procedures satisfy Criteria 1-8 when
applied to the class of closed and bounded convex S-games.
Proor. Suppose that limy d(Q,", @) = 0, and limy d(s", x) = 0, where sN is
the iterated minimax regret point for the game Q;". For each s” there exists 2" in
@ such that d(s", a") < d(Q1 , Q). Taking limits in d(z, ") < d(z, s")
+ d(s", 2") gives limy d(z, ") = 0, and so z & Q, by closure.

Assume that z € @, . The relationship

d(on, x) < d(ow, o) + d@?, ") + d(s", z)

1mphes by Lemma 1, that d(vs , ) = z» + e, and hence z £ Q,,, . By induction,
z & Nr=1 Qi and is therefore the iterated minimax regret point for Q; .

4. Extensions and counter-examples. The examples constructed in this
section will be representable as closed, bounded, and convex S-games in a count-
ably-infinite dimensional vector space. That is, the statistician’s decision con-
sists of the choice of a vector in @;, a closed, bounded, and convex set in the
l space over some infinite subset 7 of the integers. Nature’s decision is the choice
of a coordinate. The distance function in I.,(1) is d(x, y) = supje |z(j) — y(D|
and the iterated minimax regret decision rules are well-defined (with infimums
replacing minimums in the definitions of the v, and z).

First, let I = I, the non-negative integers, and define the vectors b, by

= (0,0, , 0, 1 + (1/2"7), 1 + (1/27"), -+ -), where there are p 0’s.

LEMMA 2. Let C{b;L! be the convex hull of the vectors by, , k = 1,2, 3, --- | and Q,
the closure in lo(I") of C{b}. Then the iterated minimaz regret rule with ¢, = 27"
yields no decisions. (That is, Ni= Q, = ¢.)

Proor. It is easily seen that v, = 0 = (0, 0,0, ---) and 2, = 1 for all A.
Suppose that x & Ny—; Q4 , implying that d(0, 2) = 1. By the definition of @,
there exists a sequence {z.} C C{b;} such that d(x, x,) — 0. Let z(5) be the first
non-zero coordinate of z, 50 za(7) — 2(5). If 204 = D_x%1 Aarbs v Ak 2 0,k =1,

, ko) 2ok%1 Aai = 1, then, defining At = Ofork > ke,

2a() = e hatll 4 (1/279)] — a(5),
(since by(j) = 0 for k = j). This implies

p = lim inf, Zi;i At = 32(7) > 0.
But for 7 > k.,
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Ta() = D%y Naabi(7)
=14 D Ow/2
14 (1/27%) 27050 har s

I

yielding
lim inf, (lim sup; z.(7)) = 1 + (p/277).
This shows that
d(0, z) = lim, d(0, )
lim inf, (lim sup, z«(7)) = 1 + (p/2°2),

v

a contradiction.

Two objections may be raised to this example. First of all, no point in @ is
admissible, and secondly, there is no minimax regret point. To answer the first
objection, let I now be the entire set of integers, and b’ the vector

(oo k= (1/27), 1 — (172",
%’%,%"'%’0,0“'0,1 + (1/2k-1>’1+ (1/2]‘_1))“'),

where there are k &’s and k 0’s. That is, b, is br augmented by (%, %, ---) — 1B, in
the negative coordinates. Let Q," be the closure of C{b}, & = 1,2, --- . By
symmetry, every point in @, is admissible. Inspection reveals that z," = 1 for
all b, v/ (j) = 0forj = 0 for all b, and d(v’, b") = d(vi, bx) for all k and A.
Therefore the iterated minimax regret procedure is identical at every step with
the previous case, and yields no rules in the limit.

A similar argument shows that the game formed from the closure of the convex
hull of the vectors

(—4,z,z,z,2,-++),z > 15,
(-1,3,3,3,3,--+),
(—=3,0,2,2,2,---),
(—=%,0,0,13, 13, ---),

("‘%, 0’ ’0’ 1+ (1/2k—1); 1+ (1/2k_1)y )a

has (—1, 3,3, 3, - - -) for a minimax regret point, but yields no vector by iterated
minimax regret (with e, = 327").

It has been shown that Criterion 1 does not hold when there are an infinite
number of states of nature. Consider now the general decision situation, which, for
the purposes here, may be thought of as a convex S-game in the space L. (%),
where Q is the state of nature space. It will be assumed that the set of points in
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L..(Q) available to the statistician, @y, is uniformly bounded below in every co-
ordinate (say by zero), in addition to being non-empty and convex.

The definition of the iterated minimax regret procedures extends in an obvious
way to the general situation, as do the statements of the eight criteria. (Criterion 7
should now read: If there exists a set C which is a complete class for both of the
games A; and A., then Q(A;) = Q(A:). Criterion 8 is defined as before in terms
of the symmetric distance function between sets.)

THEOREM 2. In the general decision situation, lhe ilerated minimaz regret pro-
cedures satisfy Criteria 2-7. Crilerion 8 s also salisfied in lhe sense lhat if
AV — A (limy d(@:", Q1) = 0) and limy d(z", ) = 0, where each z" ¢ Q(A"),
then x is in the closure of Q, for every h.

5. Discussion. The verification of Criteria 2-7 differs only slightly in detail
from that given in [1]. Lemma 1 remains true as stated in the general situation.
A proof can be constructed along very similar lines to the one given, the lack of
compactness, and therefore convenient limiting points and values, being paid for
in additional €’s and &’s. The proof given for Theorem 1 then goes through as
before.

It should be noted that none of the more common decision procedures satisfy
Criterion 1 in the general situation. The usual resolution of this dilemma works
equally well here: the class of ‘“‘e,-iterated minimax regret procedures” is defined
naturally as Q;+1(A), and by Lemma 1 will satisfy Criterion 8. The other 7
criteria continue to hold, 3 in the usual ¢, definition, 7 in the sense that if 4; and
A, have the same complete class, then d(Q411( A1), Qri1(A2)) < enyr -
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