THE EXPECTED NUMBER OF ZEROS OF A STATIONARY
GAUSSIAN PROCESS!

By N. DoNALD YLVISAKER
Unaversity of Washington

1. Introduction. It is assumed throughout that {X(¢), ¢ [0, 1]} is a real
separable stationary Gaussian process with mean function zero, covariance
function p, p(0) = 1, and having continuous sample paths. It follows that there
is a normalized (spectral) distribution function ¥ such that F(u) = 1 — F(—u)
at points of continuity « and for which

EX(s)X(t) = p(s — t) = [Z.cos (s - ONAF(N), s, te]0,1].

We will use freely the equivalence of the two conditions: p” exists continuous at
the origin and [2, N\ dF(A) < o further, that these conditions imply X(-)
is absolutely continuous a.s. (cf [3] p. 536).

Let N be the number of zeros of X (-). It is shown here that

(a) X(-) has a.s. no tangential zeros,
(b) EN = (1/x)(— 0"(0))}  if p"(0) exists,
= 4o if not.

The formula for EN goes back to Rice [8] who obtains it under the assumption
that F has finitely many points of increase. Ivanov [5] proves that EN is given
above when p“”(0) exists (equivalently f oA dF(N\) < ), while Bulinskaya
[2] shows that (a) and (b) hold provided X(-) has a continuous derivative (for
which the best sufficient condition known is [2,, A log (1 + A])'" dF(\) < o,
8 > 0). The result given here however is not unexpected (see for example [4],
p. 273).

Most previous work in this area has followed ac who in [6] devised a procedure
for counting zeros; inasmuch as this procedure is designed to account for
tangencies when there are none, we adopt a different, and perhaps simpler,
approach to the counting. A suitable modification of what we do will produce
the expected number of a’s, @ # 0, for the same processes and indications are
that it can also be extended to handle zeros of nonstationary Gaussian processes
with nonzero mean functions. Leadbetter and Cryer [7] have found the corre-
sponding formula, applicable when the process has a continuous derivative, and
they point out that this is the general situation for arbitrary barriers and Gaussian
processes. For corresponding nonnormal problems it will be seen that the main
calculations involve the bivariate distributions of the process with tangencies
requiring special attention.
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2. Zeros and expectations. If f is a continuous function on the unit interval,
we say f has a crossing zero at ¢ ¢ (0, 1) provided every neighborhood of ¢
contains points # and & with f(&)f(t:) < 0; we say f has a tangential zero at
to € (0, 1) provided f(#) = 0 and there is a neighborhood of # on which f has a
constant sign. Let C(7T) be the number of crossing (tangential) zeros of f in
(0, 1) so that the number of zeros of fin (0, 1) is C + T.

For the process X(-) we show T = 0 a.s., this is accomplished by referring
tangencies to the continuity of the variables supe»n X(-). If {¢;} is a countable
dense set in (0, 1) and if {e,} is a sequence of positive numbers with limit 0, we
note that

{(-) | z(-) has a tangential zero from below in (0, 1)}
c Uim {z(-) lsu_Puj—e,..tfre,.) z(-) = 0}.

Lemma 1. supesy X () has a continuous distribution for any interval (a, b) C
(0, 1).

Proor. If {T,} is an increasing sequence of finite sets in (a, b) with U, T,
dense in (@, b), maxs, X(+) —a.s. SUP@y X(-). Now maxy, X () has a density
of the form ¢-G, where ¢ is the standard normal density and where G,(u) is a
sum of terms of the form P[X; < u, -+, Xi < u| Xo = u]. These conditional
probabilities are in fact nondecreasing in u. To see this, suppose (Xo, X1, -+, Xi)
is multivariate normal with EX; = 0, EX” = 1,7 =0, 1, - - - , k. For convenience,
suppose Xo, X1, -+, X, is a maximal linearly independent subset and that
Xi= 20 005X;,i=r+1 -, kIf EX,X; = o;5for 4,5 = 0,1, ---, r,
the conditional distribution of (X, - - - , X,) given X¢ = wis multivariate normal
with mean (oqu, - - - , oot) and covariance matrix of (7, j)th entry s — oo00; .
Now P[Xi; £ u, -+, Xi < u| Xo = u]is an integral of the corresponding density

over the set
[0 S w8 S Uy D 0% S u(l — ), i =1+ 1, -+, k]

Centering the density by letting y; = x; — oo, it is an integral of a density
independent of u over the set

= u(l — o), =, ¥ < w(l — o0)y Dim0iyi < u(l — D e Oujov;),

i=r-+1,---, k.
We see here that the coefficients of - u are all nonnegative for, in particular,
St 0bioe; = D 5-005EXX; = EXX; £ 1,4 =¢ + 1, .-+, k. Thus the

conditional probabilities in question are nondecreasing in % as is the function
G. . Now in order that the distribution function of supw s X(-) have a mass
point at uo say, it is necessary that the sequence {G,(uo + €)} be unbounded,
¢ > 0. However this cannot be so for

(S ore () du)Ga(uo + €) = [urre $(u)Ga(u) du < 1.

Although it is not needed here, it does follow from the nature of the densities
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involved, that supws X(-) is absolutely continuous with density ¢-G, G =
lim, G, and nondecreasing.

We now suppose f is a continuous function on [0, 1] for which f(k27") # 0,
k=0,1,---,2n=1,2, --- . If f(t)f(t) < Ofort; < t», then f has at least
one crossing zero in (&, t,). Consider the auxiliary variables

Un =1 if f((k — 1)27)f(k27") <0,
=0 otherwise, E=1,2 ---,2"
Zo= D i1 Ui, n=12"--.
{Z,} is a nondecreasing sequence so let Z = lim, Z, . As noted above Z, < C and
therefore Z = C.

LemMa 2. Z = C (both sides may be infinite).

Proor. If C is finite, the crossing zeros are separated and so are counted
by some Z,, Z = C. If moreover Z is finite, then the crossing intervals
((k — 1)27", k27") counted by Z, = Z can be separated for n sufficiently large
and f must be of constant sign on the remaining noncrossing intervals. Letting
n— o we find points 0 = f < #; < -+ < tz41 = 1 such that fis of constant sign
on [ti, tya], 2 = 0,1, -- -, Z. Thus, C is finite.

For the process X(-) the sample functions are a.s. different from zero at all
points of the form k27", therefore {Z,} is a.s. nondecreasing with limit C. We
find the expectations ([1], p. 43)

EU,. = (1/7) arc cos p(27"), EZ, = (2"/x) arc cos p(27").

LemMa 3. (2"/=) arc cos p(27") has a finite limit if and only if o (0) exists,
in this case (2"/7) arc cos p(27") — (1/7)(—p" (0)).
Proor. Suppose (2"/n) arc cos p(2") has a finite limit. Since

are cos p(27") = {[1 — p(27"/IL + p(27M)]}F >

it follows that [I — p(27™)]/[L + p(27™)] = 0(27") or 1 — p(27™) = 0(27™).
Consequently, each of the following is bounded in n:

(1) 21 (B (1 — cos X2 dF(N) + 2™ [3a (1 — cos A27") dF(N),
(u) gint J'zonﬂ ()\22~(2n+1) + O()\42—-4n)) dF()\)

+ 2 (S0 (1 — cos A27") dF (M),
Gi) 3 NdF() 4+ 0(27™) + 2 [ (1 — cos X27") dF ().

The last term of (iii) is positive and therefore [5 N> dF(A\) < . If [5 X dF(X) is
assumed finite, write p(27") = cos #\.27" for 0 < A, < 2" and 7 sufficiently
large (we omit the case p = 1). Then

1 + p”(£)2—(2n+l) =1 — )\n21r22—(2n+1) + 0()\”42—47;), 0 < 5 < 2-—-n,

so that
L= —p" (&N 77+ 0(N27).
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Now as n — o, £ — 0 and \,"2">" — 0 since cos 7,2 " — 1. Thus
M = (2/m) arc cos p(27") = (1/m)(—p"(0))".

Lemmas 1, 2 and 3 together prove the

TrroreEM. Let {X(t), t &[0, 1]} be a real separable stationary Gaussian process
having continuous sample paths, mean value function zero and covariance function
p, p(0) = 1. X(-) has a.s. no tangential zeros and if N s the number of crossing
zeros of X(+),

(1/7)(—p"(0))"  if 6"(0) exists,
+ if not.

EN
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