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1. Introduction and summary. Positive definite quadratic forms in normal
variates, which do not necessarily reduce to a multiple of a X variate, arise quite
naturally in estimation and hypothesis testing problems related to normal dis-
tributions and processes. A classical example is the problem of testing the differ-
ence between two sample means, £ — ¢, where the x observations have variance
other than of y observations (Welch [9]). More recent examples include: analysis
of variance when errors are assumed to have unequal variance or are correlated
(Box [1] [2]); regression analysis with stationary errors (Siddiqui [8]); and esti-
mation of spectral density functions of stationary processes (Freiberger and
Grenander [4]).

Let Q = 1Y'MY, where Y = [V, -+, Y,]isa N(0; V) distributed column
vector, Y’ its transposed row vector, 0 zero vector, V a positive definite covariance
matrix, and M a real symmetric matrix of rank m < n. Let a1, - -, an be the
non-zero characteristic roots of A = MV. It is well known (see, for example,
Ruben [8]) that there exists a non-singular transformation from Y to X such that.
X:, -+, X, are independent N (0, 1) variates and @ = 3 2.7 a;X 7. Without
loss of generality we therefore assume that @ has this canonical form.

Many papers have been written on the distribution of @, especially when a; are
positive, and a more or less comprehensive list of these is included in the refer-
ences of the two papers by Ruben [8] [9]. We shall therefore refer to only those
which have direct bearing with the present paper.

In this paper, we will be mainly concerned with distribution of @ when m is an
even number, say 2k, and a; positive. When m is an odd number a slight modifica-
tion is necessary and this is mentioned in Remark (2) of Section 3. We will
choose our subscripts so that 0 < a1 < as - -+ = ay . After some notation and
preliminaries in Section 2, a well known result will be stated as Theorem 1 under
which F(z) = Pr(Q > z) can be evaluated as a finite linear combination of
gamma df’s. In other situations we require some methods of approximating to
F(z). In Sections 3 and 4 a simple approximation to F(z) will be presented
which reduces to the exact distribution when the condition of Theorem 1 is satis-
fied. The method is based on bounding @ by @, and Q. , where @ and Q, are
quadratic forms satisfying the condition of Theorem 1. The approximation is then
obtained by minimizing d(F, F) where F(z) is a linear combination of F;(z) =
Pr(Q; > z),7 = 1, 2, and d(-, -) is the distance function of the metric space
L*(0, ). In Section 5 a few numerical examples will be worked out for purposes
of illustration.

Received 16 October 1963; revised 20 October 1964.
677

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é‘r )z

The Annals of Mathematical Statistics. RIKOIRE ®

Www.jstor.org



678 M. M. SIDDIQUI

2. Notation and preliminaries. Throughout the paper, the letters, with or
without subscripts, a, b, ¢, and p will denote positive numbers; &, m, and n positive
integers; X, a N(0, 1) variate and X, and X, , independent if ¢ 5 j; and x*(p),
a x variate with p degrees of freedom. If the Laplace transform of a function
h(z) exists, it will be denoted by A*(s).

Let 0 < a1 £ @y £ -+ < ay and Q = 2> %% 4,X/ . Let f(z) denote the
pdf of Q and F(z) = Pr (Q > z) = [ f(y) dy. We wish to evaluate F(x)
exactly if possible, approximately otherwise. Let g,(z; ¢) = ¢ ?[['(p)] e "2},
if > 0;0,ifz <0, and G,(z; ¢) = [5 g,(y; ¢) dy. Note that G,(x; c¢) =
G,(z/c;1). Also Gu(z;¢) = Pr (X (2m) > 2z/c).

When Re s > 0 all the following relations hold

(21) g, (s5¢) = (14 ¢s)7, Gy (s;e) = s[1 — g,"(s; 0)],
o) =TI A+ a9 F¥(s) = s7'[1 = [*(s)).

The relations for ¢* and f* even hold for Re s > — ¢ and Re s > —az, re-

spectively.

When a;’s are equal within groups of even size f(z) and F(z) can be evaluated
as a finite sum of ¢ and G functions respectively. This result is well known (see,
for example, Box [1] Theorem 2.4) and will be needed later. We state a slightly
more general result as a theorem.

TueoreM 1. If f*(s) can be developed as

F(8) = 25 As(1 + ¢j9)77,
then
F(x) = Z;=l AfGPj(x; Cj)-

3. An approximation to F(x). If @ is not of the type of Theorem 1, we obtain
an approximation to F(x). Let

2Q1 = (11(X12 + Xzz) + as(st -+ X42) + 0 4 aZk—l(ng—l -+ ng),
2Q: = ax(X)" + Xo') + a(Xs + X&) + -+ au(Xnor + Xow).

Let Fi(z) = Pr(Q; > x),7=1,2.Since Q;, ¢ = 1, 2, is of the form of Theorem 1,
Fi(x) can be evaluated exactly. If azj—1 = az; ,j = 1,2, - -+ |k, thenQ = Q1 = Qs
hence we assume that as;_; # as; , at least for one j. Then, almost surely, @ <
Q < @Q., which implies, for all x > 0,

(3.1) Fi(z) < F(z) < Fo(z).

These inequalities motivate us to consider an approximation to F(x) of the
form

(3.2) F(z) = Fi(z) + 6[F2(z) — Fi(2)],

where 6, 0 < 6 < 1, is a constant.
To determine “optimum” 6 many a criterion can be employed. Here, we em-
ploy the minimum ‘distance’”” method where the “distance” chosen is that of
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the (real Hilbert) space, L’(0, =), of functions which are square integrable
over (0, «). If p and ¢ are in L*(0, «) we have the inner product (p, ¢),the
norm ||p|| and the distance d(p, ¢) given by

(@) = [ p(@)g(x) dze, pll = (p, p),,  d(p, @) = llp — ql.

We determine 6 in (3.2) by minimizing d*(F, F). We must first show, however,
that F and 7 belong to L*(0, « ). Now the function of z, e 2", ¢ > 0, p = 1,
belongs to L*(0, « ). Forz > 0, Gn(z;c) is a linear combination of such functions;
F;,7=1,2,is alinear combination of such (’s; finally, from (3.1), F is bounded
by F». Hence, d’(F, F) is well defined, and minimizing it with respect to 6, we
obtain

(3.3) 0= (F — Fy,Fy — F))|[Fy — Fy|

REMARKS.

(1) Itz > 0, —6[Fa(z) — Fi(2)] < F(z) — F(z) < (1 = 0)[Fa(x) — Fi(2)],
max |F(z) — F(z)| £ max (6,1 — 0) max [Fe(z) — Fi(x)].

(2) Let Q = 4> % a;X; where n is odd, say n = 2k — 1. In this case we
construct 2Q; = a(X: + X)) + as(Xs + X5) + -+ ans(Xoes +
ng—z), 2Q, = (X" + Xn) + as( X+ X5) + -+ + s (Xors + X5o),

where Xy, is an additional independent N (0, 1) variate. The approximation
F(z) is then obtained in exactly the same way.

(3) Let Y;, ¢« = 1, 2, be independent variates with pdf’s g,,(z; ¢;). The

ratio Z = Y,/Y, then has the beta pdf ([3], pp. 241-242).

(3.4) h(x;p1,p2, 1, 0) = (/)™ [B(p1, p2) (1 + cow/cr) ™ "™, 22 0.

From this we conclude that if Y, 7 = 1, 2, are independent variates such that
their pdf’s can be represented each as a finite mixture of gamma pdf’s then
Z = Y1/Y, can be represented as a finite mixture of the beta pdf’s of type (3.4).
Finally, let Y;, ¢ = 1, 2, be independent positive definite quadratic forms of
type . We can approximate their pdf’s each by a finite mixture of gamma pdf’s
as described in the earlier part of this Section and hence can obtain an approxi-
mation to pdf of the ratio Z = Y,/Y, as a finite mixture of the beta pdf’s of
type (3.4).
4. Evaluation of §. We have

6 = [(F, F2) — (F,F1) — (Fy, Fo) + |BAPIIF: — Pl
Since Fy and F, are linear combinations of functions of type G.(-; ¢) we only

require the evaluation of integrals of type [o Gn(x; ¢)h(x) dz, where h may be
F, F, or F;. For this purpose we note that

(4.1) Gu(z;c) = e 150 (x/c)’/j\.
If B*(s) exists and is differentiable j times,
(4.2) 3 e h(z) de = (—1)°h*7(s),

where the superscript (j) denotes the jth differential coefficient. Recall from
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(2.1) that F*(s) = s7[1 — JI3* (1 + a;s)7*]; F1*(s) is obtained from it by
replacing as; by asj1,7 = 1, -+, k; and F2*(s) by replacing asj_y by az; . Thus
(4.2) is sufficient for the evaluation of 6.

To evaluate the differential coefficients in (4.2) a systematic procedure may
be recommended. Let p(x) be a function which is a product of several functions
each differentiable n times at the point x. Let u(x) = log p(x). We then have

p"(z) = p(x)u? (2),

@) = Tie (@ (@), r=1,2 0 ,n— L
We first calculate p(z) and w”(z),r = 1,2, --- n at the given numerical
value z and then p®(z), - -, p™ () recursively.

ILLUSTRATION. Let 2Q = 3D 31z’ + 52 4z, We have
200 = 3> tal + 52 exl, 2Q =32 1’452 5l

F¥(s) = s — (1 + 3s) (1 + 5s)7, -

Fi¥(s) = s — (1 4+ 38)7°(1 + 5s)7,

Fy*(s) = s — s (1 4 3s)7(1 + 5s) "

By partial fraction expansion of F.*(s) and applying Theorem 1, we obtain

Fi(z) = 6.25¢"° — 525¢7" — 0.52¢ ",
Fy(z) = 2.25¢ " — 1.25¢7"° + 0.50¢™"".

To evaluate (F, F1), (Fi, F3), etc. we make repeated use of (4.2). Thus, for
example,

(F, F\) = 6.25F*() — 5.25F*(3) + 0.5F*(3),
(Fy, F1) = 6.25F,*(3) — 5.25F,"(%) + 0.5F,*V(3).

The terms F*(s), F2*(s), ete. for s = 1, 1 can be directly evaluated. To evaluate
the differential coefficients, say, F*®(3), let F*(s) = s — p(s), u(s) = logp(s),
ie,u(s) = —logs —%log (1 4+ 3s) — $log (1 + 5s). We then have

uV(s) = pM(s)/p(s) = —s " — (1 + 3s)" — (1 + 5s)7,
F*O(s) = —s7 — p(s) = —s7 — u®(s)p(s).

We thus evaluate: (F, F,) = 7.8016, (F, Fy) = 8.4941, (Fy, F1) = 7.4805,
(Fy, Fy) = 8.0947, and (F,, F,) = 8.8635. Finally, 6 = 0.506, and F(z) =
0.494F,(x) + 0.506F(z).

Thus, the procedure for determining #(z) can be carried out in the following
sequence.

(1) Write down F*(s) and F.*(s), ¢ = 1, 2.

(2) Use Box’s [1] Theorem 2.4 to expand each F*(s) in partial fractions.
Then, from Theorem 1, express each F;(z) as a finite linear combination of
functions G.



DISTRIBUTION OF QUADRATIC FORMS 681

(3) Use (4.1) to express each G as a finite linear combination of functions
e, s> 0,7 = 0,1, ---, thus representing each F;(z) as a finite linear com-
bination of functions z’¢”**

(4) Apply (4.2) to evaluate inner products (F, F;) and (F, ,Fi), 4,7 =1, 2.
If differentiation of F*(s), F;*(s) is needed let F*(s) or Fi*(s) = s - p(s),
u(s) = log p(s) and use the systematic procedure recommended in this Section
before the illustration.

(5) Evaluate 6 and obtain F(z).

A much simpler but rougher approx1mat10n to F(z) can be easily obtained by
bounding @ by @1 = 3 % X and @ = zaycz * . X/ The procedure of
Section 3 can be applied with Fi(z) = Gi(z; a1) and Fe(z) = Gi(x; ax). This
approximation may suffice if ax/a1 is near unity. If az/a: is not near unity,
consider

(4.3)  Fo(z) = 6,Gi(z; 1) + 0:Gi(5 a2) + (1 — 61 — 6:)Gi(z; @),

where 6; and 6, are constants to be determined by minimizing d*(F, F,),and a is
some average of a; , -+ - , ax . For simplicity we will take a to be the arithmetic
mean. Here there is no guarantee that 6; and 6, will be in the interval (0, 1).
Let, forz,j5 = 1, 2,

Ay = _ﬁ)o Ge(z; a;) — Gi(z; @))[Gi(z; a;) — Gi(z; a)] do,
= [0 [F(z) — Gi(z; @)l[Gi(x; @) — Gi(z; @)] da.

These quantities can be evaluated by the use of relations (4.2). If 4 = Audx»
— A%, # 0, we have the solutions

(4.4) , 0 = Aﬂl(An)\l — Ah),
= A—I(Au)\2 - A12)\1).

5. Comparison with the exact distribution. The exact distribution of @ =

13%, a; X is not available except when k¥ = 1 (Grad and Solomon [5])
and when Theorem 1 is applicable. Since the approximation, F(z), proposed in
Section 3 becomes exact when Theorem 1 applies it is not possible to produce
examples with & = 2 to judge the “goodness of fit” of F(z) to F(z). We therefore
confine ourselves to a few calculations with £ = 1. To make our calculations
comparable to those of Grad and Solomon [5, Table 1] we take a1 + a» = 2.

TABLE 1
Pr @ = 2)
z =
1 4 7 1.0 20 30 4.0 5.0

.8, 1.2 09693 3340 5080 6358 8646 9487 9802 9923
09825 3371 5108 6373 8632 9465 9784 9911
.6, 1.4 1029 3482 5221 6466 8638 9441 9761 9895
1091 3614 5334 6530 8571 9351 9692 9851
4, 1.6 1158 3755 5464 6630 8604 9365 9698 9853
1344 4100 5712 6730 8421 9169 9556 9763
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TABLE 2
Pr@ =2
xr =
ay, a2

1 4 7 1.0 20 3.0 4.0 5.0
.4, 1.6 1158 3755 5464 6630 8604 9365 9698 9853
1177 3776 5465 6618 8597 9373 9708 9859
.2, 1.8 1461 4226 5780 6785 8527 9269 9624 9803
1570 4277 5734 6713 8526 9303 9654 9822
1, 1.9 1813 4521 5904 6819 8478 9219 9585 9775

2114 4520 5768 6694 8568 9275 9632 9805

There is no loss of generality in this constraint. In considering these examples as
“for” or “against” F(z) one should bear in mind that k& = 1 is an extreme situa-
tion and most unfavorable to the proposed method (the “degrees of freedom”’
in varying the a’s is only 1)

Let @ = L{(a Xy’ + a:X5'),0 < a1 < a2, 01 + a2 = 2, and r = as/a; . We have

F(z) = ™™ + 6(e7™'™ — ¢™'*),

6= (r—1)7(r—1)2 +1) — (242 — 1)
Sincel <7< ©,05 <6 <2 — 2" = 0.5858. In Table 1 the first entry is
1 — F(z) and the second 1 — F(z). It may be noted that the approximation
becomes poorer as 7 increases.
When r is large we compute Fo(x) = 616 "™ + e ™'** + (1 — 6 — 62)e ",
where 6; and 6, are calculated from (4.4). In Table 2 the first entry is 1 — F(z)
and the second 1 — Fo(z).
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