THE ROBBINS-ISBELL TWO-ARMED-BANDIT PROBLEM WITH
FINITE MEMORY

By CarTeEr ViNCcENT SmITH! AND RoNaALD PYKE
The Boeing Company and University of Washington

1. Summary. This paper studies the sequential decision model known as the
two-armed-bandit with finite memory. It was introduced by Robbins [8] in
1956 and studied further by Isbell [5] in 1959. In this paper, a set of rules is
defined which are uniformly better than those given in [5] and [8]. A much
larger class of rules is then defined, one member of which. is conjectured to be a
uniformly best rule.

2. Introduction. The so-called two-armed-bandit problem is described as
follows. One is invited to perform a sequence of coin-tossing experiments and at
each performance, the experimenter is allowed to choose one of two available
coins. The coins have probabilities p1 = 1 — ¢ and p, = 1 — ¢., respectively,
of giving heads. These probabilities are assumed to be unknown. The problem
for the experimenter is to find a sequential decision rule to determine his choice
of coin at each play of the game in such a way as to maximize the limiting
frequency of heads. That solutions to this problem exist is a consequence of the
strong law of large numbers, as was shown by Robbins [5]. (In [5], the problem
was not restricted to the Bernoulli case as is done here.)

In 1956, Robbins [8] posed a modification of this problem in which the memory
of the experimenter is restricted at each toss of a coin to cover only the r preceding
tosses, (r = 1). For this modified, finite memory problem, Robbins suggested
the following decision rule: at any play of the game, change coins if the last r tosses
resulted in r tails. Denote this rule by R,’. For R, it is shown in [8] that the
limiting frequency of heads is

(21) (p1ge” + pogi’) /(@ + @)

In 1959, Isbell [5] suggested a refinement of R,° namely, R.': change coins only
when the memory shows that either r tails have been thrown with the same coin, or
when r — 1 tails with one coin have been followed by a single tail with the other.
It is shown in [5] that the limiting frequency of heads for this rule is

(22) [pe' (1 — a'e) +pa’ (1 — qug)lle’ (1 = ¢'ge) + ¢’ (1 — quge)] ™
Isbell [5] showed that (2.2) is never less than (2.1), and is always greater except
for the boundary values of p; and p. . Therefore, R, is uniformly better than R,’.

The principal purpose of this paper is to show that the existing rules for the
Bernoulli case may be considerably improved. Secondly, however, the purpose of
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the paper is also to provide an insight into the possible construction of optimal
rules, which insight should also be applicable to the more general formulations
of the problem which have been considered in the literature. (See for example
[1], [4], [10] and [11].) One specific generalization of this problem that might have
application, is to the case where one is able to scan two Poisson processes for a
total of r minutes with the proviso that only one process may be observed at
each instant of time. Suppose one further postulates that each process is observed
for multiples of a given unit of time. Then the decision problem of choosing which
process to observe at each instant of time, in order to maximize the proportion
of time during which the process with the greater parameter is observed, is closely
related mathematically to the Bernoulli model studied in this paper.

As is done by Isbell, the finite memory two-armed-bandit problem may be
described in terms of a finite state homogeneous Markov chain. The state space
S for the Markov chain consists of the 4" r-tuples, s = (s1, 82, - - - , 8r), in which
each coordinate s; takes on one of the 4 symbols H;, T\, H,, Ty, where H,,
for example, denotes that coin 2 was used and a head resulted. If the last co-
ordinate of a state s is either H; or H, (T, or T;), call s a head state (tail state).
Similarly, s is called a coin 1 state (coin 2 state), if the last coordinate of s is either
H,or Ty (H; or T,). A rule, R, is a function with domain S and range {1, 2},
with the interpretation that R(s) denotes the coin to be tossed next when s is
recorded in the memory. Randomized rules could also be defined, but they will
not be considered in this paper.

Let {J, : n = 1} be a Markov chain determined by a rule R, probabilities p,
and p, and some initial distribution. That is to say, the probability of a transition
by this Markov chain between a state s = (s;,s,---,s,) and a state
§ = (8,8, ,8,r)is p1, P2, qu Or g, according as x = H; and R(s) =1,
x=H,and R(s) =2, z=T, and R(s) =1 or z = T, and R(s) = 2. (The
transition probabilities are zero in all other cases.)

Let h be the function defined on S by h(s) = 1 or 0 according as s is a head
state or not. Then the number of heads which occur during the first n tosses is
Y, = D rih(Js), (n=1). Since the Markov chain has a finite number of
states it is known that the sample frequency of heads, Y,/n, converges a.s. to a
random variable (rv), defined on the sequence sample space of the process
{Jn :m = 0}. Moreover, Y is constant over the union of the sets [Jo = s] for all s
within the same recurrent class.

The conditional limiting expected frequency of heads

(2.3) E(Y | Jo) = limn,e E(Ya/n| Jo)

is a function only of Jo, R, p1 and p,. We will therefore write E(Y | Jo) =
F(Jo, R, p1, p:). The worth, W(R, p1, pz), of a rule is defined as in [5] by

(24) W(R7 D1, pZ) = Min,s {mln [F(S’ R7 D1, p2)7 F(S7 R; P2, pl)]}

By using this quantity to compare rules, we are taking the minimax approach
to the problem. Whenever W (R, p1, ps) = W(R', p1,p;) forall0 £ py,p: < 1
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we shall say that R is uniformly as good as R’ and write B > R’. The most
desirable rule, for any fixed r, would be one whose worth was never less than
that of any other rule for any values of p; and p, . Such a rule would be called a
uniformly best rule. Isbell [5] has shown that his rule R, is such that R,* > R,
and that for each r = 2 its worth is as high as that of any other rule for the very
restricted case of either p; or p; equal to 0 or 1. Moreover, for r = 1, Isbell shows
that R;* (which in this case is equivalent to Robbins’ rule R;’) is uniformly best.
Although these results are very special indeed, they do serve as useful test cases
for other rules that might be suggested.

A rule, R, is said to be symmetric if for all s € S, R(s) # R(s’) where memory
state s” is obtained from s by changing the subscripts of each coordinate of s.
It is conjectured that for any rule R which is not symmetric, there exists a
symmetric rule R’ such that R* > R. In view of this and the symmetry of the
expression for worth given in (2.4), we only consider symmetric rules in this
paper.

In the search for a uniformly best rule, one may restrict one’s attention to
rules which give rise to Markov chains which have only one recurrence class.
-That this can be done without loss of generality is a consequence of the definition
of W in (2.4). Since W is constant over each recurrence class of the Markov
chain and is some average of these values when evaluated at a transient state, it
is possible to alter the rule so that the Markov chain of the new rule will always
reach some specified one of the original recurrence classes, and hence will have
only one recurrence class. The proof of this is left to the reader.

It is also worth pointing out that if a uniformly best rule exists for a given r,
then it will be a rule which, like those of Robbins, Isbell and of this paper, dictates
a change of coin whenever the memory state consists of all tails by the same coin.
This may be seen by considering what would happen when p; = 0 if the r-tuple
(Ty, Ty, ---,T1) did not dictate a change and if it were used as an initial state.

Suppose now that R is a symmetric rule whose associated Markov chain has
exactly one recurrent class. Let K be any one of the recurrent states and consider
it fixed throughout the remainder of this section. Let {T, , n = 1} be the succes-
sive occurrence times of state K, set Ty = 0 and define the nth block B, by

B, = (JTn+1 ’ JTn+2’ e 7JTn+1); (n = 0)

It will sometimes be convenient to refer to the sequence of tosses defined by the
last coordinate of each state in B, as the block B, . Define N,;, H,;, (i = 1, 2),
to be respectively the number of coin ¢ states and head states by coin 7 in the
nth block B, . Set N, = Ny + Npo = Tpyy — T and H, = Hyy + H,:. For
n =1, {N,} and {H,} are sequences of independent and identically distributed
rv’s. Set E(Ny) = ny and E(Ny2) = ny. Note that n; and n, are functions of
p1 and p. | We are now prepared to prove the following:
LemMmA 2.1. For any rule R with one recurrent class of memory states,

W(R, p1, pz) = min [ap1 + (1 — a)p2, ap: + (1 — a)pi,
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where o = ny(ny + n2) " is a function of py and p, but not of K and K'. If, more-
over, B is symmetric then W(R, py, p2) = ap1 + (1 — a)p, .

Proor. Since there is only one recurrent class, it is known (cf. [1], p. 85) that
Y = lim,,, Y,/n is a constant, a.s. It is also well known that the proportion of
coin 1 states among {Jy, Jz, -+, Ju} has the same limit as n™" > o iNm,
namely a = ny(n; + ny) . Moreover, for n > 0,

Eh(J.)] = pP[R(Ja) = 1] + poP[R(Jn) = 2],

which, when summed, relates the expected number of head states to the expected
number of coin 1 and coin 2 states. The proof may then be completed straight-
forwardly.

For symmetric rules with one recurrence class, it is more convenient to work
with the ratio V(R, p1, p:) = ny/ne which, by Lemma 2.1, is equivalent to
working with W, since W is a strictly increasing function of V for
0<p<p <L

3. The class of rules R.’. We define a class of new rules w. hich are proved to be
improvements on R,

DeriniTiON. For memory length r, and integer s (1 < s < r), the rule R, is
defined on the state space by:

R, maps a memory state x into the subscript of the last coordinate (that is, it

says do not switch coins) except when the coordinates of x are (1) : all tails by

the same coin, or (2): (r — t — 1) tails by one coin followed by ¢ heads and one

tail of the other (0 =t < s — 1).
The notation introduced here is consistent with that used earlier since the rule
R, is Isbell’s rule as defined in the previous section. For the boundary cases of
either p; or p, equal to 0 or 1, the worth of any rule R, fors < r — 2 (r = 3) is
equal to that of R

For a rule R,’, define the state K to be the one whose first (r — s) coordinates
are T, and the remainder are H;. Also define the state K’ to be the one whose
first (r — s) coordinates are T; and the remainder H,. That the rule R’ is
symmetric is apparent from its definition. Consider a rule R,” with s <7 — 2
(r = 3). Since 0 < p2 < p1 < 1, it is clear that with probability 1, the Markov
chain determined by this rule must sometime pass through a sequence of 2r
head, r tail, s head, r tail and s head states consecutively. A careful observance
of rule R,* will show that both states K and K must occur in this sequence.
Consequently K and K’ can be reached from all other states, and since this is a
finite Markov chain, K and K’ must be recurrent and there must be only one
recurrent class (cf. Chung [2]). Thus we have proven

LemMma 3.1. For 0 < po <p1 < 1,7 = 3, and s < r — 2, the rule R,’ is sym-
metric and has only one recurrent class which includes the states K and K'.

In finding the worth of a rule R, it is convenient to define several kinds of
blocks, or sequences, of states within the Markov chain generated by it.

A type B block is a sequence of states from (but not including) an occurrence
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of state K to (and including) the next occurrence. This type of block was dis-
cussed in Section 2.

A type B block is a sequence of states from an occurrence of state K to the
next occurrence of state K'. _

A type B, block is a sequence of states from an occurrence of state K’ to the
next occurrence of state K.

A type L, block is a sequence of coin 1 states which ends with the first occurrence
of the state of all tails by coin 1.

A type S, block is a sequence of coin 1 states which ends with the first occurrence
of a tail state or with s successive head states.

Type L, and S, blocks are symmetrically defined. Type L; and L, blocks will
be called long blocks. Type S; and S; blocks will be called testing blocks (since
they test to determine if an L, or L, type block will follow). Testing blocks of all
heads will be called successful testing blocks.(since there is a change to a new
kind of long block). All other testing blocks will be called fazled testing blocks.

It can be shown that the number of states in any particular block is independ-
ent of previous history as given by the first (r — 1) coordinates of its first state.
Thus the lengths of, or number of states in, blocks of type Li, Lz, S1, S, are
independent random variables whose respective expected values are straight-
forwardly computed to be

M= (1 —a)/pa, N = (1 — g)/pege,
a=1-p")q, o= (1-p)/¢.

For s < r — 2, it can be seen that the occurrences of states K and K’ always
alternate. (The restriction s < r — 2 is necessary for alternation since, for
example, Rs® can generate the sequence T, T:,T.,H:,H:,T:,T:, T,
T., H, , H, with successive occurrences of state K = (T:, Hi, H;).) Thus for
s < r — 2 a type B block always decomposes into a type B; and type B; block.
The type B, block further decomposes into a sequence of pairs of long blocks and
testing blocks which ends with a successful testing block. The B; block similarly
decomposes. The number of pairs in a B; block is an independent random vari-
able whose expected value is simply the inverse of the probability of a S; block
being a successful testing block. Thus for a rule R,’(s < r — 2), the number of
type L; or S, blocks in a type B block is a random variable with an expected
value of m; = 1/p,". Similarly the expected number of L, or S; blocks in a type
B block is my = 1/p,". By Wald’s fundamental identity the expected number of
coin 1 and coin 2 states in a type B block are given respectively by
= M\ + Maeoy and ny = MaAs + Moy .

We have thus proved the first part of the following theorem. The motivation
for the second part stems from the fact that if o1 and o, are neglected,

V = m\/made = (P1/D2) M/ e

which increases as s increases. In looser words, by increasing s, we make a
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“successful test’’ more difficult to achieve and therefore make it more difficult
to go from block B; to block B, .

TueorREM 3.1. Given memory length r 23, 1 S s<r—2,1>p1 > p. > 0,
and a rule R,’, then

3.1) V(R p1,p) = (¢'/a)

Al (A = @) + g’ (1 = p)/Ip (1 — @) + ¢ P’ (1 = pa)]}
and
(3.2) W(R:™M, pr,p2) > W(RS, p1, po), forr — s = 3.

Proor. (3.1) was proved above. By Lemma 3.1 and the relationship between
V and W, (3.2) is equivalent to proving that

[p(1 — ) + g™ (1 — pi)/Ips' (1 = @) + 571" (1 — pi™)]

r—1 s

> [pi1 — @) + ¢ (1 — pO))/Ips (1 — @) + ¢ (1 — pe)].

Abbreviate the terms of this inequality by mtroducmg the notation as indicated
in the obvious way in

(3.3) (¢ +0)/(¢ +d) > (a+b)/(c+d).

Since all terms are positive, (3.3) is equivalent to Z = a’c + a'd + b'c +
b'd — ac’ — ad’ — b’ — bd’ > 0. Grouping these terms and simplifying, one
obtains

d'c —ac’ = (pr — p)pi Py (1 — @) (1 — @),
dd+be—ad — b = p’pllee (o — p°) — (P’ — p'a")),
b'd — bd = p'ple e (p — p1°) —q1 ¢ g (1 - p)
= a1 = p)il.
Adding up these terms, we obtain
= (p—p)pi Pt (1 —a)(1 —¢)
— p'p (Pl — p'e) + ¢ {ge(1 = p) — (1 — )}l

7
Now Z > 0 if Z' = Z/p/p° > 0. Also, since (1 — ¢.")(1 — ") > pip2, Z
will be positive if

N(s) = (o1 — ) — (p'e — p'a’) — 70 (1 — pi) — @(1 — ps')] > 0.

We will in fact show by induction that N(s) is positive and increasing. First of
all, one obtains

N(1) = (p1 — p2) — (1" — pot") = p1(1 — @) — po(1 — @)
=pp(l+ g+ -+ ' —1—q- —q ") >0.
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Suppose N (s) is greater than zero, then
N(s+1) = N(s) = p'age’ — p'aoq” — i 95 [00e0s" — 0:0:"]
= q@lp'ei (1 — ¢ ) — p'gi (1 = @i,
and a term by term comparison shows this to be positive.

4. The class of rules R,’. The rules R,’ of the preceding section, for r > 3
and s = r — 2, are nice rules in the sense that the type B; and B, blocks generated
by them alternate and are separable into sequences of pairs of long blocks and
testing blocks which end with a successful (all heads) testing block. These rules
can be modified so that they still generate sequences of pairs of long and testing
blocks, but in which the testing blocks contain tosses by both coins. For example,
rule R,® can be modified so that the successful S, testing block is (H,, T , H,)
instead of (H,, H,). The other (or failed) S, testing blocks would then be (T,),
(H, , H,), and (H:, Ti, T:) instead of (T:) and (H;, T:). The successful S,
testing block would be (H;, T., H;) by symmetry.

The motivation behind this type of modification is as follows. In the last
section we saw that as s increased the rules R,” improved. But increasing s can
be interpreted as making a successful testing block harder to obtain. This sug-
gests that when working with a finite-memory, sequential decision problem, one
should be guided by the philosophy that the coin is assumed to be the best one
(innocent) until “proved’ to be the worst one (guilty). Moreover, the more
reliable the “proof” (that is, the longer the test) the better the rule.

We shall now introduce a class of rules which, like the previous example, can
be defined completely in terms of their successful S, testing blocks, but which
blocks are much longer than those studied in Section 3. By incorporating tosses
by both coins into a successful testing block one can code the possible memory
states in such a way as to increase the length of a successful testing block to an
order of magnitude of 2" instead of r. It is certainly natural to require that a
successful S, testing block demand heads by coin 2 and tails by coin 1. Such a
block would then be a sequence whose coordinates are either H, or T; and so
therefore could be described by a vector whose coordinates are 1 (for H,) and 0
(for T,). Failed S, testing blocks would then consist of a portion of the successful
testing block and a failure, either a T or H, . We now define the type of sequence
of 0’s and 1’s which may be used to represent a successful testing block, and
which in turn may be used to determine a rule.

DerinNITION. For a given memory length r, a §-vector is any vector whose
coordinates are either 0 or 1 which satisfies Conditions (1) and (2) below. An
extended d-vector is constructed from a §-vector by adding r 0’s to the front of
the §-vector and sufficient 1’s to the end to make a total of r in succession.
[For example let (101) be a §-vector for r = 4, then (0000101111) is the associ-
ated extended §-vector.]

ConprrioN 1. In the extended d-vector, each successive r-tuple is unique.
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[In the above example, the r-tuples (0000), (0001), (0010), (0101), (1011),
(0111), and (1111) are unique.]

ConpitioN 2. There are no more than (r — 2) 0’s or (r — 2) 1’s in succession
in the §-vector.

The problem of constructing vectors whose coordinates are 0 or 1 such that
each successive r-tuple is unique has been widely dealt with. The reader is
referred to Chapter 9 of the recent book [9] by S. K. Stein for a general review
of the subject. In 1934, M. H. Martin [6] proved that it was possible to construct
a vector of the maximum length, 2" 4+ (» — 1). In 1946, N. G. de Bruijn [3]
proved that the number of maximum length vectors is 2" where N = 2" — 7,
The vector that Martin used in his proof was constructed by starting with r
1’s and adding a O if the newly formed r-tuple has not occurred before and a 1
otherwise. [For r = 4 this construction leads to (1111000010011010111).] Denote
by 8,* (or sometimes 8*) the vector formed by dropping the initial » 1’s and 7 0’s
and the final 1 from the vector formed according to this construction [giving
8" = (1001101011) for r = 4]. The proof that 5" is a é-vector follows from the
construction of the vector which determined it. The length of 8% is 2" — r — 2
and it always starts with one 1 followed by (r — 2) 0’s.

In order to define the rule which is determined by a given é-vector, it is neces-
sary to make several definitions. The head-tail vector of a state is constructed by
replacing a H; or H; coordinate with a 1 and a T, or T, coordinate with a 0.
The coin vector of a state is constructed by replacing a H, or T, coordinate with
a 1 and a H; or T; coordinate with a 0. A complement coin vector of a state is
constructed by replacing 1’s with 0’s and 0’s with 1’s in the coin vector
of the state. [For (T:, T:, H., H:) these vectors are respectively (0011), (0101),
and (1010).] For a given r and a given §-vector define §-r-tuples to be all se-
quential r-subtuples of the vector constructed by adding r 0’s to the front of the
s-vector. [Thus for r = 3, the é-vector (101) has §-r-tuples (000), (001), (010),
(101).]

DeriNITION. For memory length 7, and é-vector 8, the rule R,’ is defined on
the state space by:

(i) R,” maps a memory state z into 1 (2) if the coin vector (complement coin
vector) of x is a &r-tuple of & and if the head-tail vector of z is equal to this
6-r-vector except for the last coordinate. In other words, at the end of a failed
testing block use the coin used in the last long block.

(ii) R.’ switches coins (i.e. it maps a memory state z into 1 (2) if z is a coin 2
(1) state) if the head-tail vector of  is (a) a é-r-tuple whose last coordinate is
not equal to the one following it in the extended é-vector, and (b) either a coin
vector or a complement coin vector. In other words, within testing blocks which
have not failed continue to follow the pattern of the §-vector.

(iii) In all other cases R,’ maps z into the subscript of its last coordinate (do
not switch coins).

Blocks can be defined for a rule R,’ as in Section 3 with the key state K being
defined as a state whose complement coin vector and head-tail vector are equal
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to the last r coordinates of § (preceded by at most r 0’s if & has fewer than r
coordinates). In other words, K is the last state of a successful S; testing block.
Blocks of type B, B, B:, L1, and L. are defined as before, and successful and
failed testing blocks are defined in a straightforward manner from the é-vector.
It is easily seen that a rule R,’ will initiate switches (if necessary) at the end of
long and testing blocks and also within the testing blocks. That the rule will not
initiate a switch for some state that contains part of a testing block and part of
a long block follows from the requirements of the §-vector.

Thus the lengths of the Si, S., L, and L, type blocks are independent
random variables as are the numbers of pairs of long blocks and testing blocks
in B; or B; blocks.

The analysis of Section 3 can be used to find a value for V in this general
case. The only change is that testing blocks include tosses by both coins. One
proceeds as follows.

For memory length r, let & be a §-vector of length s. Let & be the kth coordinate
of 5 and set 8 = 0 and pr = 2 s0d; for k = 0. Then the probability of com-
pleting a successful S; testing block is given by & = py"*¢:" "*. The expected
number of tosses in a S, block is Y_i=s p2"*¢,* . This can be separated into the
expected number of coin 2 tosses,

_ s—1 ok, k—pk
o2 = D=0 Okpapgl T,

and the expected number of coin 1 tosses,

’

o = 2_k=o(l — 5k+1)p2pk91k_p’°

The expected number of occurrences of a L, or S, type block in a B; type block
is my = 1/t . The expected number of tosses in a I, type block is still given by
M= (1 —q¢")/pg. If b, 01, 02, and m, are defined in a symmetrical manner
then by the same argument as used in Section 3, the following theorem is true:

TueoreM 4.1. For r = 3, a given d-vector §, and 0 < p. < p1 < 1, R, 1s sym-
metric, has one recurrence class and

V(E:, p1, p2) = [i(M + o) + torl/[le(Ns + o)) + toa).

For the boundary cases of either p; or p, equal to 0 or 1, it is verifiable that
any R,’ is equivalent to R,".
For the special rule 8,* described earlier,

my/me = (pi/P2)™ (g/1)"

where M = 27 — 2. and N = 27" — r. Thus if the expected lengths of the
testing blocks are ignored,

(4.1) V(R pr, p2) = (po/p2)™ (/0)" (M/Ne),
as compared with
(4.2) V(R 7, pr,p2) = (pu/p2) " (M/Ns)



1384 CARTER VINCENT SMITH AND RONALD PYKE

TABLE 1
Comparison of V ratios

r " D2 V(R V(R2) V(R

4 0.500 0.400 2.13 2.55 9.11
5 0.500 0.400 2.54 3.76 50.02
6 0.500 0.400 3.03 5.62 122.33
7 0.500 0.400 3.62 8.46 250.36
8 0.500 0.400 4.33 12.76 506.34
9 0.500 0.400 5.18 19.23 1018.33
10 0.500 0.400 6.21 28.98 2042.33
11 0.500 0.400 7.44 43.64 4090.32
12 0.500 0.400 8.92 65.67 8186.32
13 0.500 0.400 10.71 98.76 16378.32
14 0.500 0.400 12.84 148.45 32762.32
15 0.500 0.400 15.41 223.03 65530.32
16 0.500 0.400 18.49 334.96 131066.32
17 0.500 0.400 22.19 502.92 262138.32
18 0.500 0.400 26.62, 754.94 524282.32
19 0.500 0.400 31.95 1133.04 1048570.33
20 0.500 0.400 38.34 1700.29 2097146.33

5 0.500 0.499 1.01 1.01 1.06
5 0.500 -0.490 1.11 1.15 1.75
5 0.500 0.400 2.54 3.76 50.02
5 0.500 0.100 26.06 53.21 61.33
10 0.500 0.499 1.02 1.03 7.68
10 0.500 0.490 1.22 1.40 2041.14
10 0.500 0.400 6.21 28.98 2042.33
10 0.500 0.100 432.06 1841.32 2045.32
and
(4.3) V(R p1, p2) = (p1/P2) (M/Ae).

This indicates a considerable superiority of R, over the rules considered in
Section 3. A numerical comparison of the exact V’s for these rules is given in
Table I.

Although any maximum length 8-vector has the same ratio my/ms as 8, it is
felt that 8, is best because it appears to have the minimum expected number of
coin 2 tosses in an S, testing block. It is conjectured that RY is the uniformly best
rule for memory length r. Theorem 4.2 which follows lends a little support to this
conjecture. Moreover, Theorem 4.3 proves that the worth of R is greater than
that of any other rule based on a §-vector for r = 3.

TuEOREM 4.2. Let R}’ denote the rule with 8-vector consisting of s 1’s followed by
ome0forl Es=<r—2. Then for 0 < p. <p <1,

(44) W(Rioy D1, P2) > W(Rfs7 D1, p2)

Proor. From the results preceding Theorem 3.1 one obtains for rule R,’ that
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t=p1, tr = po,
M= (1 —a)/pa, M= 1 —¢)/pg,
o= (1-p")/q, oo = (1—p)/q,

’ ’
g1 =0=0'2.

For rule Rﬁo,. the superscript 0 will be added to the above symbols to stand for
the appropriate expected values. Then by straightforward calculation one

obtains
0

0 0 0

h = hge, be = b1, M =M, A2 = Ag,
0 _ 0 _ 0 _ ro _

g1 = 01, gy = 02, o1 —tg, g2 —ll.

Upon substituting these values into Theorem 4.1, one obtains that (4.4) will
hold if and only if

(4.5) (g2 — ¢1) (Mhs — 102) + hageos + @aleds — bqror — @it > 0.

Now set the last four terms of (4.5) equal to Q(s). Then by substitution one
obtains '

Q(s) =pi (" —1) —pi(gr " —1)
which is straightforwardly checked to be an increasing function of s. Therefore
Q(s) > Q(1) = g3 " — ¢qi . Consequently, (4.5) is true if
(4.6) (g2 — @M > (@2 — qi)owoe — Q(1).
Now
awr = (1 = p")(1 = p')/@g: < 1/qag:
so that (4.6) holds if (g2 — g1)AAe > (g2 — ¢1)/@g2 — Q(1), or if
(A7) (&~ a1 — a1 — ¢)/pw: > a@l(e — ¢)gs 6" + g5 — a1 )

But (4.7) is easily checked to be true, thereby completing the proof.

TuroreMm 4.3. For r =3, and any b-vector rule RS, W(RS,p1,p:) =
W(Rs, p1, p1) for all p1, p. . Specifically,

R;IOI) > RélO) > R;l).

Proor. Since the only §-vectors for » = 3 are (101), (10), and (1), the first
inequality is compatible with the stated ordering of the corresponding rules. The
second part of this inequality was proved in Theorem 4.2 and therefore, it remains
to be proved that

(48) V(Rélm); D1, Pz) - V(R;’m), D1, p2) > 0.
It is easily verified, using Theorem 4.1, that
V(RS®, pr, p2) = [m@(M + p2) + pogil/[p2as (02 + 1) + pagel,



1386 CARTER VINCENT SMITH AND RONALD PYKE

and
V(Réloni D, pz)
= [p'e + p2) + pla(l + pg) /o e (e + 1) + ple(1 + pagi)],

where for r = 3, \; = (1 — ¢.*)/p«®, for ¢ =1 and 2. Upon substitution of
these identities into (4.8), the proof can be completed straightforwardly.

The authors are indebted to Professor N. D. Ylvisaker for supplying references
[3], [6], and [9].
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