STUDENT’S ¢ IN A TWO-WAY CLASSIFICATION WITH
UNEQUAL VARIANCES!
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1. Introduction. Since “Student” discovered the random variable ¢ and its
distribution in 1908, the statistic ¢ has been used to test for differences between
the means of two populations. The use of this statistic for testing depends on
assumptions of the normality of the two underlying distributions and on the
equality of their variances. If either of these assumptions does not hold, the
statistic is not valid. Scheffé [2] suggested a way whereby one can validly use
the statistic ¢ for two normal populations with unequal variances, and Cochran
[1] discussed how to deal with heterogeneity of error variance associated with
treatments in a randomized block experiment. The methods described by
Scheffé and Cochran consist of forming independent estimates of the contrast
to be tested and calculating ¢ from them. The method is generalized in this paper.

The generalization was suggested by an experiment which was designed to
compare the skill of three technicians in reading pulse characteristics using two
testing devices. Inspection of the data suggested that the technicians differed
appreciably in their abilities to repeat readings and that one of the devices gave
more reproducible readings than the other. Accordingly, the present study was
undertaken.

This study investigates the two-way classification with n observations per
cell, where each cell is determined by one member from each class. It assumes
that an observation is a realization of a random variable which is expressed as a
sum of fixed effects, the overall mean and effects for the members which deter-
mine the cell, and a random error. With respect to the fixed effects, two models
are considered: one without interaction and the other with interaction. The
random errors are assumed to be statistically independent and normally dis-
tributed with means zero. A variance is associated with each member of each
class, and the variance of the random errors in a cell is the sum of the variances
associated with the members which determine the cell. Accordingly, the random
variables for all cells have the same variance within a cell, but differ from cell
to cell as determined by simple additive constraints. In order to use Student’s ¢
for testing contrasts among effects, it is necessary to find error contrasts which
have the same variance as the contrast to be tested and are statistically inde-
pendent of it and each other. The maximum number of such contrasts is de-
termined and a method for finding them is presented.
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2. The model and general definitions. Consider a two-way classification with
classes A and B, consisting of r rows and ¢ columns, respectively. The general
model may be written as

(2.1) Yip = p+oi + 8; + (aB)ij + Uin,
1=i4=2rn12j=2c¢l=kz=n),

where the U,; are independently distributed as N (0, o5, + aﬁj), and pu, a;,
B;, (aB):; are fixed effects associated respectively with the general mean, the
ith row, the jth column, and the row-column interaction, with D ;a; = 0,
> iBi=0, > i(@B)i; = 2 i(aB)i; = 0.In Section 3, the general model is spe-
cialized by taking (a8):; = 0 for all 4, §, but in Section 4 the interaction effects
are retained.

The following definitions will be used in the sequel.

DEFINITION 1. A general linear function is defined as L = Y_;; L;; , where
Lt’j = Zk CijkYijk .

DerinITION 2. Replacing a suffix in Y% by a dot will denote the result of
averaging over all values of the suffix; thus cell, row, and column averages will
be denoted by Y., Y,.., and Y.;. , respectively.

DEerinITION 3. The notation

CA) = D2 awYi, D iau=0,
C«B) = 2.ibysY.5., 25biy = 0,

will be used for contrasts between row and column means, respectively.
DEerFinITION 4. The notation

Cu(AB) = 2 ijaubyYsi, Diti=0, D ;b,=0,

will denote an interaction contrast.
DzerFinITION 5. The notation

Co(E) = D iinewinYisny Diineoii = 0, E[C,(E)] = 0,
will denote a contrast which belongs to error.

3. Linear functions belonging to error for the first model. The following
theorems develop the form of an estimator of variance to be used in ¢ for testing
the null hypotheses that E[C,(A)] = 0 and that E[C.(B)] = 0. They also discuss
the number of degrees of freedom possible for testing such hypotheses.

Any linear function C(E) which can be used to test the hypothesis
E[C.(4)] = 0 must satisfy conditions (i) and (ii) and any two such functions
C,(E) and C,(E) must satisfy condition (iii):

(i) Cov [C(4), C(E)] = 0,
(3.1) (ii) VIC(A)] = KVIC(E)], K > 0, independently of o%; and o3, ,
(iii) Cov [CL(E), Cw(E)] =0, v #v.
For the hypothesis E[C«(B)] = 0, C(A) in (i) and (ii) is of course replaced by
C(B).
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A basis for all contrasts is defined by orthogonal sets of contrasts between row
and column means, {C,(4)}, (1 S s<r—1)and {C:(B)}, (1 =t =<c¢c— 1),
the corresponding orthogonal set of row-column interaction contrasts, {c,:(AB)},
and sets of within-cell contrasts, {C{¥’}, (1 £ 47 <r, 1 £ j £ ¢). Clearly, the
coefficients of C,(A) and C;(B) in an error contrast C(E) are zero. It therefore
follows that

(3.2) C(E) = L{C.(AB)} + L{C{{},

which is summarized in Theorem 1.

TureorEM 1. Every linear function which belongs to error is a linear combina-
tion of interaction contrasts and within-cell contrasts, as is stated in (3.2).

Consideration will now be given to the set of interaction contrasts which are
uncorrelated with C,(A4), and a basis for this set will be exhibited.

THEOREM 2. The number of degrees of freedom carried by the interaction contrasts
which are uncorrelated with C,(A) is (r — 2)(¢ — 1). A basis for this set of con-
trasts is Cyy(AB) wheres' =1, -+ ;s — 1,8+ 1, -+ ,r — 1.

The mazimum number of such contrasts which are mutually uncorrelated will in
general be less than (r — 2) (¢ — 1), but will always be at least min (r — 2, ¢ — 1).

Proor. Consider the condition (3.1), (i) as applied to interaction contrasts.
For C,(A) and C,;(AB),

Cov [Ci(A), C.(AB)] = Cov (i 0wV e, i jauby¥is)
’ = >anl( X biok; + > beiag;)/'ncl-
But, since »_;b; = 0,
Cov [Cu(A), Cu(AB)] = 2 asi2 ;i bias,/ne,

which is not equal to zero as required by (3.1), (i).
Now, consider

Cov [C4(A), Cyi(AB)]

Zi,asias’iz,i bti(ai; + 0’?’; )/nc
= Z,‘ a“-asrizj b;,‘ag,./nc.
Now, since Y ; @0, = 0, [Cov C,(4), Coi(AB)] = 0, as required by (3.1), (i).
Thus, the number of degrees of freedom carried by the interaction contrasts uncor-
relatedwith C,(A) is (r — 2)(c — 1). Because the C,-.(AB) contrasts are defined
to be mutually orthogonal, they form a basis for the set of interaction con-
trasts uncorrelated with C,(A).
" TFinally, consider the covariance of any two interaction contrasts, C..(AB)
and C,(AB):
Cov [C.«(AB), Cl”{’(AB)] = Zi,i a:’ibtiac”ibt’j(o'ii + "'gj)/n

= (D i i@lyrion; D Dijburj

+ 205 bubeioh; D i Griters) /1,
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which is not necessarily zero unless s’ # §" and ¢’ # t. But this implies that the
number of mutually uncorrelated interaction contrasts which are uncorrelated
with C,(4) does not exceed min (r — 2, ¢ — 1).

TrEOREM 3. The number of degrees of freedom carried by the interaction contrasts
which are uncorrelated with C(B) is (r — 1)(¢c — 2). A basts for this set of con-
trasts is Cor(AB), ¢ = 1,2, --- ,t — 1,t + 1, - -- , ¢ — 1. However, the maximum
number of such contrasts which are mutually uncorrelated will in general be less than
(r — 1) (¢ — 2), but will always be at least min (r — 1,¢ — 2).

Proor. The proof of this theorem is similar to that of Theorem 2 with C,(4)
replaced by C.,(B) and C,:(AB) replaced by C.,-(AB).

THEOREM 4. It is necessary and sufficient that an interaction contrast C,,(AB)
used to test the hypothesis that E[C,(A)] = 0 be such that a,’; = =Ra,; for all 1,
where R s a constant, and that b;; = b for all j.

Proor. If Cy':(AB) can be used to test the hypothesis that E[C,(4)] = 0,
it is necessary from (3.1), (ii) that

(3.3) VIC,(A)] = KV[Cy(AB)],
where K is a positive constant.
Now,
(34) VICyAB)] = VX i;awibi¥i]
= Zi,j af’ib%j(o'i,- + &2;)/"»
and
(3.5) VIC,(A)] = VX iawnY.)

= 2 iani(o%; + aﬁj/c)/nc.

From (3.3), (3.4), and (3.5), the coefficients of %, and o3, in the two variances
must be constant multiples of each other. For %, this yields

(3.6) dii/c = KainiD bi;,
and for o3, it yields

(3.7) Doias/c = K(2 ids)bi; .
Summing over j in (3.7) gives

(38) Yidi/e =KX iati2 ;b

Dividing (3.6) by (3.8) shows that a%i/D_a; = ai-:/D :as, which implies
that

(3.9). a,; = +=Ra,; for all 7.
Substituting (3.9) in (3.7) gives
(3.10) ¢t = KR .
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which implies that b,; = =bfor allj. The conditions, a,.; = +Ra,; and b;; = ==b,
are sufficient since they satisfy (3.3).

THEOREM 5. It 1s mecessary and suffictent that an interaction contrast C,.(AB)
used to test the hypothesis that E{C:(B)] = 0 be such thatb, ; = +=Mby; for allj,
where M 18 a constant, and that a,; = =a for all 1.

Proor. The proof of this theorem is similar to that of Theorem 4, replacing
C.(AB) by C,:(AB) and C,(A) by C«(B).

When the number of columns is odd, it is impossible to satisfy the condition
that b;; = b for all j. Accordingly, there is no suitable contrast uncorrelated
with C,(A). A similar remark applies when the number of rows is odd.

The following theorems are stated without proof:

THEOREM 6. The number of degrees of freedom carried by the mutually uncor-
related interaction contrasts which can be used to test the null hypothesis that
E[C:(A)] = 0, when p < r — 2 of the a,; = 0, does not exceed min (r — 2 —p,
¢c—1).

THEOREM 7. The number of degrees of freedom carried by the mutually uncor-
related interaction contrasts which can be wused to test the null hypothesis
that EIC«(B)] = 0, when ¢ < ¢ — 2 of the by; = 0, does not exceed min (r — 1,
c—2—gq).

4. Linear functions belonging to error for both models. Only one major dif-
ference occurs when the interaction term is added to the model. This difference
concerns the possible linear functions which belong to error. With the interac-
tion term included, the parameter space is completely filled, and only linear
functions from the error space may be used to test the null hypotheses that
E[C.(A)] = 0, E[C«(B)] = 0, and E[C.:,(AB)] = 0, i.e., only linear functions of
the random variables within the cells may be used. Thus, the theorems concern-
ing interaction contrasts do not hold for this model.

The rest of this paper deals with the properties of the error contrasts which are
linear functions of the random variables within the cells. These properties are
valid for both models discussed.

TuEOREM 8. There are at most [(n — 1) min (r, ¢)] statistically independent
linear functions of contrasts among the random variables within the cells which belong
to error and can be used to test the hypotheses that E[C,(A)] = 0, E[C«(B)]=0,
and E[C,,(AB)] = 0.

Proor. Consider testing the null hypothesis that E[C,(4)] = 0. Any linear
function C'(E) which can be used to test this hypothesis must satisfy the condi-
tions stated in (3.1). From the definition of a contrast among the n» random vari-
ables within a cell, it follows that C'(E) is uncorrelated with their sum, and hence
with C,(4). Accordingly, condition (3.1), (i) is met.

We shall consider linear functions of the form C*”(E) = D_. kY C(E),
where the k(Y are constant coefficients and the coefficient e, ™’ of Y ;% in C{¥’(E)
does not depend on 7 and j. The variance of C*(E) is

VIC™(E)] = 24 (K$3)’VICE (B)]
= 2 (&™) 2s (k) (0% + o8;).
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Because the variance of C,(A) is

(4.1) VIC(A)] = 2 idii(oh; + 2j05,/c)/ne,
it is necessary by condition (3.1), (ii) that

(4.2) > (k) = Kalki/ne, i=1,---,7r,
and

Zi (k,(';?))2 = KZ; aZ/nc, j=1,--,c.
The covariance of two such functions is
(43) Cov [CV(E), C¥(B)] = Xu(aV Lo kPh (ke + o),

using the same set of coefficients {e,"”} for the within-cell comparisons. But by
condition (3.1), (iii),

(4.4) kPR = kKD =0, forall i and j.

It, therefore, follows that there are at most min (r, ¢) such functions based on
a given set of coefficients {e;*”}. But, because of (4.2) and the possibility that
C.(A) may be a contrast for which some of the a,; are zero, there may be fewer
than min (r, ¢) such functions. Because there are (z — 1) mutually orthogonal
sets of coefficients {e;(,“’)} for the within-cell comparison, the theorem follows.

However, forr = 2”7 and ¢ = 2% 0 < p < ¢, p and ¢ positive integers, and all
a,; # 0, more specific results can be stated. Let k" denote the row vector
TP, oo kD o ESD, -, k8], Also, write E[Y] = AX for the equations of
expectation associated with a factorial design in which all factors have two levels.
In particular, 4 is an orthogonal matrix with elements 1 and —1. Let the co-
efficients of the Y;.. in C,(A) be the elements in any column of the matrix A
for the design of order 2%, except the column which corresponds to the mean. Then
the a; are 1 and (4.1) reduces to [ 2; 0%, + (r/¢) 2_; o5,]/nc. Also, (4.2) becomes
> (k&) = K/nc and > (k) = Kr/nc’. Clearly, apart from the constant
K, these conditions are met for kY’ = = (nc’)™%.

It will now be shown how to construct r functions with coefficients == (nc’)™*
which satisfy (4.4). From the design of order 27, select the r column vectors,
multiply them by (n®)"* and denote them by a1, - -, a,. Similarly, from the
design of order 27 construct column vectors 8y, - - -, 8,. Then form the direct
products a; X i, such that each element of «; is multiplied by 8. Put k" =
a; X Bi, 1 =1, ---,r. Now clearly the inner product of k; and k; satisfies (4.4).
There are (n — 1) mutually orthogonal sets {e;*}, and hence there are[(n — 1)
min (7, ¢)] mutually uncorrelated linear functions.

A similar construction can be made from Hadamard matrices.

The above argument can also be used for the hypotheses that E[C.(B)] = 0
and that E[C..(AB)] = 0. The k{ become =(n*)™* and n7# respectively.

Further, for r = ¢ (even), (n — 1)r mutually uncorrelated linear functions
are available to test whether E[C,(A)] = 0 when the coefficients in C,(A) are
1 or —1. This is readily seen by considering matrices K™ of the k{¥’. Let the
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matrix K contain one in every position and the matrix K™ (u=2 --,r)
be a cyclic matrix with elements in the first row as follows: the first (v — 2)
elements are zero, the (u — 1)st element is (r — w + 1), and the remaining
elements are —1. Clearly, the elements in these matrices satisfy (4.4) and by
multiplication of the K by suitable scalars, they can be made to satisfy (4.2).
In addition, if r and ¢ are even, and r is a factor of ¢, there are (n — 1)r mutually
uncorrelated linear functions which can be constructed by forming matrices
K® and K by repetition of the above matrices ¢/r times.

There remain unsettled problems which will not be discussed in this paper.
Among these are what is the number of uncorrelated error contrasts when r and
c are of the above forms but the coefficients in C,(A4) are not all -1, and when r
and c are not of the above forms? These problems do not appear to be as readily
solvable as those discussed above, and might serve as a subject for a future in-
vestigation.

6. Example. The example which will be discussed in this section makes use of
part of the data which were collected in a study sponsored in 1951-52 by the
American Society for Testing Materials Task Group 2, Sub-Committee B-5, on
Fiber Content of Part Wool Blankets. Among the objectives of the study were
the comparison of the sulfuric acid and the sodium hydroxide methods of de-
termining the present wool in a blanket and the comparison of participating
laboratories. Mr. J. M. Cameron and the second author, both of whom at that
time were members of the Statistical Engineering Laboratory of the National
Bureau of Standards, prepared a Latin Square design, which provided for the
participation of four laboratories, each of which used the two methods of test

TABLE 1
Laboratory
Method
1 2
2.1 2.7 0.3 1.3
0.8 6.3 —0.3 0.3
S 1.0 0.6 0.2 0.0
1.3 0.3 0.0 —0.2
9.8 0.2 0.3 —0.5
i = 2.51 Z =0.14
s = 9.81 s2 = 0.24
0.7 4.8 0.2 1.0
0.6 7.6 0.5 0.1
A 0.5 4.9 0.2 0.2
0.8 1.4 —0.4 —0.4
3.3 4.6 0.4 0.2
z = 2.92 £ = 0.20 ’
s? = 6.14 s?2 = 0.17

In the notation of this paper, r = ¢ = 2 and n = 10.
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at two different times. Altogether there were 256 determinations. For the present
purposes only two laboratories are used, and only one time and ten determina-
tions for each laboratory and method.

The per cent wool was nominally 25 per cent. The readings, after being coded
by subtracting 24, were as presented in Table 1. The sulfuric acid method is
denoted by S and the sodium hydroxide method by A. The sample mean % and
estimated variance s is given for the ten determinations in each cell.

Because there may be interaction between the laboratories and the methods,
the model of Section 4 with the interaction effect retained appears appropriate.
For the case of two rows and two columns and general n, there are 2(n — 1)
mutually uncorrelated linear functions, which can be chosen so that their squares
have expectation (o%, + o%, + o5, + o5,). The sum of their squares is given by
the convenient computing formula

‘82 = Zi'i Sij,ij + 2(811,22 + Slz,zl),
where
Sivsnizis = 2ok (Yigie — Yy ) (Vigige — Yigsye).

Accordingly, S*/(o%, + 0%, + & + o5,) has the x*-distribution with 2(n — 1)
degrees of freedom. Here, 11,11 = 88.25, S15,12 = 2.18, 8o, o1 = 55.30, Szz,22 = 1.50,
S = 5.54, Spa = 5.94, and 8 = 170.19. The row and column means are
Yi.. =132, Y,. = 1.56, Y.1. = 2.72, and Y.,. = 0.17. The ¢-statistic for testing
the null hypothesis that oy = oy is by = 2nf(n — 1)¥(¥y.. — ¥,..)/S with
similar formulae for the hypotheses 81 = 8. and (a8) = 0. The numerical values
of tare 0.35, 3.61, and 0.25, respectively, indicating no difference between methods
when averaged over laboratories, but a significant difference between laboratories
when averaged over methods, and a non-significant interaction.

6. Contributions of the authors. The original version of this paper was the
thesis of the first author in fulfilling the requirements for the Master’s degree at
North Carolina State University. The present version is a considerable revision of
the first version and contains additional material due to the second author,
particularly in Sections 4 and 5.
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