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1. Introduction and summary. Sufficient conditions for a Bayes sequential
procedure to be truncated contained in Wald [12] and in Blackwell and Girshick
[3] have been used by Sobel [11] and Mikhalevich [7] to show that under certain
conditions a Bayes sequential test is truncated when the cost of observation does
not depend on the unknown parameter. When this latter condition is not satis-
fied as illustrated by some sequential testing problems considered by Kiefer and
Weiss [5] and Weiss [14], and by Anscombe [2] (in connection with ethical cost
of medical trials) the sufficient condition referred to (see Corollary 3.1) is not
always applicable. When it is applicable it generally provides an upper bound
on the maximum sample size that a Bayes sequential procedure can take. For
the purpose of computation of the Bayes procedure by backward induction it is
desirable to know the exact stage of truncation as close as possible.

Section 3 contains two theorems (Theorem 3.2 and 3.3) which provide better
sufficient conditions for a Bayes sequential procedure to be truncated and simul-
taneously provide better bounds on the exact stage of truncation. Sufficient con-
ditions are also provided for the upper bounds involved to be exact. Section 4
contains some results with the help of which the theorems of Section 3 may be
applied to some special sequential testing problems in Section 5. Finally Section
6 contains proofs of the results of Sections 3 and 4.

2. Statement of the problem. Let the pair (2, @) be an abstract space and a
o-field of subsets. Let X,: n = 1, 2, --- be a sequence of random variables on
(2, @). Let 3 be the space of unknown states of nature such that for each 6 £ 3
there corresponds a probability Py on @ so that {X,} are independent and iden-
tically distributed with respect to Py . Let = be the set of all probability measures
on a fixed Borel field ® of subsets of 3. Let Fy(x) be the distribution function of
X, with respect to Py and fe(x) be the corresponding density with respect to
some o-finite measure u. We assume Fy(x) and fo(x) are jointly measurable in
(6, z). For any integrable function ¢(6, ) and for any £ ¢ &, Eyg(0, X) denotes
the expectation of g(®, X) with respect to the joint probability distribution of
X and © where the conditional distribution of X given ® = 6 is given by Fy(x)
and the marginal distribution of @ is given by &. If g involves only © then the
expectation is over the marginal distribution ¢. For any w ¢ @, let Q¢(w) = E¢Py(w)
denote the integrated probability measure on (2, @). The terms “‘almost surely”
(abbreviated as a.s.) or its equivalent ‘“with probability one” (abbreviated as
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860 S. N. RAY

w.p.1) and “with positive probability” that are used in this paper, are with
respect to this integrated probability measure.

Let A be the action space and L(6, a), 8 ¢ 3, a ¢ A, a non-negative real valued
function on 3, X A be the loss incurred due to taking action @ when 8 is the true
state of nature. Let ¢(6) denote the cost of a single observation, which is non-
negative and is allowed to depend on 6. Let A be the class of all measurable
randomized sequential procedures. Let (8, 8), 8 £ 3, 6 £ A be the risk (expected
loss plus expected sampling cost) when procedure § is used and the true state of
nature is 0. Let 7(%, 8) = E(0, ). Let p(£) denote the infimum of the average
risk r(£, 8) over the class A. If there exists a procedure & such that r(£, 8;) = p(¥)
then 6; is called a Bayes procedure with respect to £ and p(£) the Bayes (average)
risk in the class A.

In order not to distract attention from the main object we assume whatever
conditions are required in order that the following procedure exist and be Bayes.
This procedure is to stop whenever the stopping risk is équal to the optimum a
posteriors risk. When we stop we take that action which minimizes the a posteriors
stopping risk. Among the risk equivalent Bayes procedures relative to £, this is
the one which leads to termination at the earliest time.

DEriNITION. A sequential procedure § is said to be truncated if there exists a
non-negative integer n such that N < n with probability one where N denotes the
(random) sample size associated with 6.

The smallest of such integers, say, n’, is called the ezact stage of truncation of the
procedure 6.

The purpose of this paper is:

(i) to study conditions for which the Bayes procedure &; in the class A is
truncated; and

(ii) if the Bayes procedure is truncated, to determine upper bounds on its
exact stage of truncation n’(¢) [henceforth denoted simply by n].

3. Statements of main theorems. For any positive integer n and for any vector
X, = (21, -+, zx) and for any a priori £ ¢ B, let 74t denote the a posteriors
distribution after observing X; = z;, 7 = 1,2, ---, n. For consistency we set
Tx,f = £. We note that in our case of independent identically distributed variables
7, is & commutative and associative operator from & to =. In particular,

Tx,,_,_lg = Tzl(Ta:z(' o (Ta:,.+1£) e )) = Ta:n+1(7'xn£)'
For any integrable function g(8) and for any £ ¢ =, we denote
9(&) = Ey(0).
Let
po(£) = ming.s L(£, a).

THEOREM 3.1. A sufficient condition for a Bayes sequential procedure with
respect to & to be truncated is that there exists a non-negative integer n’ such that
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po(Tx,E) = c(7x,8) a.s.

for everyn = n'.

If 11 denotes the smallest such integer n’ then 1y is an upper bound to n’.

In other words, if the stopping risk must be less than or equal to the expected
cost of one additional observation for every observation after the n'th, irrespec-
tive of the data, then the Bayes procedure is truncated at n’.

We omit the proof of this theorem which is a trivial generalization of the
following special case which is essentially contained in Wald [12] and in Black-
well and Girshick [3].

CoROLLARY 3.1. If the cost of an observation c(0) is independent of 0, then a
sufficient condition for a Bayes procedure to be truncated s

(3.1) limg.« essupx, po(7x, £) = O.

Corollary 3.1 has been the main tool so far in the literature for determining
whether or not a Bayes sequential procedure is truncated. When the cost de-
pends on 6 there are situations (see Example 5.3) where the sufficient condition
of Theorem 3.1 is not satisfied although the Bayes procedure in question is
truncated. We are thus led to seek better sufficient conditions than those given
in Theorem 3.1, which lead to smaller upper bounds on #’. The simplest such
condition is given by the following theorem which also states sufficient conditions
for the upper bound to be exact. Before stating the theorem we need the following
notations.

For any non-negative integer n, and for any £ ¢ =, let

(32) Pn({:) = mjnﬁeAn 7‘({:7 5)

denote the Bayes risk in the subclass A, of A for which § takes at most n observa-
tions. Note that this notation is consistent with po(£) defined earlier. Also,for
any £ ¢ &, let

(3.3) AE) = po(§) — Epo(7xt)

denote the advantage of stopping after one free observation rather than stopping
immediately.
TueoreM 3.2. (i) With the assumption that

(34) limn—wo Pn(é) = p(g)

there is a Bayes sequential procedure with respect to & that is truncated if there exists
an integer n’ such that

(3.5) AMrrt) < c(rgt) as.

for every n = n’.
If 7ty denote the smallest such integer n thenn' < My < 7.
(il) A sufficient condition for i, = n° is that there exists a set of {21, 5, - -}
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with positive probability such that
(3.6) Mrxk) > o(7;E)

foreach1=0,1,2, ---, % — 1.

The proof of this theorem involves the following property of a Bayes sequential
procedure whose risk can be approximated arbitrarily closely by that of a Bayes
truncated sequential procedure. If, at a certain stage in the history of the sam-
pling, the expected reduction in the stopping risk derivable from taking one more
observation cannot, at any future time, be compensated for by the expected cost
of that additional ebservation, then the Bayes procedure tells one to stop. If
such a situation must arise by stage n’ irrespective of data, then the Bayes pro-
cedure must be truncated at n’.

Although the theorem above has not been stated explicitly as such in the
literature, its verbal rendition given above is intuitively so obvious that many
authors have used this sort of result without verifying some such condition as
(3.4) (see for instance, Wald ([12], p. 166) and Wetherill [13]).

The second part of the theorem says that if there exists a set of sample paths
such that if at any stage of following such a path the expected reduction in the
stopping risk derivable from taking one more observation exceeds the expected
cost of that additional observation then the Bayes procedure tells one to con-
tinue. This is a special case (viz, looking ahead one step) of the modified Bayes
rule of Amster [1] which is known to stop earlier than the Bayes procedure. We
shall, however, give a proof of this part too in Section 6, partly for the sake of
completeness and partly for the sake of a stepping stone to the proof of the less
obvious Theorem 3.3(ii).

For typical problems with continuous random variable X it is possible to
find a set of {z;, z2, ---,} with positive probability satisfying (3.6), as illus-
trated in Example 5.1, so that n’ is given exactly by 7, . With a discrete random
variable X, however, this may not be the case. An illustration is Example 5.2
where n’ < 7 . In such cases it is possible to obtain a better bound to n’ by using
a more elaborate sufficient condition than that provided by Theorem 3.2(i). In
fact Lemma 6.3, used in proving Theorem 3.2(i) and Theorem 3.3(i) gives a
characterization of a non-increasing sequence {7} of upper bounds to n’, of
which only 7, and 72; will later be used in the illustrative examples. The second
part of the next theorem states sufficient conditions for 7, to coincide n’. These
conditions will be shown to be satisfied in some symmetrical binomial problem
considered in Example 5.3 thus enabling us to obtain n° explicitly. Before we state
the next theorem we need the following notation.

For any (¢, let

(B2 B(E) =[x =) + Ed(\ — )e(rxd}e — (A = ¢)4(8)

where 4 denotes the positive part.
THEOREM 3.3. (i) With the assumption thal

(3.8) limy.e pa(£) = p(§)
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there is a Bayes sequential procedure with respect to £ that is truncated if there exists
an integer n’ such that

(3.9) B(7x,£) = 0 as.

for every n = '

If 7, denotes the smallest such integer then n < Ay < A

(ii) A sufficient condition for 7y to coincide with n® is that there exists a set of
{z1, x2, - - -} with positive probability such that

(3.10) MrxE) > o(rxk)
foreveryi = 0,2, -+, [5( — 1)] — 1; and
(3.11) B(rxik) > 0
foreveryi = 1,3, -+, [3(A — 1)].

A verbal paraphrase of this theorem is more involved than that of Theorem
3.2 and will not be attempted. For the same reason this theorem is less intuitively
obvious than Theorem 3.2. However, the motivation behind this theorem will be
well understood if the reader first goes through the Example 5.3.

Sufficient conditions for (3.4) or (3.8) to hold is given by Hoeffding [4] which

. we quote below for the sake of completeness.

TuaroreM 3.4. [Hoeffding] In order that

(3.12) limn.w pa(£) = p(£)
1t 1s sufficient that either

(3.13) limpsw Eepo(7x,£) = 0
or, in case L(6, a) is bounded,

(3.14) £e(9) > 0} = 1.

We note that (3.1) is sufficient for (3.13) and hence for (3.12).
4, Specialization to two-action (hypothesis testing) problem. Let us define
(4.1) L(6) = L(6, 1) — L(6, a2)

and call it, following Mikhalevich [7), the loss characteristic. If, for every 6, there

is an action for which the loss is zero, then the optimum stopping risk depends on

the losses through their difference L(6) only as seen in the following lemma.
LemMA 4.1. If for each 0 £ 3 there is an ap such that L(6, as) = O then for any £

(4.2) 2p0(£) = B¢ |L(®)| — |EL(®)| < {Var, L(®)}"

We note that the hypothesis of Lemma 4.1 is redundant if we want to minimize
the expected regret instead of the expected loss where regret is defined as

R(6, a) = L(6, @) — min, L(6, a).



864 S. N. RAY

Lemma 4.1 may be used as a tool for the application of Theorem 3.1, Corollary
3.1 and Theorem 3.4 to two-action problems. For example, when Lemma 4.1
applies

(4.3) essupx, Var, : {L(©)} -0 as n— o«

can be used to replace (3.1) in Corollary 3.1, and also to replace (3.13) in
Theorem 3.4.

We present Corollary 4.1 to treat the important special case of linear loss which
is defined for a one-dimensional real parameter 6 as follows:

DEerintTION. The loss function L is said to be a linear loss function if

(4.4) L6, a1) =0 if 0= 6,
= ky(6 — 65) if 6> 6;

and

(4.4") L(6, as) = ka(6 — 6) if 6= 6,
=0 if 6> 6;

where k; and k, are certain positive constants. 6y is called the break-even point.
We shall refer to the case where &y = k» = k as the case of symmetric linear loss.

CoroLLARY 4.1. When the cost per observation is a constant independent of 0,
a Bayes sequential procedure for testing 6 < 6, against 8 > 0y with linear loss, is
truncated if

(4.5) lim,,. essups, Var, : © = 0.

It may easily be verified that (4.5) is satisfied in the following specialcases
involving common statistical distributions for X and their natural conjugate
priors for £ By a natural conjugate prior we mean an a prior: distribution such
that all possible a posterior: distributions belong to the same family as the a
priori. For a fuller definition we refer to Raiffa and Schlaifer [9]. Sometimes such
a family of a priori distributions has been called closed under sampling (see
Wetherill [13]).

Case (i) X ~ N(9, 1), —0 <0< wo;

£~ N(n, o)
(i) X ~ Poisson (8), 6>0
de(6) < 07%¢%ds, o >0, N1
(iii) X ~ Binomial (8), 0<0<1;
de@) « 6°7'(1 —60)"", a>0,b>0.
(IV) X~Trinomial (1!'1, ™2, 1 — T — 7l'2), 0 < T < m + 1r2§
@ =
dé(m, 7!'2) o« 7r1a_l1r2b—l(1 — M — 7r2)c—], a > 0, b > 0, c > O;
6 = T — M2 .

Just as Lemma 4.1 is useful in the application of Theorem 3.1 so is the follow-
ing lemma useful in the application of Theorem 3.2 and Theorem 3.3 to two-action
problems.

L
)2,

[y
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LeMmma 4.2. For any &,
(4.6) 2N(§) = E¢|L(rxt)| — |L(8)].

In the rest of this section we consider only densities fs(x) belonging to the
one-dimensional exponential family. Let

(4.7) fo(x) = w(0)e”
where

P(0) = [[Zedu(z)]" > 0 forall 6e3

and 3 is an interval [, 8] which may be finite or infinite, open, half-open or closed.

For any positive integer n, the a posterior: distribution 7, ¢ depends on x,
through the sufficient statistic (n, v = >r 1xi), so that we may write it as
7n 0. The set of all a posteriori distributions arising from a fixed a priorz £ may
thus be identified with a certain subset of the (%, v)-plane. Fixing our attention to
a particular £ we may, for simplicity of notation, replace 7, ,£ by the pair (n, v)
or even simply by v, if no confusion arises. If, however, we are interested in a
class of Bayes procedures corresponding to a class of natural conjugate priors
then we may denote £ by (n’, v') and 7,6 by (n + n,v" + ).

We assume that L(6) is non-decreasing in 6 and takes on both positive and
negative values with positive £-probability. Since the family {r,,,£} of distribu-
tions, written explicitly as

(4.8) drno£(0) = [W(0)]"e” d£(0) /1[5 W (8)]"e™ d£(9)]

forms a monotone likelihood ratio family it follows from Lemma 6.6 that L(n, v)
= K., :L(8) is non-decreasing in » and takes both positive and negative values
for every positive integer n. We now assume that u(z) is absolutely continuous
with respect to the Lebesgue measure so that L(n, v) is continuous in » for each n.
The monotonicity and continuity of L(n, v), which has its range on both sides of
zero, ensure the existence of a unique root, »,’, say, of L(n, ») = 0 for each n.
Following Wetherill [13], we shall call the set of points {n, »,"} the neutral
boundary, since for such points the stopping risk is the same for either action.

The Condition (3.5) of Theorem 3.2 may be written in this special situation as
follows.

(4.9) essup,, [AM(va)/c(v,)] = 1.

For the case of constant (independent of ) cost of observation, we are thus led
to investigate when and where \(v,) attains its essential supremum. We now
state a theorem which states that \(v,) attains its supremum on the neutral
boundary. Theorem 3.2, properly interpreted in this special case implies that
sampling can continue longest on the neutral boundary.

TuroreMm 4.1. If the density fo(x) belongs to the one-dimensional exponential
famaly given by (4.9) where u 1s absolutely continuous with respect to the Lebesgue
measure and if the loss characteristic L(0) is non-decreasing in 0 then \(v,) attains
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its supremum on the neutral boundary (n, v,"). Moreoverthis supremum is given by
(4.10)  essup,, A(va) = N0a") = [[5 L(0)Fo(vi1 — 02°) drn,on0£(8)].

Using this thgorem we may define 77, as the smallest positive integer for which
A(v.") £ cforevery n = 7, . If the cost depends on 6, but ¢(v,) attains its infimum
at 2, then the left hand side of (4.9) is still given by

Xn = x(”no)/c(”uoy

Hence 7 is given in such cases by the smallest positive integer for which x, =< 1
for every n = 7.

6. Examples.

Ezxample 5.1 (Normal). Suppose X has a normal density with mean 6 and
variance 1. Suppose the loss L(6, a;) and L(6, az) are so defined that

(5.1) L(6) = L(6, a1) — L(6, az) = k(6 — 60)

where k is a positive constant. Equation (5.1) holds for symmetric linear loss
(see (4.4) and (4.4") where k; = k, = k). We take the a priori distribution £ to
be normal with mean po and variance o”. Then it may be verified that the a
posteriort distribution 7, ,, ¢ after n observations is also normal with mean u, and
variance o, where

(52) wn= (n+mos )/ (n400"), o’ =1/(n+0o ).
The neutral boundary is given by (7, »,") where
(5.3) v = [(6o — #0)/002] =+ nbo .

Hence 74,59 £ is normal with mean 6, and variance o,’. It follows from Theorem
4.1 that

(5.4) essup,, N(va) = Nu2') = |[Z k(0 — 60)® (8 — 0) dB[(6 — 60)/cal|

where @ is the standard normal probability integral. Evaluating this integral, we
derive

(6.5) Nva") = [k/(2m)loa/ (1 + o)) = b/ (2m) (0 + 00 ) + (0 + o0 DI

a decreasing function of n.

We shall consider two types of cost, viz. ¢(6) = 1 and ¢(6) = |6 — 6| called the
absolute deviation cost. The later type of eosts arises in connection with ethical cost
in medical trials (see Anscombe [2]).

(i) Constant cost, ¢ = 1. Applying Theorem 3.2, all the conditions of which may
easily be verified, the exact stage of truncation n’ for this Bayes test is given by
the smallest non-negative integer for which \(v,’) < 1 i.e., using (5.5), the
smallest non-negative integer greater than or equal to (¥*/2r + ) — & — 1/0¢".

For convenience of notation let us denote
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[z]* =0 if <0
= [x] if > 0 and integral
=[x]+1 otherwise

where [x] denotes the largest integral part in z.
Using the above notation we display n’ as follows:

(5.6) n’ = [((K/27) + D' — 3 — (/o)™

This result is also given by Wetherill [13].

(ii) Absolute deviation cost, ¢ = |0 — 8o|. In this case the expected cost c(v,)
of one observation at the nth stage is given by the expected value of [0 — 6|
where the expectatlon is with respect to the normal distribution with mean g,
and varlance aa’. It follows from (5.2) and (5.3) that u, = 6 if and only if
v, = v,". Now since the mean deviation is minimum from the median (mean in
this case) we readily see that ¢(v,) attains its minimum on the neutral boundary,
ie.,

€essup,, Mva)/c(vs) = Mwa")/c(v,")
c(va’) = [Za |0 — 60 dR[(0 — 60)/0u] = (2/7)%an .

(5.7) Mon')/e(va’) = $klon/ (1 + aa7)}]

a decreasing function of n. Applying Theorem 3.2, the exact stage of truncation
is given in this case by the smallest positive integer for which (5.7) =< 1. Thus

(5.8) n’ = [(K/4) — 1 — (1/as)]*.

Comparing (5.8) with (5.6) we note that with absolute deviation cost, the exact
stage of truncation is approximately quadratic in & while it is approximately linear
in k for constant cost.

Ezxample 5.2. (Binomial). Consider the problem of the Bayes sequential test for
P = poversus p > po where p is a binomial parameter and 0 < p, < 1. Suppose
the losses L(p, a1) and L(p, a;) are so defined that

(5.9) L(p) = L(p, ) — L(p, @) = k(p — po)

where k is a positive constant. Equation (5.9) holds for symmetric linear loss as
defined in (4.4) and (4.4") if ky = ko = k.

We consider an a prior: distribution ¢ which is beta with parameters (ao, bo).
Specifically,

d‘E(p) = pan_l(l - p)bo—l dp/B(aO, bO)y O é P -.S. 1, () > 0) b0 > O-

It is well known that the a posteriors distribution 7, ,, ¢ after n observations is
also beta with parameters.

(5.10)

Gy + vn
b=bo+n—v,.
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Thus without any ambiguity we shall sometimes write &5 for 7,.,, £ As in the
previous example we shall consider two types of cost, viz. (i) ¢(p) = 1 and, (ii)
the absolute deviation cost ¢(p) = |p — po| per observation.

We now use Lemma 4.2 to compute \. For this example we have

(5.11) 2X\(%2p) = |L(tas10)| Eryp + |L(kapa)| Eg,y(1 — p) — |L(%ap)]
where

L(ap) = B, lk(p — po)] = k[(a/(a + b)) — pal.

For every (a, b) such that L(£41), L(&p+1) and L(&,) have the same sign,
M&») = 0as may be verified using (6.26). Considering furthermore, all possible
situations where these three quantities are not of the same sign we finally arrive
at the following:

MEan) = klab/((a + b)*(a + b + 1))], for (a,b) eTy,
= k[b/(a + b)]
(5.12) [((@a+1)/(a+ b+ 1)) — pd, for (a,b) T,
= k[b/(a + b)]po — (a/(a + b + 1))], for (a,b) eTe,
=0, otherwise,

whelje
Ty = {(a, b)la/(a + b)] = pd},
I = {(a,b)|la/(a +b)] < po < (a+1)/(a+ b+ 1)},
I = {(a,b)|la/(a + b+ 1)] < po < [a/(a + b)]}.

Iy is the neutral boundary, i.e., the set of points for which either action is equally
preferable when we stop. We may describe the set I';, 7 = 1, 2 as set of points
which, though not on the neutral boundary, are so near to it that the next ob-
servation has the potential to change the current optimal action a; to the other
one. Thus we may call the set

Fo= FoUF1UP2

as the extended neutral boundary.

The neutral boundary has previously been defined as the set of points (7, v,’)
in the sample space of the sufficient statistic (n, v,). Using (5.10) and writing
ng = ap + bo, @0 = 1 — po, we may write (5.12) alternatively as follows.

Now) = /(o + 7+ Dlpgy, for v, = un,
= [k/(no + n 4 Dllpo — ((0a° — va)/(no + n))]
(513) '[qO - (vno - vn)]; for vno — q < v, < vnO;

= [k/(nO + n + 1)][170 - (vn - vno)]
oo — ((va — v")/(na + 1)),  for va'< va < 0"+ po,
=0, otherwise.



BAYES SEQUENTIAL PROCEDURE 869

It follows from (5.13) that
(5.14) Mwa) = (kpogo)/(no + n + 1)

with equality if and only if v, = »,”. We note at this point that a result similar to
(5.13) holds for any arbitrary a prior: distribution £. In fact it is possible to show
(see [10]) in this binomial problem that for any ¢ ¢ &, and any L(9),

(5.15) ME) = Varg [L(9)]

with equality if and only if £ is such that L(£) = 0. Thus if »,” is an integer then
we may write in this case

SUP,, M(vn) = )‘(vno) = Va'rfn.»‘}, (L(9)],

corresponding to (5.4) for the normal case.

Applying Theorem 3.2(i) in this example, we find that for the case of constant
cost, 7ip is given by the smallest positive integer such that \(z,") = kpogo/
(o + n+ 1) < 1lforeveryn = #pi.e.,

(5.16) Mo = [kpogo — mo — 1]*.
For the case of absolute deviation cost, we have

(5.17)  c(tan) = [3]p — ol dEan(p)

2[pol po(a, b) — [a/(a + b)l(a + 1, b)] + [a/(a + b)] — po
where I.(a, b) denotes the incomplete beta integral. Because of (5.12) we need
evaluate this integral only for (a, b) on the extended neutral boundary. Using
(5.12) and (5.17) it is feasible to compute 7, by calculating the ratio \(a, b)/
¢(a, b) along the extended neutral boundary for decreasing a + b starting from

a sufficiently large @ + b. A good approximation for 7, is obtained by using the
following asymptotic (large a + b) relation

(5.18) c(£ap) ~ [(2pogo/7) (1/(a + b))T for (a,b)eT.
Writing (5.18) as

c(va) ~ [(2pogo/)(1/ (0 + n))]* for v." — @0 < v < 0.’ + o
we see that

Nvn)/c(va) S $e(2mpogo) ‘e + n] .
Thus 72 is given approximately as ’
(5.19) 7o & 3k’ Tpege — 7o

which compares with (5.16) as (5.8) does with (5.6) in the normal case. We
note that because of the discrete nature of the observations it is impossible (for
both cost functions), to find a sequence of observations satisfying the Condition
(3.6) of Part (ii) of Theorem 3.2. Thus 7, > n’ where n° is the exact stage of
truncation. It is possible, however, to apply Theorem 3.3 to obtain n’ exactly,
in the following special symmetric case of the problem.



870 8. N. RAY

Ezample 5.3. (Symmetric Binomial). py = %, ap = by, L(p) = k(p — 1). We
assume for simplicity that a, is an integer. In this case it may be verified that T,
and T; are empty and the neutral boundary T, consists of points on the diagonal
a = bin the (a, b)-plane. Thus

(5.20) MEp) = k/4(2a + 1) fora = b
=0 for a # b.

In order to determine 7%, we need evaluate c(a, b) only for a = b. Now
c(bae) =1 for constant cost
= [i|p — & dtaa(p) for absolute deviation cost.

We may easily evaluate
(5.21) f% Ip - %I déao(p) = (2:)2—2“_1,

We now apply Theorem 3.2 (i) in this example to obtain the following:
In the case of constant cost, ¢ = 1,

(5.22) iy = 2(a’ — ap) — 1
where
(5.23) o’ = [k/8 — " ~ k/8.

This result is also given by Moriguti and Robbins [8].
In the case of absolute deviation cost, ¢ = |p — 3},

fio = 2(a’ — @) — 1
where @’ is the smallest non-negative integer such that
(5.24) (2a + 1)(%)27%" = k, for every a = o’

Standard binomial tables may be used to obtain o’ from (5.24). For large k, we
have

o ~ 7k*/16

which corresponds, using (5.22), to (5.19) with p, = 3.
We are now prepared to apply Theorem 3.3. We notice from (5.20) that
(N = ¢)4+(&p) = O for |a — b] > 0. Thus

B, (N — ¢)i(7xtap)}
= (A= 0)4(bar10) Beeyp + (N — ) (faipt1) Egop, (1 — D)
=0 for la — b > 1.

Hence B(£s3) = Ofor |a — b > 1 and for a = b. Because of symmetry, 8(£;.-1)
= ﬁ(sa—l,a)- NOW

B(fa,a—l) = max {O, -0(&,.:-1) + [(a - 1)/(2a - 1)][)‘(&.:!) - C(Ea.a)]+}-



BAYES SEQUENTIAL PROCEDURE 871

From the definition of @, AN(fs.e) < ¢(4s.0) for every a = a’. Thus B(fs,0-1) = 0
for @ = a’. Also from symmetry one easily verifies that ¢(£,e1) = ¢(fa-1,6-1)-
We may thus apply Theorem 3.3 (i) to obtain 7#; = 2(a* — @) — 1 where @'
is the smallest positive integer such that

—c(f10-1) + NEae) — c(fa0)ll(a — 1)/(2a — 1)] £ 0 for every a = d'.

It follows from the above inequality that o' < a’ and hence 7i; < 7 . It follows
from (5.20) that in the case of constant cost ¢ = 1, a' is given by the smallest
positive integer such that

(5.25) 4(2a¢ + 1)[(3a — 2)/(a — 1)] = k for every a = d".

Using (5.21), in addition, it follows that in the case of absolute deviation cost
¢ = [p — 4, o' is given by the smallest positive integer such that

(526) (2a + 1)(¢927*"Ba —1)/(a — 1) = k forevery a = a
Comparing (5.25) with (5.23) and (5.26) with (5.24) we note that in either case
(5.27) a ~ ad’/9.

For either cost function ¢, it may be verified that a sequence of observations
that alternates with 0 and 1 satisfies the Condition (3.10) and (3.11) of Theorem
3.3 (ii) so that 7; coincides with n’, the exact stage of truncation. It follows from
Lemma 6.3 that every 7, & = 1, must coincide with n’. We note that for ob-
vious reasons (¢' — 1, @ — 1) has sometimes been called the last reachable
continuation point while (a” — 1, a” — 1) has been called the last. continuation
point. For computation of the Bayes boundary by backward induction it is
sufficient to know the last reachable point only, beyond which the Bayes con-
tinuation set consists of a long neck of points on the diagonal a = b up to
(o’ — 1,a° — 1). It is seen from (5.27) that considerable saving may be effected
if a* is known precisely. Since o’ is approximately proportional to k for the case
of constant cost and to k* for the case of absolute deviation cost, the saving
effected is more pronounced for the latter case than with the former.

6. Proofs.
LEMMA 6.1. For any positive integer n and for any £ ¢ E,
(6.1) 0 = (pn — pr41)(§) = Ee{(pn—1 — pn)(7x8)}.

Proor. By definition p,(£) satisfies the following well known recursion rela-
tion:
(6.2) pm(£) = min [po(£), ¢(£) + Eepm(7x£)], m = 1.

Substituting m = m and m = n + 1in (6.2), subtracting, and using the trivial
fact that p,(£) is non-increasing in m three cases occur:
(i) For & such that po(£) < c(£) + Egpa(7x£),

(Pn - Pn+1)(§) = 0.
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(it) For £ such that ¢(&) + Eipn1(7x) < po(£),

(6.3) (pn = Pui1)(§) = Eel(pn1 — pa)(7x8)}.
(iii) For ¢ such that
(6.4) c(&) + Eepa(rxt) = po(£) = ¢(£) + Eipny(rxt),
(pn = put1) () = po(§) — ¢(§) — Egpu(rxt),
(6.5) (pn = Pur1) (§) = Eef(pn1 — pu)(7xt)}

using the second inequality in (6.4).
Combining all three cases the lemma follows.

Let
(6.6) ' (8) = Bel(pe — pos) (reui8)}, kb =0,1,2 -+ n.
Lo 6.2. (o — pra) (£) = w0 = W@ = 2 w0 <
Mn (S)

Proor. In (6.1) substitute k& for n, 7, & = &, for £ and Xu—iypr for X.
Then we have

(6.7) (e — pry1) (bak) = By, (o — PA‘)(TXn—k-,\-l‘gn—k)}: L =k =n

Since (6.7) is true for every &, ¢ =, and hence for Tx,_ § for every x,— , taking
expectations over X, , we have,

(6.8) w8 = w08,

completing the proof of the lemma.

Let 7 denote the smallest non-negative integer such that P (£) = 0 for
every n = 7 .

Lemma 6.3. If

(69) limn—)oo Pn(g) = P(E),
then

n < ...

No .

IIA

i

lIA
lIA
lIA

g
Proor. Since u,* () is an upper bound on p,(£) — p.a(§), it follows from
the definition of 7, that
pn(E) = puya(£) for every n = 7,.
This along with (6.9) implies that ’

pai(€) = p(§).

Thus there is a Bayes procedure which is truncated at 7; . The monotonicity of
il follows from that of u,™ (¢), completing the proof of the lemma.

We now investigate conditions under which the bounds are exact. Now by
definition of n’, it is the largest positive integer for which p,0_1(£) > puo(§).
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Thus the upper bound 7 coincides with n’ if and only if pz,1(8) > pa(£).
We are thus led to investigate conditions under which

Pn(g) > Pn+l(£)

for any non-negative integer n. A simple sufficient condition is given by the
following lemma.
LEmMmA 6.4. For any non-negative integer n, a suffictent condition for

(6.10) pn(£) > pata(§)

1s that there exists a set of x, with positive probability such that
(6.11) po(Tx;E) > pr(7)

foreach v = 0,1, -+ n.

Proor. The inequality (6.11) and the monotonicity of p, imply that
po(Tx;E) > po—i(Tx;E)
and
po(72,E) > prpr—i(7x;E)
where 7 < n — 1. It follows that (6.3) applies and hence

(6'12) (Pn—i - Pn+1—i)(7'xi‘§) = Erx,'é{(Pn—l—i - Pn—i)(TX(Txig))};

fori= 0,1, ---,n — 1. Combining the equalities in (6.12), starting from 7z = 0
up to ¢ = n — 1 successively, we obtain

(6.13) (pn = pur1)(§) = E{(po — p1) (7x,6)}

Now the quantity within the braces of the right hand side of (6.13) is non-
negative by the monotonicity of p,, and is strictly positive, by (6.11) with 7 = n,
for a set of x, with positive probability. Hence the left hand side of (6.13) is
strictly positive, completing the proof of the lemma.

LemMmA 6.5. For any non-negative integer m, a sufficient condition for

p2m($) > p2m+1(£)

1s that there exists a set of Xon with positive probability such that

(6.14:) Po(sz,f) > pl(sz,'s)
foreachj = 0,1, --- ,m — 1, and
(6.15) p1(Txs, 11E) > po(Txy;,48)

foreachj =0,1, -+, m — 1.
Proor. It follows just as in Lemma 6.4 that (6.14) implies

(6.16)  (pom—2i — Pomrio2) (Tx,8) = Erg, el (Pm—1-2i — pPom—2j) (mx(7xy;8) )},
forj =0,1,---,m — 1. Again, the Inequality (6.15) implies by the monotonicity
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of p,, that

(p0(7125+1£) > P2m—1—2j(TX2j+1£)

and

Po(Txp;18) > Pom—2i(Txy;1E)
where 7 = m — 2. It follows just as in (6.12) that
(6.17)  (pem—2i1 — Pom—2;) (Txy;,,E)
= ., (pm—2isn — pomti2i+n) (7x(7xp5,,6))},
forj=0,1,---,m — 2.
Combining (6.16) and (6.17) alternately and successively we have

(6.18) (Pom — poemi1) (§) = Ee{(p1 — pz)(TXZm—IE)}'

Now the quantity within the braces of the right hand side of (6.18) is non-nega-
tive by the monotonicity of p, and is strictly positive, by (6.15) withj = m — 1,
for a set of x,, with positive probability. Hence the left hand side of (6.18) is
strictly positive completing the proof of the lemma.

Proor or THEOREM 3.2. Applying (3.3) and (6.2) we have

(6.19) po(£) — pi(§) = max {0, N(§) — c(8)}
(N = ¢)4(§).

Using (6.19), Part (i) follows from Lemma 6.3 with ¥ = 0 while Part (ii) follows
from Lemma 6.4.
Proor or THEOREM 3.3. Since

p2(§) = min [po(£), ¢(§) + Eepu(rxt)],

we have

po(£) — p2(£) = max [0, po(§) — Epa(rxt) — c(£)].

Adding and subtracting Fipo(7x£) in the second part of the right hand side
and using (3.3) and (6.19) we have

po(E) — p2(&) = [(N — ¢)(&) + Ef(N — ¢)4(rx)}]s .
Thus

(6.20) pi(E) — p(E) = B(E).

Using (6.20), Part (i) follows from Lemma 6.3 with k¥ = 1 while Part (ii) follows
from Lemma 6.5.
Proor or LEmMmA 4.1. By definition of po(£),

po(£) = min [L(§, a1), L(%, a2)]
(6.21) = 3[L(% a1) + L(§ a2)] — 3|L(§ a1) — L(§, @)
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(6.22) = 3E{min [L(6, a1), L(0, a2)] + [L(O)[} — 3|EL(O)].
By the hypothesis of the lemma, min [L(6, a;1), L(6, a:)] = 0 for every 6 ¢ 3.
Thus
(6.23) po(§) = 3E{L(O)| — 3|EL(O)|.
Now by the Cauchy-Schwarz inequality
EJL(®)| < [EL*(O)F

(6.24) < [Var, L(©)]' + |E:L(0)].
Equation (4.2) follows immediately from (6.23) and (6.24).

Corollary 4.1 follows from Corollary 3.1 and Lemma 4.1 noting that the

hypothesis of Lemma 4.1 is satisfied by linear loss.
Proor or LEMMmaA 4.2. From the Definition (3.3) of A\, we have using (6.22),

(6.25) 2M(§) = [Big(O)| — Elixlg(0)]] + EEL(0)] — |EL(O)|

where g(6) = min [L(6, a1), L(0, az)] + |L(8)|. Using the fact that the average
of the random measure, 7x£, on 3, averaged over the marginal distribution of
X, is ¢ itself, it follows that for any integrable function g(8),

(626) EgE-,xgg(@) = Egg(e)

Hence, the first part in the right hand side of (6.25) vanishes, completing the-
proof of the lemma.

LemMma 6.6. If fo(x) is a family of densities on the real line ® with monotone
likelihood ratio in x, and if g is a non-decreasing function of x, then Eoq(X) is a
non-decreasing function of 6.

We refer to Lehmann ([6], p. 74) for a proof of this lemma.

Note. It may easily be verified that the conclusion of the lemma holds if ¢
is a non-decreasing function of both z and 6.

LeMMA '6.7. For a one-dimensional exponential family {fo(x), 0 € 3} of densities
gwen by (4.9) and for each non-negative integer n, the family of densities

(627) fn,v(x) = Em.vs{fe(x)}

has a monotone likelihood ratio in x, where 7, £ is given by (4.8).
Proor. For v; < v,

(6.28)  fa,03 (%) /Fan(z) = [[5 [W(0)]"™ exp [(0 + 2)6] d£(6)/
Js (O™ exp [(v1 + 2)6] dE(6)]+kn(v1) /n(v2)
where k,(v;) = f;; [W(0)]" exp [v.0] d&(9). Let
dna(8) = {[W(O)]"™ exp [(v1 + )6] d£(0)}/{[5 W(O]"" exp [(n + 2)6] dE(6)}
and
g(8) = exp [(v2 — v1)8).
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Then the first factor on the right hand side of (6.28) may be written as
(6.29 ) E.9(8) = [59(6) dn.(6).

Now for z; < z,,

dn2y(8)/dnay (0) = exp [(22 — 1)0]*[knp1(vr + 21)/Knia(v1 + 7))

is a non-decreasing function of 9. Thus {dy.(8)} has a monotone likelihood ratio
in 6. Since g(6) is non-decreasing in 9 it follows from Lemma 6.6 that E.g(0)
is non-decreasing in z. Hence {f,.(x)} has a monotone likelihood ratio in z for
every n, completing the proof of the lemma.

Proor or THEOREM 4.1. It follows from Lemma 4.2, that

(6.30) 2N(vn) = E|L(n 4+ 1,0, + X)| — |L(n, v,)|
where (n, v,) in the argument of L represents &, = 7,.,,¢ Let
Ua(y) = 0, y—a=0
=1, ¥y —a>0.

From the definition of vy, and the monotonicity of L(n 4+ 1, v) we have
(6.31) |L(n+1,v)] = L(n + 1, U, ,(v) + [~ L(n+1,9)][1 — Uy, ,(v)].

Replacing » by », + X and taking expectation with respect to X, we have
E. |L(n + 1, v, + X)| = h(vs) + ho(v,) where

(6.32) (vn) = BeL(n + 1,0 + X)Us2,,(0n + X))}
and
(6.33)  ha(va) = Ee{[=L(n + 1,0, + X)][1 — U.2,,(va + X)1}.
Now

h(va) = ha(va) = Ee{L(n + 1,00 + X)} = B (B, L(O)}
(6.34)  hi(vn) — ho(vn) = Eg,[L(O)} = L(n, va)

by (6.26).
It follows from the above equations and the monotonicity of L(n, v) in v that
Non) = hi(v,) for v, < v,°
= ha(v,) for v, = v,".

Hence to show A(v,) attains its supremum at v,’, it is sufficient to show that hi(v,)
is non-decreasing and hs(v,) is non-increasing in v, . Now we may write

hy(0a) = [0 gi(on, 2)fan (1) du(x)
where f,,,, () is given by (6.27) and
g1(va, ¥) = L(n + 1,0, + 2)U,0, (0, + )
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and
gZ(vn > x) = _L(n + 17 Un + x)[l - UT,Q_H(Un + x)]

are easily seen to be non-decreasing and non-increasing in v, -+ « respectively.
Also by Lemma 6.7 the family {f,.,(z)} has a monotone likelihood ratio in
x (where v, is identified with the parameter). It follows from the note after
Lemma 6.6, that h; is non-decreasing and h, is non-increasing completing the
proof of the fact that

essup,, N(vn) = Nv.).
We now derive the other part of Equation (4.10),
Noa') = [he(oa)] = [BgolL(n + 10" + X) | X < s — o]
= [[E 7 L(n + 1,0 + 2)faeo(2) du(z) dal.

Now
Lin+ 1,0+ 2) = E,;L(O)
= [3L(0)fs(x) d&.’(8)/ [ 5 fo(x) dE.’()
= [5L(0)fo(x) dt"(0) /fu vno(2).
Thus

No") = |5 LO)[[ 7" fo(x) du(z) da] d&. (0))]
UG L(B)FO(DBL-H — Uno) d£n0(0)l
= Ern,vgs{L(@)Fe(vﬂH — 0.}
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