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Introduction. Let x, be a 1-parameter family of stochastic processes and
P, the associated probability measures on the space of sample functions. We
assume that the xz, are gotten from x, by the application of a group T, of trans-
formations, i.e., that T', is a group of automorphisms on an algebra F, of bounded
measurable functions dense in L;(P,) and that f Tof dPy = f fdPyforall fin F
and all a.

In Section 2 we classify these problems as being conservative, dissipative, or
mixed in analogy with terminology of ergodic theory. It turns out that many
problems of interest are dissipative. Section 3 contains several such examples.
Section 4 gives results on the spectrum of the associated isometries of L;(P,) and
on the asymptotic behavior of dP,(z)/dP, in the dissipative case.

2. The conservative and dissipative sets. Throughout this paper we will
assume that the P, are mutually absolutely continuous, that the T, preserve
bounds and either

(1) T.f(z) has a continuous derivative D(T.f)(z) in o which is bounded uni-
formly in « and z for every f in F and every z, or

(2) T.fhasan Ly-continuous Li-derivative DT, f for every fin F and | DT.f|| =
0(&*'*") for some K independent of .

We shall write P for P, .

It has been shown [for condition (1) see [4] (Theorem 1, p. 272) and for con-
dition (2) see [5] (Theorem 3.3)] that the above conditions imply that T, can
be extended to a group of automorphisms of all measurable functions and that the
maps of L;(P), defined by

Vof = (dPo/dP), T f
form a strongly continuous 1-parameter group of isometries.
Thus dP,/dP = V,(1) is L; continuous and it follows that we may regard

dP./dP as a measurable stochastic process. By Fubini’s theorem then
fZT [dP.(z)/dP] da exists and is finite for every finite T for almost all z. Set

q(z) = [2, [dP.(z)/dP) da.

We define the conservative set C' to consist of those x with ¢(z) = « and the
dissipative set D to consist of those z with ¢(z) < .
LemMA 2.1. The sets C and D are invariant under the T, , to within sets of meas-
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ure 0. We have
Toug(z) = [dP(x)/dP_Jq(x).

Proor. Because of the L;-continuity of dP,/dP, the integral ffN (dP,/dP) do
can be approximated in L;(dP ® da) by Riemann sums and the formula for
T.q is established by using the relation T.(dPs/dP) = dPs_o/dP_, and then
using standard approximation arguments. The invariance of C and D follows
from this equation and the fact that dP,/dP; > 0 almost everywhere for all
v and é.-

We will say that the system z, is conservative if P(C) = 1, dissipative if
P(D) = 1 and mixed otherwise. Any periodic system is obviously conservative.
Another simple example of a conservative system is afforded by z.(¢) = z(f + «),
where z is a stationary process since then dP,/dP = 1 for all a. Let z,(t) =
z(t + a), —o < t < « be stochastic processes with associated measures P,
satisfying the conditions at the beginning of this section and with

[zl dt <

for almost all z. As will be seen in the next section, this implies that the system
Z. is dissipative. Let @ be a stationary measure on the space of sample functions
on the line. For any 0 < a < 1 the measure B = aP + (1 — a)Q has dR.(z)/dR
= dP,(z)/dP for z in L, and R(L;) = aP(L;) = a. Also dR.(x)/dR = 1 on
a set C with R(C) = (1 — a)Q(C) = 1 — a. Hence, the system associated with
R is mixed.

3. Examples of the dissipative case. Suppose we take the stochastic process
Zo to be a single random variable ¢ (i.e., we take the parameter set to consist of a
single point) and set z. = ¢ + a. If ¢ is distributed according to the density p(¢)
then dP.(t)/dP = p(t — a)/p(t). Thus, this case is dissipative with ¢(¢) =
[p(t)]™ and the measure dQ = ¢ dP is invariant under 7T\ .

The mean value case is generated by the transformations (T.x) () = z.(¢) =
z(t) + af(2).

THEOREM 3.1. The mean value case is disstpative.

Proor. Let t be a point where f(¢) s 0—we will assume f(¢) > 0. Then, since
the measures P, are mutually absolutely continuous, z(¢) < 0 with probability 1.
Let ¢, be the characteristic function of the set where ¢ < x(¢) < b. Then

J ¥ep(2)q(2)P(da) = [Zder [ Yup(x)Palda)
= [Zeda [ Yoar sarw (z) P(d)
= [ P(dz) [Zu Yoarct parn (z) da
= [1(d — a)/f()]P(dz) = (b — a)/f(t) < .

Hence, takinga = —N and b = N, ¢ is finite almost everywhere on the set where
—N = z(t) < N and, letting N — «, ¢ is therefore finite almost everywhere.
If we take z, in the above theorem to be a Gaussian process on a finite interval
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T with mean 0 and correlation function R(s, ¢) then, writing R for the integral
operator associated with the correlation function, f must be in the range of R for
the P, to be absolutely continuous [6]. Let (f,) be a sequence from the range of
R which approximates f. It can be shown that the random variables 6, ,

ba(z) = [r2(t)(B7fn) (1) dt,
converge in mean to a random variable 6(x) and that
dP(x)/dP = exp [af(z) — 3’| RTI'L.

Hence for this case, ¢(z) = (2r)}|R7¥| ™ exp (6*(z)/2||R7*|").

The transformation, (T.z)(t) = za(t) = ¢*“2(t), is called a Doppler shift
[3]. It is usually applied to complex processes. If a(t) = 2\, then T, is periodic
and we are in the conservative case.

THEOREM 3.2. If z.(t) = ¢**2(t), where z is a complex process, and there is a
point t at which ®(a(t)) = 0 and |z(¢)| == 0 with probability one, then the system
1s dissipative.

Proor. Assume that ®(a(t)) = v > 0. Writing ¢, for the characteristic
function of the set where a < |¢(t)| < b and proceeding as in the previous proof
we get [ q(z)¥ap(z)P(dz) = (logb — loga)/y < . It follows as before that
q is finite almost everywhere.

We have already seen that a translation system

(Ta)(t) = 2a(t) = 2(t + @)

is conservative as z is stationary. The following theorem shows, on taking 6(r)
very small for small 7, that most translation systems in which lim, . 2(¢) = 0
are dissipative. Taking 6(r) very small for large » shows that most translation
systems for which lim,.. |2(¢)| = o« are dissipative.

TrEOREM 3.3. Let ., be a translation system and t a point where z(t) % 0 with
probability 1. If there s some measurable function 6 of a real variable satisfying

(1) 6(r) > 0if r = 0 and

(ii) G(z) = [2.0(x(s)) dse Li(P)
then the system is dissipative.

Proor. We have 8(x(¢)) > 0 almost everywhere and

[ q(@)8(x(t))P(dz) = [P(dz) [Zub(z(t + @))de = [G(z)P(dx) < o,

so ¢ is finite almost everywhere.

The list of examples in this section is intended to be illustrative not exhaustive.
It seems reasonable to conjecture that many parameter estimation problems
lead to the dissipative case though it might take more refined methods than those
used above to prove this in some cases.

4. Special results for the dissipative case. Throughout this section we assume
that, in addition to the assumptions listed at the beginning of this paper,

(@) = [ (dP.(z)/dP) da < o
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almost everywhere, i.e., that we are in the dissipative case. Let @ be the o-finite
measure defined by setting dQ = ¢ dP. A trivial application of Fubini’s theorem
shows that @ is invariant under T, . Hence, T, gives rise to a group of isometries
of L,(Q) for every s. We will use the symbol T, for these groups also.

Forl = s < « we define

VO L(P) = L(P); V() = (dPo/dP)"T_df,
& 1 L(P) — L(Q); &(f) = q_llsf'

It is easily verified that V., is a strongly continuous 1l-parameter group of
isometries, that £ is an isometry of L,(P) onto L,(Q), and that
Va(s) — ss—l ° T—a ° Ss .

THEOREM 4.1. In the dissipative case the spectrum of V> s all \ of absolute
value 1 for all a 5= 0.

Proor. Since Vo® = & o T_,o &, the spectrum of V, is the same as the
spectrum of 7, considered as a unitary operator on L»(Q). By a theorem of A.
Tonescu Tulcea ([2], Corollary 2, p. 287) it will be sufficient to prove that T_, is
not periodic. But (7_4)" = T—ne = I would imply that dPs/dP had period na
and hence, that the system was conservative.

We will need the following continuous version of the Chacon-Ornstein ergodic
theorem.

LiemMma 4.1. Let o be a o-finite measure on a measure space (X, s). If (V4 ;a = 0)
is a strongly continuous semigroup of operators on Li(a) satisfying

(1) [Vall = 1

(ii) if f = 0 almost everywhere so is Vf,
then for any f in Li(a) and non-negative p in Ly(o), limz,e (foT Va(f) () da/foT
Valp)(x) da) exists and is finite for almost every x for which fff Velp)(x) da> 0.

Proor. We may assume that f is non-negative. Now f and 5,

F=TJovaf)da, = [0Valp)da,
are both in L;(¢) so by the Chacon-Ornstein theorem
J§ V() da/ J§ Va(p) da = 335 (V1)'F/ 2208 (Va)*p
converges to a finite limit almost everywhere on the set where Y 1 (V)*p =
fff Va(p) da > 0. Writing [T'] for the greatest integer in T, we have, by Lemma 4
of [1], for any non-negative ¢ in L;(a),
[T0 Valg) de/ UL (V)5 = (V0)'/ T8 (V)7 = e(g, T, 2) >0

for almost every x as T — «. Hence,

o o Vel (@) da _ o (14 €(f, T, 2)) 2% (V0)'(f) ()

T*°° [ Vap) () da 720 (1 + e(p, T, z)) 215 (V)'(p)(z)
lim 3 (W@ /S ) @)@

almost everywhere where the latter limit exists.

Il
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LevMma 4.2. In the dissipative case Vo(f)(x) is integrable in o for almost every
x if fis in Li(P).
Proor. Assuming f is non-negative,

limzrse o Va(f)(2) de
= [¢ (dPu(2)/dP) dalimraw [ Va(f)(2) da/ [T Va(1)(z) da

is finite almost everywhere. Replacing V; by V_; shows that fo_w Valf)(x) da is
also finite almost everywhere and completes the proof.

TuEoREM 4.2. Vo has no non-trivial eigenvectors for 1 < s < « and o 5% 0
in the dissipative case.

Proor. We will prove the theorem first for s = 1 and assume that « > 0. If
V«(f) = 6f then |§] = 1 since V, is an isometry. Let x be a function of absolute
value 1 such that xf = [f|. Then

Vallfl) = Valxf) = (dPo/dP)T_o(xf) = (T—ax)Vea(f)
= (T_ax)0f = |f]
since | (T_ox)0] = 1 almost everywhere and V,(|f|) = 0. Thus

0 Ve(|f]) d8 = n [§ Vs(|f]) d8,

so [& Ve(|f]) dB and hence, |f] is 0 almost everywhere by Lemma 4.2. Finally, if
s > 1 and V. (f) = 6f then

Vo) = V(D) = (60" = 67",
sof =f = 0.

Our final theorem concerns the asymptotic values of dP.(x)/dP. It is de-
sirable in maximum likelihood testing for these limits to be 0 since otherwise
maxima may occur for arbitrarily large a. Considering the example at the begin-
ning of Section 3 where dP.(t)/dP = p(t — a)/p(¢) it is clear that some further
assumption is required to assure this.

TurorEM 4.3. In the dissipative case, if there exists a ¢ tn Li(P) satisfying

[ ef AP = (8/0a) [ Taf 0P ame

for all f in F then dP.(x)/dP is a differentiable function of a tending to 0 as
o — == for almost every x.

Proor. It is known (see [4], Theorem 1, p. 272 for condition (1) and [5],
Theorem 3.3 for condition (2)) that we may take

dPu(2)/dP = 1 + [§ Vs(e)(x) dB

in this case. By Lemma 4.2 lim,.. dP.(z)/dP exists for almost every z and this
limit must be 0 since dP.(z)/dP is almost always integrable in a.
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