SOME OPTIMUM CONFIDENCE BOUNDS FOR ROOTS OF
DETERMINANTAL EQUATIONS!

By T. W. ANDERSON
Columbia University

0. Summary. A problem considered in this paper is to obtain confidence
intervals for all characteristic roots of a population covariance matrix X in the
form [chn.(S)/u, chyu(S)/I], where ch,,(S) and chy(S) are the minimum and
maximum characteristic roots, respectively, of a sample covariance matrix S
from a multivariate normal population and « and [ are constants. Intervals of
this form having probability at least 1 — e can be obtained by basing « and [ on
certain x’-distributions. Among all intervals in a certain class such intervals are
shortest. ’

Another problem treated is to obtain confidence intervals for all characteristic
roots ch(X;X;") in the form [ch,(S:S; ")/ U, chu(S:Sy ')/L], where X, and =,
and S; and S, are population and sample covariance matrices of two multivariate
normal populations, respectively, and U and L are constants, determined from
F-distributions to give confidence at least 1 — e. Such choices of the constants
yield shortest intervals within a certain class.

Comparison is made with other methods of finding such intervals. Various
uses of the intervals are suggested, such as simultaneous intervals for variances
and correlation coefficients. Some other confidence intervals for related problems
are considered.

1. Introduction. The multivariate normal distribution, N (u, X), is characterized
by u, the vector of means of the random variables with this distribution, and X,
the matrix of variances and covariances of these random variables. In this paper
we consider confidence bounds for the characteristic roots of X, namely, the
TOOtS A1 = Ag = -+ = Npof

(1.1) |= — A = 0.

The sufficient set of statistics based on a sample x;, - -+ , Xy from N(u, X) is
the sample mean % and sample covariance matrix S defined by

(1.2) NE= DN %, nS= Doy (Xe— %) (Xa — %),

andn = N — 1. Confidence bounds on all characteristic roots of X, denoted by
ch(X), are given by

(1.3) ch,.(S)/u = ch(X) = chu(S)/1,
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CONFIDENCE BOUNDS FOR ROOTS 469

where ch,(S) and chy(S) denote the minimum and maximum characteristic
roots of S and  and [ are constants such that

(1.4) Pr{nl < x.} Pr{xn_p < nu} = 1 — ¢,

where x,." denotes a random variable having a x*-distribution with m degrees of
freedom; the probability is at least 1 — e that (1.3) holds for any positive defi-
nite X. These confidence bounds for ch(X) are optimal within the class of bounds

(1.5)  flchi(8), -+, chp(S)] = ch(E) = glchy(8), - -+, chy(S)],

where ch;(S) is the ¢th characteristic root of S, f(z, , - - - , z,) and g(zy, -+, p)
are homogeneous of degree 1, and are monotonically nonincreasing in each argu-
ment for fixed values of the other arguments (2, = 2, = -+ = z, = 0). If
(1.5) holds with probability at least 1 — ¢, then a pair of numbers « and I can
be found to satisfy (1.4) and

(1.6)  flehi(8), - -, chp(8)] = chn(S)/u, chu(8S)/! = glehs(8), -+, chy(S)].

The homogeneity condition means that the confidence bounds for ch(X) are
multiplied by ¢” if the observed vectors Xy , - - - , Xy are multiplied by ¢ (which
is a kind of scale invariance) ; the monotonicity conditions imply that an increase
in the size of S results in an increase in the limits for X (which is a kind of
consistency).

Confidence bounds of this type given earlier by Roy (1954) and his colleagues
have involved the distributions of the characteristic roots of sample covariance
matrices when X = I; these distributions are not extensively tabulated. A more
detailed comparison between the bounds derived here and those given earlier
will be made in Section 4.

We also consider confidence bounds for roots of determinantal equations in-
volving two covariance matrices. The functions of the parameters of two normal
distributions, N (u”, £,) and N (u®, X.), treated here are the roots 6, = 6, =

- = 6,0f

(1.7) |Z; — 0%, = 0.

Multiplication of (1.7) by | =, | shows that the roots of (1.7) are the character-
istic roots of X;'%; and of X,%, ", denoted by ch(Z,'%,;) = ch(x;=2,7). We
call these roots the characteristic roots of X; in the metric of X, .

The sufficient set of statistics based on samples of N; = n; + 1 and
N: = ny + 1 from N(u®, ;) and N( v? =), respectively, are the mean and
covariance matrix £ and S, , of the first sample and the mean and covariance
matrix, £® and S, , of the second sample. Confidence bounds on ch(zlzz‘l)
with confidence at least 1 — ¢ are given by

(1.8) chn(8:8:7)/U < ch(Z2™") = chu(S:S:)/L,

where L and U satisfy
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(19) Pr{('fh — P + l)L/’ﬂz é Fnl,nz—zH—l}
Pri{Fppiin, EmU/(my —p+ 1)} =1—¢

where F, .. denotes a random variable with an F-distribution with » and m
degrees of freedom. The bounds given earlier by Roy and Gnanadesikan (1957)
involved the distribution of c¢h(S;S; ') when ¥, = X,. The bounds given here
are optimal within the class of bounds

(110) f[chl(slsz_1)7 SN Chp(Slsz_l)] é ch(x)
= g[Chl(SlsZ“l)’ cee Chp(Sls{l)],

where f(z1, -+ -, %p) and g(z,, - - - , ,) are homogeneous of degree 1 and mono-
tonically nondecreasing in each argument. If (1.10) holds with probability at
least 1 — ¢, then a pair of numbers U and L can be found to satisfy (1.9) and

(1.11)  flehi(S;8:7), «++, ehy(8:8: )] = chn($:S: )/ U,

chu(S:S; )/L < g[ch(S;S; ), - -+, chp(S:S,7H)].

Confidence bounds for some other determinantal roots are also given. The
methods used here yield some monotonicity properties of certain test procedures.

An important property of the multivariate normal distribution is that a linear
transformation AX + b of a random vector X with distribution N(u, £) has a
multivariate normal distribution N(Au -+ b, AXA’). One reason for interest in
characteristic roots of a covariance matrix X is that the roots are the invariants
of rotations and translations; that is, under transformations X — PX 4 b,
where P is orthogonal. In fact, the roots of PEP’ are the roots of X, for

(1.12) 0= |P=P —AI| = |P| - |2 — |- |P|.
Given any covariance matrix X there exists an orthogonal matrix P such that
M O - 0
(1.13) PP = A = (:) ):‘2 9 ,
0 0 - X
where \; = --- = ), are the characteristic roots of X; thus any function of =
that is invariant under orthogonal transformations is a function of Ay, -+ A, .

(See Theorem 2 of Appendix A of Anderson (1958), for example.)

The hypothesis that the components of X are independent and all have vari-
ance 1 is the hypothesis that X = I or equivalently that \; = 1,7 =1, - p.
Since this hypothesis is invariant with respect to orthogonal transformations, it
is natural to study tests which are also invariant under orthogonal transforma-
tions. The power of such a test depends on an alternative X through the charac-
teristic roots of this alternative. It seems reasonable to consider the distance of
= from the null hypothesis in terms of its characteristic roots.

Another reason for being interested in the characteristic roots of X is that the
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smallest and largest roots give bounds on quadratic forms in X. That is, from
(1.14)  ch,(%) = min, (a'=a/a’a), max, (a'Xa/a’a) = chy(X)

we derive

(1.15) a'ach,(X) < a'Za < a’a chy(X)

for all a. Thus confidence bounds on ch,,(E) and ch, (=) imply bounds on all
normalized quadratic forms a’ Ea. These include the variances, since a'a = 1 and
a'Xa = g, if all the components of a are 0 except the ¢th, which is 1. Intervals
for ¢.; and o.; [or p;; = 0:;/(0:0;)}] hold simultaneously. Confidence bounds
for a’=a based on a’Sa have been given by Roy and Gnanadesikan; these are
discussed in Sections 4 and 5.

The first principal component is defined as the linear combination a’X, normal-
ized by a’a = 1, that has maximum variance [Chapter 11 of Anderson (1958),
for example]; this maximum variance is \; . Other principal components are
defined as normalized linear combinations maximizing variances subject to being
uncorrelated with other principal components. Their respective variances are
Ao, ey Ay

The characteristic roots of =; in the metric of X, are invariants of the distri-
butions N (u®, %;) and N (u?, ;) of X* and X® | respectively, under trans-
formations X® — AX® + b, and X® — AX® + b, (A nonsingular) since

(1.16) 0=|AXA" — 0AZA| = |A] - |Z, — 0%, - |A].
Any invariant is a function of the set of roots 6, = --- > 6, because there exists
a matrix A such that
(1.17) AZ,A =1
6, 0 0
(1.18) Az, A = 0 = ? ‘fz 9
0 0 e

The hypothesis that £, = X, can be stated as the hypothesis that , = --- =
0, = 1. The hypothesis is invariant with respect to linear transformations. Tests
which are invariant with respect to linear transformations have power functions
depending only on ch(Z; =, ).

From the fact that

(1.19) chp(Z:2:") = min, (a'Sa/a'S),
max, (a'Za/a' ) = chy(Z,3,")
we derive
(1.20) a'Zach, (2 ") < a'%a < a'Sa chy(Z27)

for all a. This implies that confidence bounds on ch(=;X,™") give bounds on
quadratic forms a’;a in terms of a’ E,a.
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To avoid trivialities throughout the paper it is assumed that p = 2. One-sided
bounds are special cases when I, L, 1/u, or 1/u is set equal to 0.

This study originated from discussions between S. N. Roy and R. Gnanadesi-
kan and the author.

2. Optimum confidence bounds for the characteristic roots of a covariance
matrix. The probability of a pair of inequalities (1.5),

(21) kM, --0,Np) = Pr{flchy(S), - -+, chyp(8)] = cha(E),

chu(Z) = glehy(S), - -+, chy(S)I},

is a function of Ay, -+, A, (A1 = -+ = A, > 0), the characteristic roots of
X, because ch(S) and ch(X) are invariant with respect to orthogonal transfor-
mations. For the inequalities to constitute confidence bounds for ch(X) with
confidence coefficient 1 — e we require

(2.2) Ehvi, o+ ,0) =1 — ¢
for all positive definite = (A, = -+ = A, > 0).
We shall show that for given f(z;, ---,2,) and g(z;, - -+ , z,) homogeneous
of degree 1 and monotonically nondecreasing in each argument
(23) inf)\lg...;)\p>o ]C()\l , )\2 y * T, )\p_l y )\p)
= lmysen,-0 KA1, A2y =0, Apor, Ap)
independent of Az, - -+, Ap—1, and we shall evaluate this quantity.

Since c¢h(S) and ch(X=) are invariant with respect to orthogonal transforma-
tions we can make the orthogonal transformation to carry = to the diagonal
matrix A. The distribution of »S is the Wishart distribution, W(A, n). Some
monotonicity properties of the probability (2.1) are given in the following
theorem:

TreorEM 2.1. If N, < NV, then

(24) k()\1+7 )\2 y "0, )\P) é k()\l ) A? y T )\P);
i Ay £ N, then
(25) k()\l y ", )\p—l ) )\p—) é k()\l y Ty )\P—l ) )\p)-

Proor. We use two lemmas. Lemma 2.1 is given in Anderson and Das Gupta
(1963), for example, and Lemma, 2.2 is a,special case of Section 7.3.3 of Anderson
(1958).

LemMma 2.1. If A is a positive definite mairiz and D s a diagonal matriz with
each diagonal element at least equal to 1, then the ith ordered characteristic root of
DAD s at least equal to the ith ordered characteristic root of A. If at least one diagonal
element of D s greater than 1, then at least one characteristic root of DAD 1s greater
than the corresponding characteristic root of A.

Lemma 2.2. If nS s distributed according to W (A, n), where A is a diagonal
matriz, then nS is distributed as nAS*A, where S* is distributed according to
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W (I, n) and A s a diagonal matriz each of whose diagonal elements is the positive
square root of the corresponding diagonal element of A.
To economize in typesetting we shall write A/8 to mean (1/6)A. We have

k(>\1, ,)\p)
= Pr{flch;(AS*A), - -+, ch,(AS*A)] = 5.},
(2.6) 8" < glch,(AS*A), -, ch,(AS*A)]}
= Pri{flchi{ (A/8,)S¥(A/8,)}, -+ -, chy{ (A/5,)S™(A/3,)}] < 1,
1 < glehy{(A/81)S¥(A/81)}, - -, chy{(A/8:)S™(A/61)}]}

by the homogeneity of the functions. From Lemma 2.1 we deduce that for any
S*andanyi (i1 =1,---,p)

(2.7) ch{(A7/8, )S*(A7/8, )] = chil(A/5,)S™(A/5,)],
(2.8) ch{(A7/8,)S*(A7/8)] = chi(A/8)S™(A/81)],
(2.9) chi(A¥/8,)S*(AT/8,)] = chil(A/8,)S™(A/5,)],
(2.10) chf(AY/8,7)S*(aT/8,7)] = chi(A/8;)S*(A/8)],

where 8,7 < 8,, &' = 8, A" has §, as its pth diagonal element, and A" has
8, as its first diagonal element. Thus

{S* | flehsf (A™/3, )S*(AT/8,7)}, -+, chp{ (A7/8, )S*(A7/3, )}] = 1,

(2.11) 1 = glehy{ (A7/8:)S™(A7/b1)}, -+ -, chy{ (A7/8:)S™(AT/81)}]}
< {S* | flehuf (A/5,)S™(A/8,)}, - -+, chy{ (A/3,)S™(A/5,)}] < 1,

1 = glehi{(A/8:)S*(A/81)}, -+ -, chof(A/81)S™(A/61)}]},
{S* | flehif (AT/8,)S¥(AT/8,)}, -, chy{ (AT/5,)S*(AT/5,)}] = 1,

(2.12) 1 < glehi{(A*/8,7)S* (AT/6,7)}, -+, chp{(AT/8,7)S* (AT /6)}]}
C {S* | flehu{ (A/3,)S™(A/8,)}, - -+, chy{ (A/3,)S™(A/5,)}] = 1,

1 < glehs{(A/8,)S™(A/81)}, -+, cho{(A/81)S™(A/81)}]}.

These imply Theorem 2.1.
THEOREM 2.2.

(213) lim)\l—wo.)\p—»o k(>\1 ) )\2 y T >‘P—1 ) >‘P)

= PI‘{?’L = Xn2g(1; 01 e )0)} Pr{x%—lH—lf( @, sy, X 1) = n}'
Proor. For any fixed S*,
S11 O PPN 0
0 --- 0

(2.14) lims, - (A/8,)S*(A/81) =
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since
(215)  limyen(A/8) = limgaa |0 200 0 0} 000,
0 0 - 8/6/ \0O - 0
and therefore
(2.16) limg, . chy[(A/8;)S*(A/8;)] = s,
(2.17) lims, ..o chi[(A/8,)S*(A/8;)] = 0, i=2 b
Similarly
(2.18) lims,.o chi[(8,A71) (S*) 7 (8,47")] = ™7,
(2.19) lim; o ch[(8,477) (S*)7'(5,47)] = 0, i=2,,p,
where s*?? is the pth diagonal element of (S*)™, since
p/01 - 0 0 0 --- 00
(220) limaa(5,07") = limg| ;) i ol =lo o6
0o .- 0 1 0 01
Then
(2.21)  lims,.o chy[(A/8,)S¥(A/8,)] = 1/lims, .0 chy[(A/8,) 7 (S¥) 7 (A/8,) 7]
= 1/s*72,
Thus .
1ims, e 5,00 {S™ | flcha{ (A/8,)S™(A/8,)}, - - -, chy{ (A/8,)S™(A/8,)}] £ 1,
(2.22) 1 < glchif(A/8:)8*(A/81)}, -+ -, chy{(A/8:)S¥(A/8,)}]}
= {S*|f(, -+, ©,1/5") =1 = g[si1,0, -+, 0]}
= {S*[f(w, -+, @, 1)/s" = 1 < sl1g(1,0,---, 0)}.

The theorem follows because si; is the sample variance of the first component of
the random vector and
sl cer Slea \ [ sm
(223) 1/ = sk, — (shp, -+, 85-10)
8;—1,1 ce 8?—1,1;—1 8:: -1

is independently distributed as 1/n times a x’-variable with » — p + 1 degrees
of freedom [Theorem 4.3.2 of Anderson (1958)]. [We note that unless
f(oo, trr, 0, 1) is ﬁnite) k()\17 ) )‘P-—l ) 0) = 0]

Tueorem 2.3. If f(x1, -+ ,2p) and g(xy, - -+ , Tp) are homogeneous functions
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of degree 1 and monotonically nondecreasing in each argument for the other argu-
ments fized (x1 = 22 = -+ = x, = 0), then the interval

(2.24) flehi(8S), -+, chyp(S)] = ch(Z) = glehu(S), -+, chy(S)]
s a confidence interval for ch( =) of confidence 1 — e if and only if
(225) Pr{n = XnZg(l) O: tee 70)} Pr{Xi—IH—lf( Ry ere, O 1) = n} = 1 — e

This is the main result, the proof of which was indicated at the beginning of
the section; it shows how confidence limits may be obtained from tables of the
% -distribution. In particular z,/w and /I are functions satisfying the condi-
tions of Theorem 2.3. If [ and u satisfy (1.4) then (1.3) is a confidence interval
of confidence 1 — .

TuroreM 24. If f(xy, -+ ,x,) and g(x, - - , x,) are homogeneous functions
of degree 1 and monotonically nondecreasing in each argument for the other argu-
ments fized (1 = 2 = -+ = xp, = 0), such that (2.24) holds with probability at
least equal to 1 — e, then there exist numbers 1 and w satisfying (1.4) such that
(1.3) holds with probability 1 — € and the interval (1.3) is contained within the
interval (2.24).

Proor. Let 1/u = f(oo,---, o, 1). Then by Theorem 2.3 1/I =<

g(1,0, ---,0). Thus
(226) xp/uzxnf( @, c, 0071) :f( P, t 0, 00,21?1,) gf(:m: ,131,_1,1?1,),
(227) xl/lé‘zlg(170: 70) =g(.’l§1,0, )0> ég(x17‘z2) )xp)'

The interval (x,/u, z;/1) is contained by the interval (2.24).

3. Optimum confidence bounds for the characteristic roots of one covariance
matrix in the metric of another. Since ch(Z;=, ") and ch(S;S;™") are invariant
with respect to linear transformations,

(8.1) (81, -+, 0,) = Pr{flehi($:S:7), - -+, chp(8:8y )] £ chm(EEy ),
chy(Z12; ") = glehi(S:8:7), -+, chy($:S: )]}
is a function of 6, = ch;(E,%, "), -+, 6, = chp(E;X, ). For the inequalities

(1.10) to constitute confidence limits for all ch(2;=, ") with confidence coefficient
1 — e we require

(3.2) BBy, - -, 0,) =1 — e

for all £; and X, (that is, all 6; = --- = 6, > 0). We shall show that for any
given f(x;, -+ ,%p) and g(x(, - -+, x,) homogeneous of degree 1 and mono-
tonically nondecreasing in each argument

(33) infglg...;gp>o h(01 5 0, y Ty 9%1 5 01;)
= limeleoo,ﬂp—»l) h(ol ) 02 y T 01‘——1 ) 01’)

independent of 6, - -+, 6,1, and we shall evaluate this probability in terms of
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F-distributions. After the introductory theorem the derivations are similar to
those of Section 2. As noted in Section 1, we can take X; = ® (composed of
6, = --- = 6, > 0 as diagonal elements) and =, = L.

TaroreM 3.1. The distribution of ¢h(S;S;™") is the same as the distribution of
ch(DISZ_lDl), where Dy s a diagonal matrix with [ch(Sl)]* as diagonal elements,
if n2Sy s distributed according to W (I, ns).

Proor. Let

(34) S = QD/Q,
where Q is orthogonal. Then

| chi(S:S, ) = chi(QD,’Q’S,™)
(3.5) = ch;(D:Q’S, 'QDy)
ch,[D;(Q’S:Q) 'Dy.

For any orthogonal Q the matrix n5Q’S,Q has the distribution W (I, n,). Hence,
D;(Q’S:Q)™'D; has the distribution of D;S,; 'D;, and the theorem follows.

We might note that nothing need be assumed about the distribution of S,
except that S; is positive semi-definite. (If we replaced D,’ by a diagonal matrix
with possibly negative diagonal elements, we would only need to assume S,
symmetric to show the distribution of ch( S:S, ) is the same as the distribution
of ch(D;’S; "); we use D;” here to simplify notation later.) The only property
of S, that is used is that its distribution is invariant with respect to transforma-
tion to Q'S:Q.

TuroreM 3.2. If 6, < 6,7, then

(3.6) h(6.F, 02,7+, 65) < h(01, 62, -+, 6p);
if 0, = 0p, then
(37) h(olr ceey Op, 011—) = h(017 crry Op, 01?)

Proor. Theorem 3.1 implies
h(ol y T 0?) = PI'{f[Chl(D1S2_1D1), ) ChP(DISZ—IDl)] = 61’27
& < glchy(D;S; 'Dy), -+ -, chy(DyS; 'Dy)],
(38) = Priflehy{(D1/8,)Sy " (D1/8,)}, - - - , chyf (D1/8,)Ss (D1/8,)}] < 1,

1 £ glehf (D1/8:)Sy 7 (Dy/81)}, -+ -, ehy{ (D1/81) Sy " (Dy/81)} ]},
where D; consists of [ch(S;)]}, S; = AS;*A, n;S,* has distribution W (I, ny), and
A is a diagonal matrix with diagonal elements 6; = 6. We note that D;/5, con-
sists of {ch[(A/Bp)Sl*(A/tSp)]}* and D, /4, consists of {ch[(A/8;)S*(A/8;)]}. Let
ot = (N = 6,6, = (6) £5,, AT, be A with & replaced by &, and A~

be A with 5, replaced by 8, . Let D;™ and D;~ be derived from S.* by replacing
A by A' and A7, respectively. Then the inequalities (2.7) to (2.10) hold with
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S* replaced by S,*. Then the sth diagonal element of D,/3, is not greater than
the ¢th diagonal element of Dy /8, [by (2.7)] or of D;"/5, [by (2.9)], and the
¢th diagonal element of D;/é; is not less than the <th dlagonal element of D, /6;
[by (2. 8)] or of D;/8," [by (2.10)]. Application again of Lemma 2.1 yields for
any S;" and S,,

(3.9) chi{(Dy /8, )Ss (D1 /6, )] 2 chi(D1/8,)Sy(Dy/8,)],
(3.10) ch[(Dy/61)Sy (Dy /81)] = chi(Dy/81) Sy (D1/éy)],
(3.11) hi[(Di"/8,)S: (Di7/6,)] 2 chi(D1/8,)Sy 7 (Dy/6,)],
(3.12) ch,-[(D1+/61)S2_1(D1+/51)] < chi[(Dy/8:) Sy (Dy/81)].

Thus for any S;* we have the inclusions (2.11) and (2.12) with A A and AT
replaced by D; , D; and D,*, respectively and S* replaced by S, These imply
Theorem 3.2.

THEOREM 3.3.

IIV

1ime, »e,6,0 R (61, =+ -, 6p)
(3.13) =Pr{(ne — p+ 1)/m2 £ Fuyny—p+19(1,0, -+, 0)}
« Pr{Fuprimof( 0, -0y o, 1) = mi/(m — p + 1)}
Proor. For any S,* it follows from (2.14) that

5 0 - 0
(3.14) lim;, -0 (D1/81) = 0 0 o 0 ,
0 0O --- 0

where s{i’* is the upper left hand element of S,*. For any fixed $;* and S, ,

(D% 11

sP*s 0 -+ 0

(3.15) lims, e (Dy/81) Sz (Dy/8y) = 9 ? ?
0 0 - 0
and
(3.16) lims, e chy[(Dy/8;) Sy (Dy/81)] = s1%s05 ,
(3.17) lims, e chi[(Dy/81)S, "(Dy/8;)] = 0, i=9
Similarly, for any S;* and S,
0 --- 0 0

(3.18) limy, .o 8,Dy " = 0 0 0 ’

0 e 0 (s;klz)’p
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0 0 0
(319)  limao(5D S8, D7) =00 0 O],
0 0 sin
(3.20) lims,.o ch,[(D1/8,)S: ' (D1/8,)] = 1/lims,0 chaf(8,D1 ") S:(8,D )]

*
= 1/(st8%s5n),

(321) limg,e ch[(Dy/8,) S5 (Dy/8,)] = 1/litmy oo chpsi[ (5,D1™) So(8,D )]
Thus for any S;*

1ims, 0,50 { S2 | flehuf (D1/8,)Se ' (D1/8p)}, -+ -, chyof (D1/6,)Ss *(D1/6,)}] < 1,
(3.22) 1 < glehy{(D1/8:)S: ' (Dy/81)}, -+ -, chy{(D1/6:1)S: ™ (Dy/81)} ]}

= {82 |f[ Ryt y, O 1/(8:(“11))1)8;21)7)] é 1 = g[sﬁ)*sg) ) 0) ) O]}
= {S2 If( @, sy, 0 1)/(8?11)71’8;721-?’) =1= S;.i)*'s%;)g(l; 07 ) 0)}

The probability of the set on the right hand side of (3.22) relative to the distri-
bution of S;* and S, is obtained on the basis that nys{7*, ns/s) , na/st87, and
nesy are independently distributed according to x’-distributions with n;,
ns — p + 1, ny — p + 1, and n, degrees of freedom, respectively. The proba-
bility is

PI'{ Sl*7 SZ { 1 é S](.i)*sg)g(ly 0; ) 0)7f( Ry sy, X, 1)/('3?11))1)8;21)7) é 1}

(3.23) = Pri{ny/ne < it/ (na/s)1g(1, 0, - -+, 0)}
'Pr{[(nl/stlz))p)/n2sg?2;]f( @, rrr, X, 1) é nl/nz},
which is (3.13).

TuroreM 3.4. If f(x1, -+ ,2p) and g(z,, - -+ , &) are homogeneous functions
of degree 1 and monotonically nondecreasing in each argument for the other argu-
ments fized (v = 22 = -+ 2 xp, = 0), then the interval
(3.24) flehy(SiS:), -+, ehp(SiS: )] £ ch(Z=, )

< glehy(8:8:7), « -+, chyp(8:S: )]
s a confidence iﬁterval for ch(X,25") of confidence 1 — e if and only if
(3.25) Pr{(ne— p + 1)/n2 £ Fuyiny—p419(1, 0, -+, 0)}
Pr{Fopiam J(o, 0, o, 1) Sm/(m—p+ 1)} 21—ce

TuroreM 3.5. If f(x1, -+, xp) and g(xy, - -+ , Tp) are homogeneous functions
of degree 1 and monotonically nondecreasing in each argument for the other argu-
ments fized (x; = xy = -+ = xp, = 0) such that (3.24) holds with probability at
least equal to 1 — e, then there exist numbers L and U satisfying (1.9) such that
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(1.8) holds with probability at least 1 — € and the interval (1.8) s contained within
the interval (3.24).

4. Discussion of bounds. Other bounds for ch(E) based on x’-distributions
can be derived fairly easily, but they are not as tight as those given in Section 2.
Let a, and e be vectors such that

(4.1) ' En/ U @ = Chp(E),

(4.2) @ Bay/ s ay = chu(E)

and @n Eay = 0 = @ ax. Let I’ and %’ be numbers such that
(4.3) 1 — e = Pr{nl’ £ x.%} Prix." < nu'}.

Since @, X and e,X are uncorrelated and have variances @, e, and ex Zaux,
respectively, nen Stm/en e, and nes Sex/ ey ey are independently dis-
tributed according to x’-distributions with n degrees of freedom. Hence,

1—e=Pr{l' < aM'SuM/onlzaM, O St/ ey, < u'}
= Pr{(1/u ) om Sttn/tn o £ @ Ettm/ @
(4.4) av Tay/ey oy < (1/1) er’ Sen/ o’ eul
Pr{(1/«')min,(a’Sa/a’a) < ch,(X),
chy(E) £ (1/1')max,(a’Sa/a’a)}

by (1.14). Thus confidence bounds of the form of (1.3) with confidence 1 —
can be obtained by choosing v = ' and I = I’ to satisfy (4.3). However, since

(4.5) Prix.’ < nu} < Pr{xi_ps1 < nu}

IIA

for p = 2, the bounds given in Section 2 [based on (1.4)] are tighter than those
derived here.

The bounds that Roy (1954) has given are of the form (1.3) and are obtained
from

H
|
I
7
e
I

< chn(S%), chu(S¥) =
min,(a’S*a/a’a), maxy(b'S*b/b'b) < u’}
a'S*a/a’a < u* all a}

b'Sb/b’Eb < u*, all b}

= Pr{b’Sb/b’bu* < bEb/b’b < b'Sb/b'bl*, all b}
Pr{ch.(S)/u* £ c¢h(X) = chu(S)/I",

where & = A'A; S = A’S*A, and a = Ab for suitable A. Comparison of (4.6)
and (4.4) shows that either I* < U, 4 < u* or both; hence bounds for ch(X)
based on (4.4) are tighter than those based on (4.6). Then the preceding para-
graph implies that the bounds given in Section 2 are tighter than those of Roy.

I
7
%
IA 1A

I
7

%
A

{

{
(4.6) = Pr{l*

{

{
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TABLE 1
Constants for one-sided confidence limits for ch(=)
p=21—e=.975

U = I1=0

n
=0 I* % u u*
3 .0719 .00844 2.46 3.12 4.14
4 121 .0304 2.34 2.79 3.61
5 .166 .0590 2.23 2.57 3.27
10 .325 195 1.90 2.05 2.48
20 479 .358 1.64 1.71 1.98
40 .611 .510 1.45 1.48 1.66
100 742 .669 1.28 1.30 1.40

Table 1 records some numerical values of [, I', and I* for w = o (upper confi-
dence bounds only) and of u, u, and u* for I = 0 (lower confidence bounds
only) when 1 — o = .975. Together « and I (or »’ and I') yield two-sided confi-
dence bounds at confidence level (.975)° = .950625. The values of »* and I*
are taken from Thompson (1962). He also gives the value of u* corresponding
to I* in Table 1 for two-sided confidence intervals with 95% confidence; these
values are close to »* in Table 1. (One reason that both upper and lower limits
are developed in Sections 2 and 3 is that the statistical independence involved
must be proved.) It will be observed that the optimal constants are considerably
nearer 1 than the constants based on the distribution of roots. (It may be noted
that as ny — o, U — u, U' — ' and U* —u*)

Confidence bounds for ch(X;X,™") based on F-distributions can be obtained
more easily than in Section 3, but the result is not as good. Let a, and ax be
vectors such that

(4.7) o’ 10/ @ Bt = Chpm (1250,
(4.8) aM/EIaM/aM’EgaM = ChM( 2122_1).

[See Chapter 12 of Anderson (1958), for example.] Then w, X and a,'X are
independent when X is distributed according to either N(u®, £,) or N(u®, %,)
because @, Ziay = 0 and e, Tsey = 0. (These conditions must be satisfied
except when X; is proportional to X, and then these conditions can be imposed.)
It follows that

4 ! ’ 4
Um Slam/ U Sy p, - S1(¥M/ oy Syay
v =

!’ ) !
@y B W, ay Zioy

(4.9) Fn =

7 !
Wy 21 oy oy

are independently distributed, each according to an F-distribution with n; and
ny degrees of freedom. Let L' and U’ be two numbers such that
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1 —e=Pr{ll £Fy}Pr{F, <U}
=Pr{Ll < Fy,F, 2 U}

! !’ ’ 7
ay S Qy So0y @ Sien, U S
(4.10) =Pr{ =X 1 M/ M 2 ¥ a 1 / 2 o < U'}
oy T/ axy Zoay @n Eren! an s an

’ ! 7
(1572 211!M< 1 onslon ]. ozmslozm< [17%% Elam}

b‘\
)

I

Pr

GIM,EZQM = r (1574 S2aM, U, am,SZ (1773 = am,22 (L2
< Pr {chn(8:8, ) /U’ £ chn(Z: %7,
chu(E12y7) < chu($:8,7) /L)

Thus confidence bounds on ch(X;%, ") of the form (1. 8) can be obtained by
choosing I’ and U’ to satisfy (4.10). The bounds are not as tight as those given
in Section 3 because those F-distributions have n; and ng—p+landn, —p+ 1
and 7, degrees of freedom instead of n; and 7, degrees of freedom as in (4.10).

These bounds are of the same form as those of Roy and Gnanadesikan
[also (14.10.9) and (14.10.12) of Roy (1957)]. Their bounds however, are
based on the distribution of the largest and smallest roots of S;S, ™ When =X,
that is, L = L* and U = U* are chosen so

(411) 1 — e = Pr{L* < chu (S/"S;,*™), chy (S,*$,* ™) = UH
= Pr{L* < min, (a'S,"a/a’S;*a), max;, (b'S,*b/b’S,*b) < U*,

where S;* and S, represent S; and S, , respectively, when ¥, = X, = I. Since
(4.10) can be written

(4.12) 1 — e=Pr{L' = a'S,*a/a’S,"a, b'S,"b/b’S,*b < U}

for any a and b such that a’b = 0, we see that L* < L', U’ < U*, or both. These
facts and the discussion of the preceding paragraph imply that the bounds of
Section 3 are tighter than the bounds with L* and U*.

Tables 2 and 3 give some examples of the numerical values of the constants.

TABLE 2
Constants for one-sided confidence limits for ch(=,Z51)
p =2, 1—-—e=.9

nm = 3 nm = 5
2 g
U U U* U U U*
13 2.54 3.41 5.63 2.54 3.03 4.85
23 2.28 3.03 4.58 2.24 2.64 - 3.84
120 2.05 2.68 1.96 2.29
2003 3.59 2.90

© 2.00 2.60 1.90 2.21
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TABLE 3
Constants for one-sided confidence limits for ch(Z,=;1)
p =6, l1—e= .9

ny = 7 n = 11
2]
U U Uu* U U’ U*
17 1.026 2.61 11.42 1.47 2.41 10.21
27 .958 2.37 7.33 1.34 2.17 6.33
120 . .878 2.09 1.19 1.87
2007 4.06 3.29
® .856 2.01 1.14 1.79

The values of U™ are from Pillai (1960). (The degrees of freedom ns are limited;
lower significance points L* are not given, but they could be derived by inter-
changing S; and S, and L* and U*.) It will be noted that as p increases the
advantage of the optimum bounds increases.

S. N. Roy has informed the author while this paper was in preparation that
he had given the bounds based on (4.10) in unpublished lecture notes of 1952
and had verified that the upper bound alone or the lower bound alone based on
the F-distribution was better than the corresponding one-sided bound based on
the distribution of the maximum or minimum root of S;*S,* ™.

In the situation considered here—as is usually the case—tests of hypotheses
can be obtained from confidence regions; a null hypothesis is rejected if the hy-
pothesized parameter values are not contained in the confidence region. Here
the hypothesis & = I is rejected if ch,(X) = chy(X) = 1 is not in the confi-
dence bounds, and the hypothesis ¥, = X, is rejected if chn(Z;E, ") =
chy (X2, ") = 1is not in the confidence bounds. In the latter case, for instance,
the hypothesis is rejected if

(4.13) ch, (8,8, > U
or if
(4.14) chu($:8:7") < L;

that is, the hypothesis is rejected if either all roots are large or if all roots are
small. The test does not seem to have good power against alternatives in which
only chy(=;2,™) is large or in which only ch,,(E;X,") is small; yet these are
the parameter values which were crucial in establishing the confidence coefficients.

It is curious that the rejection region implied by the confidence interval con-
sists of inequalities similar to those of the acceptance region of the test associ-
ated with the original probability statement. For instance, a test at significance
level € based on (4.11) has the acceptance region

(4.15) L* < ¢h,($:S:Y), chu(S$:8:7") = U™

5. Some uses of confidence bounds. The confidence bounds for ch(X) can
be written
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(5.1) ch,(S)/u < a’sa/a'a < chy(S)/l

for all vectors a or in the form of (1.15). When the 7th component of a is 1 and
the other components are 0, (5.1) is

(5.2) chn(S)/u < i < chu(S)/L.

Setting the 7th component of a equal to 1, the jth component equal to 1 and — 1
alternately, and the other components equal to 0 gives

(5.3) 2¢hn(8S)/u = 0i + 045 + 2045 < 2¢chu(8S)/], 1 # g,
(54) 2¢h,(S)/u = o + 0j; — 20:; < 2chy(8S)/I, 15 7.
From these last two pairs of inequalities we deduce

(5.5)  —3lchu(8)/l — chu(8)/u] £ 0i; < 3[chu(8)/l — chn(S)/ul, 7.

Thus we arrive at simultaneous confidence bounds for all elements of the co-
variance matrix X.

A feature of the approach of this paper is that the bounds for a’=a/a’a do not
depend on a and only depend on the observed sample covariance matrix S
through the two functions ch,(S) and chy(S). A consequence is that the
bounds for o;; are the same for all 7 and the bounds for o,;, ¢ # j, are the same
for all pairs ¢ and j. While these facts imply computational advantages, they
also imply the inferential disadvantages of not reflecting closely the character-
istics of the sample covariance matrix.

On the other hand the approach by Roy and Gnanadesikan and other col-
leagues of Roy leads to bounds that depend on a and the sample quantities in
more detail. From (4.6) we see that

(5.6) a'Sa/u* < a’xa < a’Sa/l*

for all a with (exact) confidence 1 — e. From (5.6) we deduce the following
bounds which hold simultaneously:

(5.7) Su/u* = o Sn‘/l*,
(5.8) (ai28ii + ajzsjj + 2aiajsij>/u* = aioi + aj20'jj + 2a.a 04
< (afsu + af'sj; + 2aa5s) /1%, © = g,

2 2 * 2 2
(59) (ai Sii + a; S;; — 2aia,'sij)/u < a0+ AQ; 055 — 2aiajaij

qQ
o lIA

IA

I(alzs” + a’s;; — 2a.a;8:;) /1%, i = 7,
7+ u sy — (7 — WY (a8se + asiy) /daia;

(5.10) S 0 S T W sy A+ (T T (a8 + asis) /A,

aa; > 0,17 # j.

*

The length of the interval (5.10) is minimized by taking a; = (s;;)* and
a; = (si)}; the resulting interval is
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(5.11) 3@+ W sy — 7 = 0 ) (s08i)Y/2 £ 0y

S 3T s+ (T = 0T (sasig) Y2,
If we set a; = 1/(0::)} in (5.8) and (5.9) and apply (5.7) we obtain for r;; = 0,
(5.12) (T yri + F/u* — 1 2 pig < 15+ 1 — I/,

where 7;; and pi; are the 7, jth sample and population correlations, respectively;
if r;; < 0, the interval is

(5.13) Corg Ut — 1= e £ () 4+ 1 — Fut,

Thompson (1962) has given (5.7) and (5.11), has shown that the set of =
satisfying (5.6) is the intersection of two convex cones with vertices at S/I*
and S/u*, and has given tables for p = 2.

Comparison of (5.1) and (5.6) shows that the lower bound of (5.1) is better
for a’=a when )

(5.14) a’Sa/a’a < (u*/u) chn(S)
and the upper bound of (5.1) is better when
(5.15) (I*/1) chx(S) < a’Sa/a’a.

If chn(S) > ul® chy(S)/(u*1), then (5.1) is better for all a; otherwise there
will be some a for which one or both bounds of (5.6) are better.
Confidence bounds for ch (£;X3") can be written

(5.16) chn(8:8:7)/U < a'%ia/a"%sa < chy(S,S:,7)/L

for all a or in the form of (1.20). This is formally similar to (5.6) with = re-
placed by X, S replaced by X;, 1/u* replaced by ch,, (8;S,™)/U and 1/7*
replaced by ch(S;S;")/L. The inequalities (5.7) to (5.13) can be translated
into these terms to obtain inequalities on ¢{; and p{} in terms of o$? and o2,

respectively. The analogue of (5.7), for example, is
(5.17) of? chn(818:)/U < off < o chu(S:S,7)/L.

Similarly, (4.11) gives bounds of the form (5.16) with U and L replaced by
U* and L*, respectively. Roy (1958) has shown that (5.16) simultaneously
holds when pairs of corresponding rows and columns are deleted from =, , X, , S, ,
and S; [as given by Roy and Gnanadesikan (1957)].

Other bounds can be derived from (5.6), which yields the confidence statement

(5.18) I* < ch(S=™) = u®.

For example, the inequality (2.12) of Anderson and Das Gupta (1963) can be
stated

(5.19) chy(S) chy(=S™) < chi(E) = chy(S) chy(=ES™)

or equivalently
(5.20) chi(S)/chi(SE™) = chi(E) = chi(S)/ch,(SZ™).
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Then (5.18) implies the confidence statement (pointed out to me by Das Gupta )
(5.21) chy(S)/u* < chy(E) = chi(S) /1"
6. Confidence bounds for some ordered roots in a two-sample problem. We

now consider a lower bound for ch»( £;2,") and an upper bound for ch,,( =, 2,7).
Here let L and U be two numbers such that

! !’
(61) 1 —e=Pr{L < FunsU}="Pr {L < a,Sla/a,Sza < U},
aXija/ aXsa

where a is an arbitrary vector. Then

!/
l_ezpr{a_&_aé

a'EZa
’ ’
_ . aXxa _1 aSa
(6.2) < Pr {chm(2:122 Y = min, 2% < - L 2218
aX.a L a'Sa
1 a'Sia a'%a - }
—_ =< max = chy (=X .
U a'S,a *a'%a u(E 2

Thus simultaneous upper bound on ch,,(Z, %, ') and lower bound on ch (£, X,™)
of confidence at least 1 — e are
1 a'Sia 1 ) a'Sia
L a's,a’ U a'S:a
Single bounds can be obtained by setting L = 0 or U = o,

It appears that the bound for ch, (=2, 7") is a good one if a is close t0 @m
and that the bound for chy(=,X,™") is good if a is close to e, . More precisely,
if L = 0, the left hand inequality of (6.3) is vacuous, and if a = a, , the prob-
ability of the right hand inequality is exactly 1 — ¢; correspondingly if U = o,
the right hand inequality is vacuous, and if a = «, , the probability of the left
hand inequality is exactly 1 — e The arbitrariness of the vector a could be
eliminated by replacing a’S;a/a’Sza by chx(S;S;™) in the bound for ch,( =3,
and by ch,(8;S;™") in the bound for chy(X;X;™"), but these would give the
worst possible bounds (that is, correspond to the worst selection of a). Another
way of eliminating the arbitrariness is by a randomized choice of a.

Another result of this approach follows from

1—e=Pr{L§"‘,i‘? bS:b U}
aXja/ b XD

(6.4) =Pr{azla§1 aSia 1 aSla<a21a}

(6.3) ch,(Z 27h) < < chy(Z13,7).

lIA

bEb L bS;b’U b'S;b- bz:b
7 7 /’ 12
< Chm(zl) _ . a21a/ b22b < l X aSla . ﬂ)
= Pr {chM(zz) Milha =g/ M 5 =7 vS,b aa’
1 a'S;a b'b a'Sia / . b'Zb chy(xy)
.7 < =
U 0S:b aa— g/ R T (xS

Some similar inequalities were given in Appendix C of Anderson (1963).
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7. Monotonicity properties of some power functions. Let w be a set of

€1, ++, ¢y such that when a point (¢, - +,¢p) IS In w so is every
point (¢;, -+ ,¢p ) Withe, =¢;,2=1, -+, p. It was shown by Anderson and
Das Gupta (1964) that if ¢; = chi(S),7 =1, ---, p, and w is the acceptance

region of a test of the hypothesis that X = I, then the power function of that
test is monotonically increasing in each characteristic root of X. It was also shown
that if ¢; = chs(S:Sy"), ¢ = 1, -+, p, and w is the acceptance region of the
hypothesis that £; = X,, then the power function of that test is monotonically
increasing in each characteristic root of =, %, . The methods of the present paper
afford the basis of an alternative proof of the second result.

Lemma 2.1 implies that

(7.1) {S*| ch(ATS*AT) e w} < {8 | ch(AS*A) ¢ )

for A and A" diagonal with 8; < &,7; hence, the probability of the left hand
side is less than that of the right hand side. Theorem 1 of Anderson and Das
Gupta (1964) and the monotonicity of the power function were deduced in this
faghion.

Lemma 2.1 similarly implies that if D; has as diagonal elements [ch.(AS,*A)]?
and D,* has as diagonal elements [ch:(ATS;*A™)]}, then each diagonal element
of D;" is at least as large as the corresponding element of D; and hence that

(72) {S2 I Ch(D1+SQ_1D1+) & w} C {Sg I Ch(Dlsz_lDl) & w}

for each S;*. From this fact and Theorem 3.1 we can deduce Theorem 2 of Ander-
son and Das Gupta (1964) and the monotoncity of the power function.

The results and proofs are not stated fully here because they are treated in
detail in the paper referred to above and Theorem 2 is proved more directly.

8. Confidence bounds for all roots in a problem of several samples. A problem
that Gnanadesikan has studied [Gnanadesikan (1959) and (1960)] is that of
confidence bounds simultaneously on ch(E; %0 ), -« -, ch(Z;2,") based on
covariance matrices Sy, S;, ---, S, of samples of sizes no+ 1,7+ 1, ---,
ng + 1 from normal distributions with covariance matrices Zg, Xy, - -+, X,
respectively. These roots are a complete set of invariants under linear transfor-
mations only if there exists a nonsingular matrix A such that AX,A’, - -- | AX,A
are diagonal. We can deal with a slightly more general case in which
there exist vectors @, and e such that en Ziem/ O Totn = chm(zizoﬁl),
@ Biau/ e Zoay = chy (B2 ), i =1, -,k Let Liand Us(¢ = 1, - - , k)
be a set of numbers such that

(81) 1—e=Pr{L =<s8'/s,i=1,+-,k Pr{s’/s’ < Us,i=1,--- K},

where n.s;® are distributed independently according to x’-distributions with 7,

degrees of freedom, respectively. From this we deduce the following simultaneous

bounds:

(82) chm(S:So™)/U: £ chu(E:E "), chy(E:i%e ") = chu(S:Sy)/Li,
1=1 .-,k
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which hold with confidence at least 1 — €. Values of U; for which the second
factor in (8.1) is a specified probability can be determined from Nair’s tables
[Pearson and Hartley (1958), p. 164] in some cases.

Gnandesikan’s bounds are

(8.3) (1/U*)-chu(S:)/chy(Sy) < chn(E:iZo ™),

chu(E:Z0") £ (1/L:*) -chu(S.) /chn(Sy), ¢ =1, ,k,
where L;* and U.*(¢ = 1, - -+ , k) are a set of numbers such that
84) 1 —¢e= Pr{Li* =< mmaas a/maxbbs(;) ,
a's@,*a/ . bS()b < * . o }
MaXs minp —50= =< Ui =1, y ko

These bounds, which do not require the restrictive conditions used in obtaining
(8.2), follow from the confidence bounds

(8.5) (1/U)-ch,(S:)/chu(Se) < chu(E:)/chy(Z),

chu(E:)/chn(Z0) £ (1/L:*) -chu(S:)/chn(Sy), =1, k,
and the inequalities
(8.6) chu(=:)/chu(Ze) £ chu(EiZe ), chu(E:E0 ") < chu(E:)/chn(Z).

The bounds (8.3), however, can be very ineffective because the inequalities
(8.6) can be very ineffective. For example, if

6 0
(8.7) = X = <0 S0>

with 6 > ¢, then ch,(E,20 ") = chu (120 ) = 1, but chu(E;)/chu(Eo) = ¢/
and chy(%;)/ch,(Z¢) = 6/¢; these ratios can be arbitrarily small and large,
respectively. Similar difficulties hold for the test procedures derived from Gnan-
adesikan’s bounds.
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