ON THE MEAN NUMBER OF CURVE CROSSINGS BY
NON-STATIONARY NORMAL PROCESSES!

By M. R. LEapBETTER AND J. D. CRYER

Research Triangle Institute

Summary. In this paper we consider the mean number of crossings of an arbi-
trary curve, in a given time T, by a non-stationary normal process. A formula
(2) is obtained for this and sufficient conditions for its validity given. These con-
ditions concern the behaviour of the covariance function of the normal process.
Incidental results include sufficient conditions for continuity of a normal (non-
stationary) process z(f) and also for z(¢) to satisfy a Hélder condition.

1. Introduction. The problem of obtaining the mean number of crossings of a
fized level u, by a stationary normal process has received a great deal of atten-
tion in the literature. The most recent work we are aware of in this connection
is that due to Bulinskaya (1961) who derives the well known formula

(1) &{N(T)} = Tr{—1"(0)/r(0)}le/ @

under conditions which are very close to the necessary ones. Here N(T) is the
number of crossings of the level » in (0, T') by the stationary normal process
{y(¢)}, with covariance function r(t).

Cramér (1963) considered the integral z(f) = [4y(s)ds of a normal sta-
tionary process {y(¢)} and obtained the formula corresponding to (1) for the
mean number of crossings of a fixed level u, during time 7, in this case. The
process {z(t)} is, of course, normal but, in general, non-stationary.

Finally, in this connection, this problem has been considered (Leadbetter,
1965) in the case where the fixed level u is replaced by a curve u(¢) and where
the normal process {z(¢)} is either stationary or is the integral of a normal sta-
tionary process. The methods of Bulinskaya were employed to give quite weak
sufficient conditions under which the appropriate modification of (1) holds in
these two cases.

When one considers a general non-stationary normal process {z(¢)} it is im-
material whether one looks at crossings of an arbitrary curve w(¢) or merely
crossings of the axis, i.e. u(¢) = 0. For the former case may be reduced to the
latter by simply subtracting the quantity «(¢) and considering the normal
process z(t) — u(t). We shall assume throughout that this has been done and
we may thus restrict our attention to the case of axis crossings by a normal
process {z(t)}.

In Section 2 we obtain the formula (Theorem 1) corresponding to (1), for the
mean number of axis-crossings (and hence, as noted, the mean number of curve
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crossings) by a non-stationary normal process. This theorem is stated for a nor-
mal process {z(¢)} having, almost surely, a continuous sample derivative. For
stationary normal processes, and their sample integrals, very weak conditions—
due to Hunt (1951), Belaev (1961)—are sufficient to ensure that the process has,
a.s. a continuous sample derivative. In Section 3 we give sufficient conditions
for this to hold in the general (non-stationary) case. These sufficient conditions
are very little stronger than those of Hunt-Belaev, and it would be interesting to
know whether they can be weakened to correspond to the Hunt-Belaev ones.
Sufficient conditions for the process sample functions to satisfy a Holder condi-
tion, are also given in Section 4.

2. Mean number of curve crossings. Let {2(f): 0 = ¢t < T} be a separable,
normal stochastic process with &{z(¢)} = m(¢), cov {z(), z(¢)} = T'(t, t).
In considering crossings of a (continuously differentiable) curve u(¢), there is,
as already explained, no loss of generality in taking «(¢) = 0, and we do this.
We have then the following result.

TureorEM 1. Suppose that m(t) has a continuous derivative m’(t) for 0 < t < T,
that T' has a mized second partial derivative, which is continuous at all diagonal
points (¢, t), 0 < t < T, and that 2(t) has, a.s., a continuous sample derivative
2 (1) in0 £t £ T. (Theorem 3 gives sufficient conditions for this latter property.)
Assume also that the joint distribution of x(t) and x'(t) is non-degenerate for any
tm0=t=T. Then

(2)  &{N(T)} = [§ vo (1 = p")'¢(m/a){2¢(n) + n(28(n) — 1)} dt

where
o = o (t) = var {z({)} = I'(4, ¢)

v = (1) = var {2'(t)} = 9'T/otot |y
p=p(t), yop = cov (x(t),a'(t)) = OT/3 |

and n = n(t) = (m' — yom/c)/[y(1 — o)}, writing m for m(t), m’ for m’(2).
(¢ and ® are the standard normal density and distribution funciion respectively.)

The proof of this theorem will be by means of a series of lemmas. Some of these
are given by Leadbetter (1965) but are repeated here for completeness. How-
ever, we first develop some notation.

There is no loss of generality in taking 7 = 1, and we do so. It is convenient
to use the method of Bulinskaya (1961) in approximating the z(¢)-process by a
sequence of processes consisting of straight line segments, as follows:

For each positive integer n, and each tin 0 < ¢ < 1let k, = k,(¢) be the unique
integer such that k./2" < ¢ < (k. + 1)/2%, (0 £ k., £ 2%). Write y.(t) =
a(ka/2") + 2"a((ka + 1)/2%) — x(ka/2")](t — ka/2"). That is {ya(t)} is a
new process coinciding with (¢) at points ¢ = k/2", and consisting of straight
line segments between such points. Write also N, for N(1) and N, for the
number of axis crossings by the y,-processin 0 = ¢ = 1. We may apply Theorem
1 of Bulinskaya (1961) since continuity of m(t¢), I'(Z, ¢), together with the
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assumption T'(¢, t) > 0, imply that the univariate probability density for x(¢)
is bounded in 0 < ¢ < 1. Hence it follows that N, is finite with probability one
and the event that x(¢) be tangential to the axis somewhere, has probability
zero. It is thus clear that &, increases to the limit NV, , with probability one, as
n — «. Hence, by monotone convergence we have

Lemma 1.

8{N,,} — &{N.} asn — .

To evaluate &{N,,} we use a sequence of functions “approaching a Dirac-6.”
Specifically we shall here call a sequence {3,(z)} of non- negatlve integrable funec-
tions a 8-function sequence if (2. 8,(z) dz = 1forallv = 1,2, --- and [y 8,(x)
-dx—1 asv — o for any fixed A\ > 0. Then we have

LemmaA 2. With probability one,

Ny, = limy,e f(ll 8{ya(1)} Iyn’(t)-!dt
and
fﬂ {yn(t)} iyn O dt =

Proor. Write o, = k/2" and y.(t) = Ar + Bit for oy = ¢ £ apy1. Then

(3) [38,(ga()|ya’ (0] dt = 255" [ak+ 8,(Ax + But)|By| dt
S [ au(x) dal.

With probability one ¥, () is not zero for any & = 0,1 - - - 2". From the assumed
s-function properties it follows that if yn(ax) and ya(ox41) have the same sign,
the corresponding integral tends to zero. Otherwise, this integral converges to
=+1. Thus, if the interval (« , az41) contains a zero of y,(t), the corresponding
term in the sum tends to one, and otherwise it tends to zero. Hence, the first part
of the lemma follows. The second part follows from (3) since each term in the
sum is dominated by [Z,8,(z) dz =

By virtue of this lemma it follows by dominated convergence (and Fubini’s
theorem for positive functions) that

(4) 8{N,,} = lim,.o [0 8 «su<yn<t>>ly/(t>|} dt
= limyse fo 2w 20 [w]8,(0) pa(v, w) dv dw dt,

where pn(v, w) is the bivariate normal density function for (ya(?), ya (1)),
having the form

(5) pn(v’ ’l,l))
= (20D exp [—{C(v — &)’ — 2B(v — &) (w — B) + A(w — 8)*}/(2D)]
in which

a = au(t) = &y (1)}, B = Bu(t) = &{ya ()}
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A = A.(t) = var {yn(t)}y C = C.(t) = var {yn’(t)}
B = B,(t) = cov {ya(t), ¥ (t)} D = D,(t) = AC — B

We note that, for any probability density function A(t), we may obtain a
s-function sequence {5,} deﬁned by 8,(t) = vh(vt). In particular if we use the
normal density h(t) = (2r) 7% " we obtain from (4),

(6) &{Ny,} = liMuae (2m) 7 [ 20 [Z0 €| pa(v/v, w) dv dw dt.

In order to simplify this expression and to obtain its limit as n — « we re-
quire the following result.

LEMMa 3.

We have the following uniform lzmzts m0=t=1:

(i) an(t) > m(t) (i) Bu(t) »m'(t) (i) An(t) > T4, 1)
(iv) Ba(t) = Ta(t, t) (V) Ca(t) = Tu(, 1)
(vi) D,(t) — T(t, t)I‘n(t t) — Tl t) where To = OT(t, t')/dt, etc.

Proor. Since I'u(Z, ') exists for 0 < ¢, ¢ < 1 and is continuous wheret ¢
it follows (see, for example Logve (1963) Sectlon 34.2B) that Tu(t, t') is con-
tinuous for 0 < ¢, ¢ < 1. Thus I'u(4, t "), Tw(t, '), and Tou(¢, ¢') are all uniformly
continuous and bounded for 0 < ¢, ' < 1. Using these facts and the definition
of y.(t), the required limits are then found by straightforward (if somewhat
tedious) applications of the mean value theorem.

Proor or THE THEOREM. The 1ntegrand in the express1on (6) for &{N,} is
dominated by (2xD* H7w| exp {—30® + (w — B)?/2C]} and converges to
[wle™**pa(0, w) as v — w. But it is clear from the calculations of Lemma 3 that
B and C are bounded functions of ¢, for any n. Further since the uniform limit
(vi) of D is non-zero (by the assumed non-degeneracy) it follows that, at least
for sufficiently large n, D is bounded away from zero in 0 < ¢ < 1. Hence, by
dominated convergence

&{N,) = [§ [Ze |w]|pa(0, w) dw dt.

Using Equation (5) we obtain, after some reduction,
&{N,) = (2/m)! [§ (DY/A)e™®[(w) + w(@(w) — D) dt

in which w = wa(t) = (4/D)*(8 — Ba/A). Using the limits of Lemma 3 (from
which it follows in particular that w,(¢) — 7(¢)), and bounded convergence, the
required result follows.

3. Continuity and differentiability. In proving Theorem 1, it was assumed
that the process {2(¢)} has, a.s., a continuous sample derivative. For stationary
normal processes, a very weak sufficient condition for this property is available
from the work of Hunt (1951). Hunt’s condition is expressed in terms of the
spectrum of the process. An equivalent condition in terms of the covariance func-
tion has been given by Belaev (1961, Eqn. 45). This result states that for a
normal stationary process z(¢) to have a.s., a continuous sample function it is
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sufficient that the covariance function r(7) satisfy

(7) (1 =r(r)) = C/|log|7||*

for some @ > 1, C > 0, and all sufficiently small 7. For z(¢) to have, a.s., a con-
tinuous sample derivative, it is sufficient that the second derivative " (r) exist
and (7) hold with 1 — r(r) replaced by —»"(0) + »"(r), (—7"(r) is the co-
variance function of the quadratic mean derivative of z(¢)).

The proof given by Belaev rests on Hunt’s result which, in proof, makes
essential use of the stationarity of the process. We shall now prove a result cor-
responding to that of Belaev (but not quite as strong), for non-stationary normal
processes. Specifically it will be assumed that an equation generalizing (7) holds,
but with the constant @ > 3 rather than just @ > 1. Nevertheless this is still a
very weak assumption. The proof of this result will be a direct application of the
theorem of ‘“Kolmogorov-Slutsky type” in the form given by Lo&ve (1963),
(Sample continuity moduli theorem). From this result a sufficient condition for
the normal, non-stationary process z(¢) to have, a.s., a continuous sample deriva-
tive (as required in Theorem 1) can be obtained.

THEOREM 2, Let {x(t):0 < t < T} be a separable, normal process with &{z(t)} =
m(t), continuous, and continuous covariance function T'(t, ). Write AiT'(4, ') =
I(t+ht +18) —T@+ht) =Tt +h) + T, t') and suppose that for
0=t =T AT (¢ t) < Cllog [B]]™ for some C > 0, a > 3, and all sufficiently small
h. Then z(t) has, a.s. continuous sample functions.

Proovr. There is no loss of generality in taking m(#) = 0 since continuity of
m(¢t) implies that z(¢) has a continuous sample function if and only if 2 (#) — m(¢)
does. Using the notation of Logve (1963, p. 517) we write

g(h) = [log|h|/log 2™
where 8 is chosen so that 1 < 8 < (a — 1)/2, (a > 3). Now, writing &{z(¢ + k)
— z(0)} = o’ (=AT(¢, 1)), we have
Pr{le(t + h) — x(t)] Z g(h)} = 2{1 — ®(g(h)/an)}

Now g(27") = n™® and hence D _ne19(2™") < . Further

q(27") = const. ¥ exp { — (n"%(n log 2)*)/2C}

— a—2p
= const. nf %" where 0 < p < 1.
Hence

D% 12°(27") < const. Dy nfm "
< const. Y w1 p" (sincea — 28 > 1)

A

@,
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Hence the conditions for the “Sample continuity moduli theorem” of Loéve
(loc. cit.) are satisfied and z(¢) has, a.s. continuous sample functions.

Using this result, we may now obtain sufficient conditions for z(¢#) to have,
a.s., a continuous sample derivative, as follows.

TrEOREM 3. Let {x(t): 0 < t < T} be a separable, normal process with mean
&{z(t)} = m(t) and covariance function T'(t, t'). Let m(t) have a continuous de-
rivative m' (1) in 0 < ¢ £ T. Let T have a continuous mized second derivative
Tu(t, t') = 8'T/otot’ satisfying for some constanis C > 0,a > 3,0 < t < T, and
all sufficiently small h

ATu(t, t) = C [log |h||™

Then z(t) has a.s., a sample derivative ' (t) which is continuous on 0 < t < T.

Proor. For convenience we may again take m(¢) = 0, since z(¢) possesses a
continuous sample derivative if and only if z(¢) — m(¢) does. Since I'y is con-
tinuous, z(¢) has a quadratic mean (q.m.) derivative-z'(¢) with Ty as its co-
variance function. This follows, for example, from Section 34.2C of Logve (1963).
Also from Section 35.2E of the same reference it is evident that we may take a
separable, “a.e. Borel” version of z’(¢).

Write now z(¢, ), 2'({, w) to exhibit explicitly dependence on the “sample
point” w. Then it follows from Theorem 2 above that z(¢, ») and z'(¢, ») are con-
tinuous functions of ¢ for each w outside a null w-set N;. Write y(¢, w) for the
sample integral [¢z'(s, ) ds, w £ Ni. Then it follows from the “Second order
calculus theorem,” (i), of Loéve (loc. cit., Section 35.3C) that, for each ¢,
y(t, w) = z(t, ) — 2(0, w), a.s. Hence if S is a countable dense subset of [0, T,
we can find a null w-set N, (taken to include Ny), such that

y(t, 0) = z(t, w) — 2(0, w), teS, wegN,.

Continuity of both z and y then shows that this relation is true for all ¢ in the
interval [0, T, and w outside N.. But since for each w ¢ N,, the derivative of
J6a' (s, w) ds is the (continuous) function z(¢, w) it follows that y(¢, «) has, for
w ¢ N3, the continuous sample derivative z'(, w). Hence finally z(¢) = y(¢)
+ 2(0) has, a.s., the continuous sample derivative ' (¢).

As remarked already, this sufficient condition may be used in Theorem 1 in-
stead of the condition that z(¢) have a continuous sample derivative, which
appears there. We thus have criteria for the validity of Theorem 1, based on the
nature of the covariance function T

4. A Holder condition for normal sample functions. In this section we give
sufficient conditions for the sample functions of a normal process to satisfy a
Hoélder condition. This has no direct bearing on the main part of the paper—
namely Theorem 1, but is, of course, related to Theorem 2. Naturally the con-
ditions required here are a little more restrictive than those of Theorem 2. The
result we shall obtain generalizes one of Belaev (1961, Theorem 7) which was
given for the stationary case. (In fact our result is also a little better than that
of Belaev, even in the stationary case.)
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TuaEOREM 4. Let {2(t): 0 < t £ T} be a normal process, &{z(t)} = m(t),
cov {z(t), z(t)} = T(t, t'). Suppose that T satisfies the condition AT (2, t) =
C|n**/|log |h||, @ > 0, C > 0, all sufficiently small h, and 0 < t < T. Suppose also
that for some constant B there exists & > 0 such that for |h| < 8, |m(¢ + h) — m(t)| <
B|h|* (i.e. m satisfies a Holder condition). Then, given € > 0, there exists an a.s.
positive random variable H. such that, f |h| < He,

le(t + ) — a(t)] < [(20) + BI(1 + o)[r]"
Proor. Write z*(t) = z(t) — m(t), g(h) = Cih|* (Ci to be chosen later),

ol = AT(L t) = 8{z*(t + h) — "))
Now

Pr {lz*(t + h) — 2*(t)| > g(R)}

I

2{1 — @(g(h)/on)}

2{1 — &(C; [log Jh|"/C*))

const. |log [h||™* exp {—C4’ [log |h||/(2C)}
q(h), say.

A HIA

Il

Hence for any fixed integer 7,
q(j27™") = const. |n log 2 — log 7|} exp {—C{’jn log 2 — log j|/(2C)}

< const. n ¥ exp {—Ci’n log 2/(2C)} for sufficiently large .

Thus
S% 1 2%(27") < const. Yy ni2mImOHCO)
which is convergent if C;* > 2C. Further D51 g(27") /g(27") = D 7=127"is
bounded, independently of n. Finally ¢(27")/g(52™") = 7 which is arbitrarily
small for sufficiently large j. Hence, it follows from the ‘“‘Sample continuity
moduli theorem,” (ii) of Loeve (1963, p. 517) that, given ¢ > 0, there exists an
a.s. positive random variable H. such that, for |h| < H.,
[z*(t + k) — &*()] < (1 + €)g(h)
= Cl(l + e)lh[ﬂ’
provided C,* > 2C. But, given ¢ > 0, we may choose C; > (2C )} and ¢ > 0 such
that C1(1 + &) < (20)*(1 + €). Using C; and ¢ in the above statement, we see
that, given ¢ > 0, there exists an a.s. positive random variable H. such that, for
|h| < He,
lz*(t + h) — 2*(t)] < (20)}(1 + €)|h|*

The theorem then follows since

le(t + k) — ()] < |2t + h) — 2*(0)] + |m(t + h) — m(2).

b. Further remarks. The purpose of the assumption in Theorem 1, that
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z(t) have a continuous sample derivative, was to ensure that there be zero prob-
ability of z(#) becoming somewhere tangent to the axis (or curve). However if
one restricts attention to the number Z(T') of ‘“‘genuine crossings” of the axis or
curve—that is not counting tangencies as crossings—it is possible to dispense
with this assumption. This was pointed out by Ylvisaker (1961) who derived
Equation (1), with Z(T) in place of N(T), merely under the assumption that
7" (0) exists.

The same thing is true in the nonstationary case. In fact even if we omit the
condition that z(#) have a continuous sample derivative, it can be seen that
Z(T) = lim,., Ny, , a.s. It follows then that Theorem 1 is true for Z(7') in place
of N(T) without the condition that z(t) should possess, a.s., a continuous sample
derivative. If z(¢) does possess, a.s., a continuous sample derivative, then of
course Z(T) = N(T), a.s. In fact Ylvisaker (private communication) has
recently shown that the requirement of a continuous sample derivative is not a
necessary condition for this equality in the stationary situation, and the indica-
tions are that the same is true in a wide variety of nonstationary situations. If
this proves to be the case in general, it will be possible to further improve the
conditions of Theorem 1 by weakening or omitting the requirement of a con-
tinuous sample derivative.
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