CONSTRUCTION OF CONFOUNDING PLANS FOR MIXED FACTORIAL
DESIGNS

By Davip WHITE! AND ROBERT A. HULTQUIST

Oklahoma State University

1. Summary. This paper extends the use of finite fields for the construction
of confounding plans, to include ‘‘asymmetrical” or “mixed” factorials. The
technique employed is to define addition and multiplication of elements from
distinet finite fields, by mapping these elements into a finite commutative ring
containing sub-rings isomorphic to each of the fields in question. The standard
and relatively simple techniques for symmetrical factorials are then applied in
a straightforward manner to the asymmetrical case. The paper is concluded
with a numerical example for the case of a 3° X 5 factorial design, and an outline
of some possible confounding plans. Fractional factorials are discussed briefly.

2. Introduction. Galois fields, or finite fields, have been used in the past for
two major purposes related to confounding of factorial designs. These are:

1. To provide a relatively simple procedure for assigning treatment combi-
nations to blocks so as to make certain treatment effects or interactions identical
with the “between block” sum of squares.

2. To provide an equally simple method for obtaining the sum of squares
associated with a treatment effect or interaction.

The procedure referred to has been used for factorial designs where all of the
factors have the same number of treatment levels, the so-called ‘“‘symmetrical”’
designs. The mathematical theory for the construction of confounding plans for
symmetrical factorials was first developed in a geometrical framework by Nair
and Bose, and an expository article was published by Bose (1947). Later work by
Kempthorne (1947) and most recently by Bailey (1959) presented these results
in an analytical framework using Galois fields, rather than in the setting origi-
nally used by Bose and Nair. A series of articles at the applied level has been
published by Kempthorne and Federer (1948a), and (1948b), and Federer (1949)
based on the analytic approach, which is the simplest from the point of view of
the applied statistician.

Geometrical methods have been successfully applied to the problem of con-
structing confounding plans for the ‘“‘asymmetrical” or ‘“mixed” factorial de-
signs. This has sometimes been accomplished by the use of certain types of
incomplete block designs; other times by direct geometrical procedures. A general
article was published by Nair and Rao (1948); this was followed by Kramer and
Bradley (1957), and Zelen (1958), both of whom used group divisible incomplete
block designs to construct their confounding plans and to simplify the analysis.
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More recently, Kishen and Srivastava (1959) have developed some more general
methods which are based on geometrical considerations. Publications giving
concrete examples of confounding plans for asymmetrical or mixed factorials
include articles by Inkson (1961), Shah (1960) and books or pamphlets by
Cochran and Cox (1957), Kempthorne (1952), Li (1934) and Yates (1937).

While geometrical methods have been successfully used, the analytical method,
using Galois fields, breaks down when asymmetrical factorials are considered.
One reason for this is that addition and multiplication of elements coming from
distinct fields are not defined. The material of this paper extends the use of
analytical techniques commonly used for “symmetrical” factorials to include
“asymmetrical” or “mixed” factorial designs. The objective, as before, is two-
fold:

1. To provide a relatively simple method of constructing confounding plans.

2. To provide a reasonably simple method of analyzing the data.

Section 3 of the paper establishes definitions and theorems for adding and
multiplying of elements from two distinct finite fields.

Section 4 includes the statistical notation and definitions to be used throughout,
and then uses these definitions to extend the well-known analytical techniques to
asymmetrical factorial designs for some three-way cases.

The last section (5) contains a concrete example.

3. Combining of elements from two residue classes modulo distinct prime
numbers. In the following, #(mod a) will sometimes be written x(a). Multiplica-
tion is sometimes indicated by a dot—other times simply by juxtaposition.

DerintTION 3.1. If residue classes of integers (mod p:) are to be combined
with those (mod p;), then all elements of both sets of residue classes are to be
considered as members of the set of residue classes of integers (mod p:-ps),
where

(i) p1, p: are prime numbers;

(ii) the correspondences between i(p:) or j(p:) and the integers (mod p:-p2)
are determined by the following rules:

We let ¢[i(p1)] and ¢[j(p2)] be the elements (mod p:-p:) which correspond to
1(p1) and j(p;), respectively. Then,

(3.1) (a) ¢[1(pu)] = ku(pip2) - po(P1p2),  where kupo(p1p2) = 1(pu)
(b)  ¢[l(pu)] = U(Prp2)  ku(pip2) - Po(P1p2),
where k, is defined in (a), and
u,v =12 u F v

DerINITION 3.2. If integers (mod p;) and (mod p.) are to be combined, we
define

i(py) + j(p2) = oli(p)] + ¢li(pe)],
i(p1) -j(pe) = ¢li(p1)]-8li(p2)].
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As an example, we consider the combining of elements from residue classes
of integers (mod 2) and (mod 3). (We let p1 = 2, p. = 3.) By Definition 3.1 we
consider both sets as elements in the ring of integers (mod 2-3), or (mod 6).
For the integers (mod 3), corresponding to (mod p.), we look at all multiples of
2 in the integers (mod 6); i.e., at 0, 2, 4. We map 1(3) (corresponding to 1(ps))
to that multiple of 2 which is congruent to 1(3) (i.e., k2-2 = 1(3) corresponds
to ka-pr = 1(p2)). Now, 4 = 1(3), so 1(3) maps to 4(6). Hence k; = 2(6),
although this fact is not needed for most purposes. We now map I(3) to
1(6)-ks-2(6). That is,

0(3) — 0(6)-4(6) = 0(6)

(3.2) 1(3) — 1(6)-4(6) = 4(6)

2(3) — 2(6)-4(6) = 2(6).
In a similar fashion,

(3.3) 0(2) — 0(6)-3(6) = 0(6)
1(2) — 1(6)-3(6) = 3(6)
since 3(6) is congruent to 1(mod 2). We note the following results:
0(2) +0(3) =0(6)  1(2) + 0(3) = 3(6)
(34) 0(2) 4+ 1(3) = 4(6) 1(2) 4+ 1(3) = 1(6)
0(2) +2(3) = 2(6)  1(2) + 2(3) = 5(6).

It should be further noted that #(2)-5(3) = 0(6) for all (2) and j(3).

The following Lemmas follow directly from the definition:

LemMa 3.1. If pi, p. are distinct prime numbers greater than one, there always
exist ki , ke such that
(3.5) (1) 0<k<mp, (i) kp=1(p),

0< ke <pe, ky-py = 1(p2).

From this Lemma we know that the correspondences (ii) in Definition 3.1
are always defined.

LemMA 3.2. The correspondences (ii) of Definition 3.1 are isomorphisms.

DeriniTION 3.3.

I(p1) + m(pr-p2) = ¢li(pi)] + m(p1-p2),
U(p1) -m(p1-p2) = ¢[l(p:)]-m(p1-p2),

where ¢ is defined in Definition 3.1. I(ps) + U*(p:) and I(p,)-1*(p;:) are defined

in the usual manner, or alternatively, as ¢[l(p.)] + ¢[l*(p:)] and ¢[l(p;)]-

#[l*(p:)]. The two alternative definitions are equivalent, by Lemma 3.2.
LeMMma 3.3. If © # 0(py1) or j &£ 0(p2), then if p1, p2 are distinct primes,

(3.6) i(p1) + j(p2) # O(pr-p2).
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LEmMa 3.4. Each distinct combination i(p:), j(p:) gies a distinct value for

(3.7) Up)u(p) + m(p2)i(p2),

where | # 0(p1), m # 0(p:), and p1, p2 are distinct primes.
LEmMA 3.5. If py, ps are distinct primes,

(3.8) W(p1)J(p2) = 0(p1-p2),  for all i(p1) and j(ps).

LeEMMA 3.6. 2(p1) + j(p2) s a divisor of zero if and only if at least one of i(p,),
J(p2) 1s equal to zero.

LeMMA 3.7. In the residue class ring (mod pi-p.) every element x(p:-p2) has a
unique decomposition,

(3.9) z(prp2) = z(p1) + 2(p2),

where (p1) and x(p2) are not necessarily the same integers.
TareorEM 3.1. Consider the system of h simultaneous linear congruences (mod m)
m g unknowns, where m s the product of two first power primes:

(3.10)  au(pp2)Ta(p1p2) + Gua(Prp2)Ta(pipe) + -+ + Gug(P1P2)To(P1p2)
= lu(p1p2)> u = 1’ 27 T ’h'
If n(pip2) s an element in the residue class ring (mod p:1-pe), let

(3.11) n(pp2) = n(p1) + n(p:)

be the unique decomposition of Lemma 3.7. Then,
(1) : a solution to (3.10) extsts if and only ¥f solutions exist to each of the systems:

(3.12)  au(P)z(Pp) + aw(P)(p) + -+ au(P)z(p) = Lip),
w=12 -, h

(3.13)  au(p)zi(pe) + @u(p)2a(p2) + -0+ au(P2)Te(P2) = L(p2),
w=12 ---,h.

(2) Let (21i,(p1), Taiy(p1), =+ * 5 Toir(P1)) (Z1iy(D2), Taiy(P2), -+ Zgin(p2))
be the sets of solutions to (3.12) and (3.13), respectively, where if 5, 3 i, (hold t
constant), at least one of the inequalities Ti, # Ti, (DPt), Tai, # T2y (PO, -,
Logiy 7*‘ xﬂia'(pt) holds. Then’ xliliz(plz’?), x2i1iz(p!p2)7 ) xailig(pﬂh) 18 the set
of solutions to (3.10), where

(3.14) Toigiy(D1D2) = Zwiy(P1) + Toiy(P2), v=1,2,--,9¢.

The proof of this theorem follows directly from Lemma 3.7.
CoROLLARY. The number of solutions to (3.10) is equal to the product of the
numbers of solutions to (3.12) and (3.13). This is known to be, for finite fields,

2 g—plA(p1)]  9—p[A(P2)]
(3.15) (1Tt 8 taormtaco . xwo1) - P Vpy w,
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where

(1) olC] = rank of the matriz, C,
_all(pt) au(pz) ce ala(pt)

(2) A(p) = | : : ’
_am(pt) ahz(pt) <o ang(pe)
_11(1):)

(3) X(Pt) =1 .
Jh(pt)

LemMa 3.8. In the ring of integers (mod pip:), the identity element is equal

to 1(p1) + 1(p2).

Proor. In a commutative semi-group there is, at most, one identity (see,
e.g., Jacobson, (1951), p. 22). Now every element n(p:p.) is expressible in the
form n(p:) + n(p:), by Lemma 3.7. Further, for arbitrary n(p.p:), we have

(3.16) [1(p1) + 1(p2)]-[n(p1) 4 n(p2)]
= n(p) + Up)n(p) + 1(p)n(pe) + n(p2) = n(py) + n(p2),

so that 1(p1) + 1(p.) is an identity. Since, by the above, there is at most one
such,

(3.17) 1(p1) + 1(p2) = 1(pip2),

as required.

LemMA 3.9. If c(pip2) is not a divisor of zero, then ¢~ (pyps) exists.

ProoF. ¢(pip2) = z(p1) + y(p2) by Lemma 3.7. By Lemma 3.6, z &£ 0(p:)
and y # 0(p:). Since z and y are both elements of a field, z7'(p:) and ¥ *(p.)
exist. Let

(3.18) d(pp2) = 7 (p1) + ¥ (p2).
Then
(3.19) d(pip2)e(pipe) = [27'(p1) + ¥ (p)]lz(p1) + y(p2)]

1(p1) + 1(p2) = L(pip2),
by Lemma 3.8. This proves the Lemma.

4. Three-way mixed factorials: number of levels for each factor one of two
distinct primes. Having defined a method of combining elements from different
sets of residue classes, we are now in a position to use the model with subscripts
in a finite field (“mod’ model, for short) for mixed factorials where two distinct
primes are involved. Consider a three-way asymmetrical factorial design, prime
number of levels for each factor. The standard model is

(41) Y =p+ai+Bi+w+ (aB)i—+ (av)a + (By)ia + (aBy) i + i,
wherei=0,1, ,p1,j=0;1, "‘,P2,k=0»1, *cc,Ds.



CONFOUNDING PLANS FOR MIXED FACTORIAL DESIGNS 1261

DerinITION 4.1. Define the sum of squares for main effects and interactions
of model (4.1) in the conventional manner, and denote them by
(i) SSa, S8, S8y,
(ii) ‘SSaﬂ ) ‘SSa‘v ’ SSﬁ‘v ’
(i11) SSasy
and let SSzo be the corrected total sum of squares.

We let factors A and B have p; levels, with p. levels for C, and write the model
as

a(p1) prip1) Hspg)
(4.2) Yie = 4 2gms APVBPC 0 irionokton T+ €

or, in vector form,

(4.3) Y =1+ Z X“Brc.(Aq(m)Br(pl)Cs(pz)) + e
where we wish to omit any (A%B’C*) such that
(44) C(ﬁy 7, §) = (q’ 7, S)

if (A’B'C") is also in the model, and where ¢ is not a divisor of zero. 1 is a vector
of units. The standard procedure used to confound the elements of a vector
(A®PPB"®PC*®?) in model (4.3) with blocks is to require that all treatment
combinations (i(p1), j(p1), k(p2)) with the property that ¢i(p.) + rj(p1) +
sk(p2) = h be assigned to one and only one block level. That is, there is a one-
to-one relationship between the elements of (A" B "Y(*®?) and those of the
vector of block levels. This implies that we would introduce a block vector into
model (4.3) when we confound (A¥PPBTECE@DY i the following fashion:

(4'5) Y = 1# + Z(q.r.s)#(i,;,&) XAaBrcn(AqBrC') + XA@B;Ci[(AiB;CE) + 13] + e

It is conceivable that we could have two vectors (A?PYB"®PC*®?) and
(A¥PY BT PO EEDY i model (4.3) confounded in the sense that there is a one-
to-one relationship between the elements of the two vectors. While condition
(4.4) prevents this from happening, we wish to cover this possibility, in order to
make the next definition more useful.

DEerFiNITION 4.2. In model (4.3), extended to include block vectors, two vec-
tors will be termed “linearly and completely confounded’ if there is a one-to-one
mapping between their elements, and if the function defining the mapping is
linear in 7, j, k. Throughout the paper, this term will be shortened to ‘“‘LC-
confounded.”

DerinNITION 4.3. With model (4.3), a confounding plan will be defined as a
“linearly complete confounding plan” (LC confounding plan) if a component
APVBPO*®? j5 1,C confounded with blocks.

DEerFINITION 4.4. The terms “main effect” and “interaction” will refer to the
corresponding vectors in the standard model (4.1).

DEerFiNITION 4.5. A “main effect” or “interaction component” is a vector of
the form (A*PPB*P0*@?Y in the “mod” model (4.3). If all but one of ¢, r, s
is = 0, it is a main effect. If more than one of ¢, r, s is non-zero, it is a component
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of the interaction obtained by deleting all letters corresponding to the zero
terms.

DeriniTioN 4.6. In an LC confounding plan, component (A%PYB PY(*#?)
is defined to be “expectation-wise confounded with blocks” (e-confounded with
blocks) if the expected value of the sum of squares corresponding to
(AMPOBr@D Py g g function of the elements of the block effect vector.

Definitions for the sum of squares will be given later.

DErINITION 4.7. A sum of squares is termed ‘“‘expectation-wise unconfounded
with blocks,” “e-unconfounded,’’ or ““clean,” if it is not e-confounded with blocks.

LemMma 4.1. If there exists c(pip2), not a divisor of zero, such that

(4.6) c(pp2)g(P1)i(pr) + r(P)i(p1) + s(p2)k(p2)]
= g(p1)i(p1) + 7#(P)i(p) + 3(p2)k(p2)
for all i(py), j(p1), k(p2), then (AB’C?) and (A“B'C") are LC-confounded.

This lemma follows directly from Lemma 3.9.

TrEOREM 4.1. If it is required that the components (AC), (BC), (AB'C) be
in model (4.1), wherer = 1,2, -+, p1 — 1, then every other interaction component
involving C 1s LC-confounded with one of these.

Proor. Consider (A’B’C*). Either ¢ ¢ 0 or r # 0 (or both). Otherwise,
the above is not an interaction component involving C. We have three cases:
(a') qg= 1, F=0,

(4.7) (b) g =0, # 0,
(e) ¢ =1, 7 # 0, in all cases, § = 0.

(a) (A'B’C*) = (AC?). Using the inverse exhibited in the proof of Lemma
3.9 we have
(4.8) [L(p1) + 5§ (p)]-li(pr) + 8(p)i(p2)] = i(p1) + G(pa),

which is the linear function associated with AC. Since 1(p;) + 5 '(p2) is not a
divisor of zero by Lemma 3.6, (AC") and (AC) are L.C-confounded, by Lemma
4.1.

(b) (AB’C*) = (BC®). By exactly the same reasoning as above, (BC®) is
LC-confounded with (BC).

(¢) JA'B'C’) = (AB'C"). Then,
(4.9) [(p) + 5 (p)i(pr) + 7(pr) + (p2)] = i(p) + 7 (p) + k(py).
Hence, (AB’C ) is LC-confounded with (AB C). This completes the proof of
Theorem 4.1.

This theorem shows us which of the components of model (4.3) are super-
fluous, and enables us to reduce our model to:

= py-1
Yip = u+ Aipp + Biwy + ABip+ion + -+ + ABilp)+m-vitn
(4.10) + Crpp + ACipp+ry + BCiwp+iey + ABCitp+imp+kmy
» -1
+ oo + AB" Cipptm-vien+ren T ik -

=i



CONFOUNDING PLANS FOR MIXED FACTORIAL DESIGNS 1263

or in vector form,
Y = 1p+ Xa(A) + Xa(B) + Xan(AB) + -+ + Xupn—1(AB™)
(4.11) + Xe(C) + Xac(AC) + X3pe(BC) + Xunc(ABC)
+ oo+ Xaprm10(AB™TC) + e
We note that by Lemma 3.4, X 4e5+c» has p,’p; rows, and p;

1—8¢q0 1—§
04°0r . g °% columns.

XA'IB'C' = [ . 8qi(p|)+rj(p1)+sk(pg).h(pll"‘Oq%rpzl'“o:) o J .

DEFINITION 4.8. In model (4.10), define
Yiaron = 2o Yide »
(4.12) Yoo = D ik Yiies

1—-8, 8 1

-8
_ P1 0g 0rpy 0sy72 148040 U 2 2
Saspres = Dk Yigron/P1 02" — Y .. /i D2,

where the conditon R under the summation sign of the first expression means that
we sum over all y;; such that

(413) qt(pl) + r](pl) + Sk(pz) — h(pll—hqﬁorpzl—ﬁon).

DEFINITION 4.9. Terms of the type Si¢zres will be called ““component sum of
squares” or “‘sum of squares corresponding to the component (A°B"C*).”
DEeriNITION 4.10. In the model

(4.14) yip = p+ ai + B8+ v + (aB) i + (av)u + (By) i + (aBY)in + €,

define SSa, SSs, SSy, SSas, - -+, Sasy in the conventional fashion, to be the
sum of squares corresponding to the vector in (4.14) indicated by the greek
letters. It then follows immediately, that

(4.15) S88. = 84, SSg = Ss, 88, = S¢.
THEOREM 4.2.
S8ap = 274" Susr,
(4.16) 88y = Sac — 84 — Se,
88y = Ssc — Sz — Se,
and finally,
SSusy = 22" (Sasrc — Sasr — Se)

= Z,’;;l SABrC - sz"=1;1 SAB" - (pl - I)SC'

The proofs for second-order intcractions are straightforward. To prove the
result for the third-order interaction, we need the following
LEMMmaA-4.2.
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(417) XpcXpo + 20" XuproXusro + XuoXue — XoXo = pl.
Proor. Using (4.15), some algebraic manipulations yield

, :
(4~18) X saprce Xaaproe = |: ** Ogitritak, gittriotak® *° ] .

Hence, (4.17) equals
(419) |: Co D g Baitrith, qishristke — Ok, sejeks * :l ,

where aiji,isjsi+ = Ok i+ and subject to the condition that no vector (q, r) is a
non-divisor of zero times any other vector, and (0, 0) is excluded. Since

(4.20) Bgitrith,givtriois = 1
if and only if
(4.21) g5 — ) (p) + (G — () = (B* — k) (p),

D o Bgitritk.qistrioske €quals the number of non-trivial solutions of (4.21). We
put (4.21) in the form of Theorem 3.1:

(G — &) (p1) + 0(p2)]-a(p1p2)
(4.22) + 1[G = ") (@) + 0(p)]-r(pip2) = O(p1) + (% = k) (p2),
[0(p1) + 1(p2)]-q(Pp2) = O(p1) + O(p2),
[0(p1) + 1(p2)]-r(pip) = 0(p1) + O(p2).

By the corollary to Theorem 3.1, the number of solutions to (4.22) equals the
product of the numbers of solutions of the systems:

(4.23) (i — i)g(p) + (G — 75)r(p) = 0(py),
(4.24) 0-9(p2) + 0-7(p2) = (k* — k)(p2),
1‘9(1’2) = 0(1’2),

1-7(p2) = 0(pe).
These are 1 - 8::+0;;+p1 and 8 , Tespectively;
Hence,

(4.25) Zq'r Ogitrith,qiv+rioths = Oppe = O:y00j590k+D1 .
Thus,
XsecXse + 25" Xasre Xasre + XacXac — Xc X'

= [ o (Bue + Biin 8jjo drrep1) — (Buks) - } =pl,

where I is & p,’p;-square matrix. This is the required result, for Lemma 4.2.
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We apply this result to establish the last identity of Theorem 4.2. From Lemma,
4.2,
(4—26) Spc + Z:;ll_l Sasrc + Sac — ppSc = 88ro.
Using the identities of Theorem 4.2 for the second-order interactions, we get
(4.27)  SSasy = 8810 — 2y Sanr — (Sac — 84 — 8o)
- (SBC_SB_SC)_SA_SB_SC.
Using (4.26), this becomes
(428) SSap-, = ,?_11_1 ABTC — Zfi‘l_l SAB' - (Zh - I)SC
257 (Sasre — Sasr — 8),

which was the required identity.
TueoreM 4.3. The following statistics are mutually independent:

(1) SA,SB, SC;
(ll) SAC—SA—SC,SBC—SB_SC’SAB” T=1,“',p1—1,
(iii) (Sapre — Sasr — So), r=1,---,p— L

Proor. Let D 4qprcs be the matrix associated with the quadratic form

(4.29) SAqBrca - (1 bl 60460,)(1 _ 603)[8,44131’ + Sca],
which is the general form for the expressions of Theorem 4.3. From Theorem 4.2,
(430) Zq,r,, DAqBrcc =1 - J/pfpz ,

where J is a pi*p,-square matrix of units and algebraic manipulation verifies that
all the D 4¢pr¢s are idempotent. But then, by Theorem 1.68 [Graybill, (1961)]

(4.31) D aprcaDgapics = 0, if (g, 7, 8) # (g, 7, 5).

This, in turn, establishes the independence of ¥'D ;570 and Y'D 4,00 Y by
Theorem 4.10 [Graybill, (1961)].

TuareoreMm 4.4. If (A°B'C*) is LC-confounded, then (A’B") and (C*) are e-con-
founded.

Proor. To confound (A’B’C’) with blocks means that all y;3 such that
qi(p1) + ri(p1) + sk(p:) = h are assigned to the hth block. If g, r are both = 0,
or if s = 0, the theorem is trivially true. Consider the case for which at least one
of g, ris 0, and s = 1. Since for each level of h(p;p;), there is a unique value of
qi(p1) + 7j(p1) and of sk(pz) such that gi(p1) + 7j(p1) + sk(p:) = h(pipe),
every change in the level of ¢i(p,) + 7j(p.) or of sk(p.) results in a different level
of h. Hence, no two levels of (A?B"), or of (C*) are assigned to the same block.
But if each level of a vector component is assigned to a different block, then the
sum of squares corresponding to that component is e-confounded. This com-
pletes the argument for Theorem 4.4.

TaEOREM 4.5. Consider a mized three-way factorial, prime number of levels for
each factor and two distinct primes. If AB™"C is completely and linearly confounded
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with blocks, then the following sum of squares are e-unconfounded with block effects:
(a) Siprc — Sapr — Se, r# 7’*,
(b) SA )
(c) Sz,
(d) Sac— 84— Sc,
(e) Sgc — Sz — 8¢,
(f) SABr , T ?5 7’*.
Proor. The model with AB"C confounded is

(432) Y = D s Xaasras(ABC’)
+ XAB"C[(ABT‘C) + ﬁ] + &, (q’ 7, 8) #= (17 7‘*, 1)~

We wish the expected value of Siepres — (1 — dogdor) (1 — 80s) (Saar — Se¢),
where
(i) (grs8) #= (1,7%0),

(4.33) (i) (¢, r8) # (0,0,1),
(iii) (g s) #= (1, r* 1).
We have two cases to consider:
(a) (1 — dodor) =1, (1 —duns) =0,
(b) (1 — dogbor) =1, (1 — 6os) = 1.

Case (a). We wish the expected value of Sasrco , where (g, 7,0) = (1,7% 0).
Let V = {(g,7,8): (g7, 8) = (Lr, D} and V = {(g £, 9): (¢, 7, §) #
(1,5 D}

E(8aesr) = BY' (X 4a5-Xaanr/Pip2 — J/p1p2)Y = E(Y'K ya5:Y)
= B{¢Kare + 2oy 27 (ABC) X aprooK anrXaapici( ABB7CY)
(4.34) 4+ 2w (A'B'C") XiuanrcoK aanrX anred(AB"C) + 6]
+ 27 [(AB7C) + B'X pre oK yaprX sanici(ATBC?)
+ [(AB”C) + BI'X'sar+cK acnrX anrd (AB”C) + BI}.
We propose to show that
(4.35) X'aprecK aapr = 0,

when conditions (4.33) hold. If this is true, then all terms in (4.34) involving the
vector, 8, of block main effects, will vanish, and the theorem will have been
established. Now,

(4.36) X;BrthAqBr = X’AB"C [XAQB'X:MB'/plzh - J/p12p2]

= [ ©c Onitrvitk t ] : l: “+ Bgitrs, gi+r7/P1P2 — 1/pips - - :l
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= l: c (207 Bucpy, iroi Baitrs, ai+r1)J /P12

— (20 dgitri, ey /Di0D2 - - :I .

NOW, D _i.i Sutp) . iorrricon * Saitop+rion aim+3p 1S equal to the number of
solutions of

(4.37) i+ 1% = Up),
@ +1j = (g + r7)(p1).

By (4.33), (g,7) # (1, ). If (¢, r) = ¢(1,7*), thensince ¢ % 0, ¢ = ¢ = 1, and
hence, (q,r) = (1, r*), a contradiction. Thus, the rank of the matrix correspond-
ing to the left hand side of (4.37) is two. Hence, there is exactly one solution to
(4.37), so that

(4.38) D i O1p),ikrei Saigrigind = L.
Next, D i.j 0gi+ri.qisri €quals the number of solutions of
(4.39) ¢+ 1= (g + r7)(p),
whichis p; . Thus

(4.40) XasrecKasr = J/pip2 — pJ /pi’p2 = 0,

which was to be proved, for Case (a). Case (b) is proved similarly.

5. An example. This section will apply the theorems of the preceding sections
to a three-way mixed factorial. Table 1 gives some of the possible ways of con-
structing confounding plans with this method, giving the effects confounded, the
appropriate block sizes, etc. The data is taken from a 3 X 4 X 5 experiment re-
ported in Davies (1954), Table 8.1, with the fourth level deleted from the four-
level factor, to make a 3’ X 5 experiment. Artificial block effects are introduced,
after treatment combinations are allocated for confounding, to indicate which
effects remain “clean.”” The block effects were —70, - -, —10,0, +10, ---, 470
for the 15 blocks.

The “modular’’ model for this data is

> 2
Yip = »+ Aiw + Biw + ABiw+i® + ABim2io + Cre + ACiw+re
2
+ BCi@+ke + ABCigriw+re + ABCigzi@ie + € -

We need to write out the complete vector of Y,;’s, with the corresponding
“modular” components, in order to assign treatment combinations to blocks.
Rather than write out the entire model each time (i.e., Yoas = u 4+ A23 + Big
+ ABys + --- ete.), the subscripts only will be used, and the component given
at the head of the column, as in Table 4.1.
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TABLE 4.1

The complete model for a 8 X 6 experiment
(mod numbers omitted to conserve space)

YVije A B; ABiy; ABi; Ci ACix BCjix  ABCitjrk ABCitaji
000 0 0 0 0 0 0 0 0 0
001 0 0 0 0 1 6 6 6 6
002 0 0 0 0. 2 12 12 12 12
003 0 0 0 0 3 3 3 3 3
004 0 0 0 0 4 9 9 9 9
010 0 1 1 2 0 0 10 10 5
011 0 1 1 2 1 6 1 1 11
012 0 1 1 2 2 12 7 7 2
013 0 1 1 2 3 3 13 13 8
014 0 1 1 2 4 9 4 4 14
020 0 2 2 1 0 0 5 5 10
021 0 2 2 1 1 6 11 11 1
022 0 2 2 1 2 12 2 2 7
023 0 2 2 1 3 3 8 8 13
024 -0 2 2 1 4 9 14 14 4
100 1 0 1 1 0 10 0 10 10
101 1 0 1 1 1 1 6 1 1
102 1 0 1 1 2 7 12 7 7
103 1 0 1 1 3 13 3 13 13
104 1 0 1 1 4 4 9 4 4
110 1 1 2 0 0 10 10 5 0
111 1 1 2 0 1 1 1 11 6
112 1 1 2 0 2 7 7 2 12
113 1 1 2 0 3 13 13 8 3
114 1 1 2 0 4 4 4 14 9
120 1 2 0 2 0 10 5 0 5
121 1 2 0 2 1 1 11 6 11
122 1 2 0 2 2 7 2 12 2
123 1 2 0 2 3 13 8 3 8
124 1 2 0 2 4 4 14 9 14
200 2 0 2 2 0 5 0 5 5
201 2 0 2 2 1 11 6 11 11
202 2 0 2 2 2 2 12 2 2
203 2 0 2 2 3 8 3 8 8
204 2 0 2 2 4 14 9 14 14
210 2 1 0 1 0 5 10 0 10
211 2 1 0 1 1 11 1 6 1
212 2 1 0 1 2 2 7 12 7
213 2 1 0 1 3 8 13 3 13
214 2 1 0 1 4 14 4 9 4
220 2 2 1 0 0 5 5 10 0
221 2 2 1 0 1 11 11 1 6
222 2 2 1 0 2 2 2 7 12
223 2 2 1 0 3 8 8 13 3
224 2 2 1 0 4 14 14 4 9
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TABLE 4.2

Allocation of treatment combinations to blocks for confounding of AB2C component

of model (4.10)

Block No.

0 1 2 3 4
000 021 202 003 024
110 101 012 113 104
220 211 122 223 214

5 6 7 8 9
010 001 022 203 004
120 111 102 013 114
200 221 212 123 224
10 11 12 13 14
020 011 002 023 014
100 121 112 103 124
210 201 222 213 204

TABLE 4.3

“Modular” analysis of variance for data from Davies (1954), Table 8.1

Source df Formulas Sum of Squares Sum of Squares
Without Artificial With Artificial
Block Effects Block Effects
A=a 2 Sa 90,141.91 90,141.91
B=28 2 Sp 40,513.38 40,513.38
af 4 Sap + Sap? 4,102.49 9,262.49
AB Sap 3,312.58 3,312.58
AB? Sap? 789.91 5,949.91
C=yv 4 Se 360,719.34 271,419.34
AC = ay 8 Sac— 84— 8¢ 40,567.86 40,535.20
BC = By 8 Sse — Sp — S¢ 12,267.06 12,267.06
afy 16 (Sasc — Sas — S¢) 6,492.39 73,245.72
+ (Sap?c — San? — Sc¢)
ABC Sasc — Sas — Sc 2,705.86 2,719.19
ABC Sap2c — Sap? — Sc¢ 3,786.53 70,526.53

We propose to confound AB’C in blocks. The block size will be =3, with 15
blocks. We assign to the Ith block those treatment combinations in Table 2
whose element in (AB’C) is AB’C;. The blocks appear in Table 4.2. Table 4.3
provides the numerical analysis of variance for purposes of comparison.

Note that as indicated in Theorem 4.4, AB* and C are confounded when
AB’C is and that everything else remains “clean,” to within round-off error.

6. Discussion. The material of this paper can be generalized in a straight-
forward manner to the case of n-way factorials, with the number of levels of each
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TABLE 4.4
Possible confounding plans for a 32 X 22

Effects Confounded

Other Effects Also

No. of Blocks

With Blocks Confounded
1 A — 3
2 B -— 3
3 AB — 3
4 AB? — 3
5 C -— 2
6 AC A,C 6
7 BC B, C 6
8 ABC AB, C 6
9 AB:C AB, C 6
10 D — 2
11 AD A, D 6
12 BD B, D 6
13 ABD AB,D 6
14 AB2D AB?, D 6
15 CD — 2
16 ACD A, CD 6
17 BCD B, CD 6
18 ABCD AB, CD 6
19 AB2CD AB2, CD 6

factor one of k distinet prime numbers. As a matter of fact, Theorem 4.4 indicates
that less obvious confounding plans which leave main effects clean are only en-
countered when fourth-order factorials or higher are considered. If we consider a
2% % 3 factorial, the possible plans are as in Table 4.4. Plans 18 and 19 leave
main effects clean and may be of some interest. While there are not a lot of plans
available in this case, the number of useful plans increases with the number of
levels of the factors and also with the number of factors. The experience of other
investigators (see, e.g., Kempthorne (1952) p. 348) seems to indicate the paucity
of plans which do not confound main effects if the number of levels of the factors
are relatively prime. Double confounding is, of course, also possible; it should be
noted that in the 3° X 2* example, confounding of AB*CD, for instance, is equiva-
lent to the double confounding of AB® and CD. Generalized interactions are ob-
tained using the definitions of Section 3 of the paper.

Fractional replications are easy to obtain; the alias identities for the 3° X 27
case are given in Table 4.4. The computations are virtually as simple as in the
symmetrical case.

7. Acknowledgment. The authors wish to acknowledge the assistance of Dr.
Robert Gibson of Oklahoma State University, whose suggestions led to a simple
form for the mapping used in Definition 3.1.
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