SOME INEQUALITIES FOR CENTRAL AND NON-CENTRAL
DISTRIBUTIONS!

By WirLiam H. LawTonN
Unaversity of California, Berkeley

1. Summary. Hijek (1962) introduced a generalized ¢-statistic for testing the
difference of two means of normal populations having unknown, and possibly
unequal variances. While the actual distribution of this statistic was unknown,
he was able to obtain bounds for the type I error. The present paper is concerned
with extending H4jek’s result, and obtaining bounds for the power curve, as
well as type I error. The result is then a test for the Behrens-Fisher problem
which guarantees that the type I error will not exceed ao, while, at the same
time, the power against a specified alternative is at least 8, . Similar results are
also obtained for the modified i-test, introduced by Lord (1947), in which the
sample range W replaces the root-mean-square s as an estimate of standard
deviation.

2. Introduction. Many testing problems in statistics lead to tests based on a
statistic of the form X/h(Z) where X and Z are independent random variables,
with Z non-negative and h(-) a function whose range is a subset of the real line.
Such a statistic may occur, for example, after Studentization of a random variable
X. The Student ¢-distribution itself has this form with X distributed N(0, 1),
Z distributed x%(n)/n, and h(z) = 2%

Héjek (1962) derived some inequalities for a generalized central ¢-statistic in
which X and h(-) were as above, but Z had the structure given by

(1) Z = Dk anxi(my)/m;, A 20, k=1,

where the A; are unknown constants, and-the x;’(m;)/m; are independent of
each other, as well as of X. Hajek’s main result was that the probability that
X/h(Z) falls into a fixed interval containing zero is less than the corresponding
probability for Student’s ¢-distribution with my; 4 ms + - -+ + my degrees of
freedom, but is always greater than that of the ¢-distribution with » degrees of
freedom where » is any integer not exceeding min; <; <x [m;/A;].

Hsjek noted that such a generalized ¢-statistic would be useful in the Behrens-
Fisher problem.

3. Remarks and notation. In the proof of the main result of Section 4 we will
utilize the concavity of a special family of functions. For this reason we now
introduce a concavity condition on certain random quotients.

ConpItioN (A). A random quotient X/h(Z) is said to satisfy condition (A)
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if, for any @ < 0 and b > 0,

ga(2) = Pla < X/h(z) < 0}
and

g(z) = P{0 = X/h(z) <Y}

are concave functions of z for z = 0.

The introduction of the following special notation will greatly simplify the
statement of the theorem of Section 4.

If Vi,V,, -+, V,are independent, identically distributed random variables,
then let ¥, denote a random variable having the distribution of the arithmetic
mean of r of these random variables. Furthermore, for any interval (a, b) con-
taining zero, let

P(a,b) = Pla < X/h(Z) < b}
and
P (a,b) = Pla < X/h(Vy) < b}

4. Main result. The theorem which follows is a generalization of the result due
to Hijek (1962). The proof, however, remains essentially the same, and is again
based on Jensen’s inequality which states that Ef(X) < f(EX) for any real-
valued function f which is concave on the range of values of the random variable
X.

TaroreM. Let {X/h(Z): Z ¢ Z} be a collection of random quotients satisfying
Condition (A), and let Z be the class of random variables having structure

(2) Z=2mMVe, M20, 2RiN=1,

where Vi, Vs, ---, V. are non-negative, independent, identically distributed
random variables all independent of X. Then for any interval (a, b) containing zero
(3) " Py(a,b) < P(a,b) = Pm(a,b)

where v can be any arbitrary whole number satisfying

(4) v < min; < <m [1/e].

Proor. For any interval (a, b) containing zero we have
P(a,b) = Pla < X/h(Z) < b} = EP{a < X/W(Z) < b|Z}
= Elga(Z) + 9s(Z)) = Ef(Z)

where f, the sum of two concave functions, is concave. In the above equation E
denotes the expectation with respect to Z. We then have for any Z ¢ Z,

P(a,b) = Ef(Z) = Ef( 2= MV).

Since the V, are independent, identically distributed random variables, the
value of P(a,b) is unaltered if we replace the constants A;, Xz, -+, Am by an



INEQUALITIES FOR DISTRIBUTIONS 1523

arbitrary permutation 8;, 8z, - - , 8w ; that is,

(3) Ef( M) = Ef( D=1 BVi).

Utilizing (5) the remainder of the proof is exactly as given in [1], with the
random variables V), replacing the x:’(1) variables of H4jek’s proof.

5. Application to non-central {. Let X;, X,, ---, X,, be a sample from
N(¢ o) and Y;,Y,, -+, Y,, a sample from N(7, 7°). We wish to test the
hypothesis H: ¢ = n against the alternatives K: ¢ # 5 where o and 7* are un-
known nuisance parameters. The test usually proposed is of the form: Accept H
whenever

(6) a< (¥ —-X)/ls+ s <b

where s;° = s,°/m, s; = 8,°/ns and (a, b) is some interval containing zero.

If one divides the numerator and denominator by (o°/n; + 7°/ns), then
the statistic in (6) has the form X/h(Z) where X is distributed N(§, 1)
with 8 = (9 — £)/(*/m + 7*/n2)}, h(2) = 2}, and Z is distributed as

(7) M/ (m — DIx*(m — 1) + Do/ (m2 — 1)]xe*(ne — 1)
with Ay = (6°/my) /(6% /m + 7°/ny), and Ay = 1 — A, . If we take m; = n; — 1,
and g = oy = +++ = @my = N/M, Qmyg1 = *** = Amyemg = Ao/mM,, and recall

that a x’(n) variable can be decomposed into the sum of n independent x*(1)
variables, then (7) can be rewritten as

(8) Doriax’(l), w20, Dria=1,

where m = m; + my . -

But ¢ and 7* are unknown; thus, the probability of the event described in (6)
cannot be determined. None-the-less if the theorem of Section 4 applies, then we
can at least obtain bounds for this probability. In fact, we shall prove

CoROLLARY 1. Let & be as above, then for |5| < 2 and for any interval (a, b)
containing zero

(9) Pla < t,(3) < b} = Pla < (¥ — X)/[s:* + 5,1 < b}
< P{a < tu(3) < b}.

where 1,(8) denotes a random variable having the non-central t-distribution with n
degrees of freedom and mon-centrality parameter 6. Here m = ny + ng — 2 and v
is any whole number not exceeding min [my/\;, me/Ns]; for example, v =
min [n; — 1, ny — 1].

Proor. Clearly the denominator Z has the structure (2) by reason of (8).
If we can show that X/Z! satisfies Condition (A) for |§| < 2, then the above
mentioned corollary follows immediately from the theorem of Section 4 once we
note that, in the present case, V., is distributed as x*(r)/r.

Let us first assume that § = 0, we then have for any a < 0,

ga(z) = Pla < X/2 < 0} = (2r) ™[4 exp[— (r — 8)%/2] dr,
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so that
dga(2)/dz = —aexp [— (—ad® + 8)%/2]/2(2r2)} > 0.

Now the derivative of g.(2) is clearly a decreasing, positive function on [0, «)
since the denominator is increasing on this region, and the numerator is de-
creasing. Hence, g.(z) is concave on [0, ).

Next we consider, for b > 0,

g(z) = P{0 < X/2 < b} = (2r) 7 [¢* exp [— (r — 8)%/2] dr.
In this case
dgu(2)/dz = bexp [— (b2 — 8)%/2]/2(272)t > 0,
and
(10) d’go(2)/d2* = {— exp [— (b2 — 8)%/2]/42"} (b2 — bs2* + 1).

The first factor on the right side of (10) is always negative when z = 0, and the
sign of the second derivative depends only on the sign of the polynomial term.
g»(z) is concave when the second derivative is less than or equal to zero; that is,
when

(11) bz —bsz +1=0 forall z=0.

Now (11) holds whenever (b%° — 4b”) < 0, or equivalently & < 2. A similar
proof goes through for § < 0. Thus, we see that Condition (A) is satisfied when-
ever [8] < 2.

As an illustration of the type of bounds that may be obtained, consider the
case where n; = n, = 10. We are interested in testing ¢ = 5 against the one-
sided alternatives £ < 5. One rejects whenever

(10X Y — X)/[ss* + s > c.

Let 8(5) denote the power curve for this test with 8 = (10)*(y — £)/(¢* + )
If one takes ¢ = 1.4 and notes that 8(0) is type I error, then

0.0893 = B(0) = 0.0975,
0.7170 = B(2) = 0.7171.

Hence, we have a test which guarantees that the type I error will not exceed
0.0975 and, at the same time, its power against alternatives § = 2 is at least
0.7170.

6. Application to Lord’s u-test. Lord [2] proposed a modified ¢-test, called the
u-test, in which the sample range W replaces s as the estimate of standard
deviation. He suggests that, when the sample sizes are small, the simplicity and
ease of calculation of the u-statistic more than compensate for the slight loss of
efficiency.

Let X;,X;,---,X,and Yy,Y,---,Y, be two samples of size n from
N(¢ o°) and N(#, 7°) respectively. We shall now accept the hypothesis H:
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= 5 whenever
(12) |7 = X|/(W+ W) <,

where W, and W, are the ranges of the X and Y samples. Under the null hypoth-
esis, the statistic in (12) and the statistic in (6) differ only in the form of the
variance estimate Z. In the present case, division of the numerator and denomina-
tor by (¢* + 7°)! causes the statistic in (12) to have the form X/h(Z) where X
is distributed N (0, 1/n), and Z is distributed as

(13) AW (n) + (1 — MW3¥(n)

where A = ¢*/(¢> + 7*) and W*(n) denotes a random variable having the

distribution of the range of a sample of size n from a standard normal population.

Note that W.*(n) and W,*(n) are identically distributed only when we have

equal sample sizes. We can apply the theorem of Section 4 to obtain
CoRrOLLARY 2. Under the null hypothesis ¢ = n we have

(14) P{V/nil/W*(n) < ¢ < P{|¥ — X|/(W: + W) < ¢
< P{|(2/n)'V|/ (W (n) + W3i(n))} < d},

where V has the standard normal distribution and W*(n) is defined as in (13).

The percentage points of the distribution involved in the lower bound are
given in Table 9 of [2]. Unfortunately the distribution involved in the upper
bound is untabulated. However, we may note that, since the range is a non-
negative random variable, [W*(n) + W.*(n)]® is never less than Wit(n) +
W3*(n). So that we have

(15)  P{(2/n)'VI/(W(n) + Wi(n))! < ¢}
< P{(2/n)'V|/Wi*(n) + Wa¥(n) < d}.

Lord presents the percentage points of 2| 2/0)V|/(W*(n) + W*(n)) in
Table 10. So we can once again obtain bounds for the type I error. For example,
with n = 10, ¢ = 0.288 we have 0.001 = a = 0.02.

It would be possible to extend the bounds to the power curve, as was done in
Section 5. It is possible also to extend the bounds obtained in this section to the
case where one has unequal sample sizes. This extension requires more machinery
and will be discussed in a future paper.

Acknowledgment. My thanks to Dr. Erich Lehmann for suggesting the possi-
bility of extending Héjek’s bounds to the power curve.
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