THE LIMIT OF THE nth POWER OF A DENSITY!

By RoBERT J. BUEHLER

Unaversity of Minnesota

1. Introduction. If f( - ) is a bounded density function of an absolutely con-
tinuous variate 2z, then the powers f°, f° - .-, can be normalized to define new
variates 23, 23, - -+ . Typically, 2, will converge in probability to the mode (say
m) of f(+), and it is shown below (Corollary 2) that if f is unimodal, f'(m) = 0,
and f”(m) # 0, then y, = n'(z, — m) will tend in distribution to a normal
variate with mean equal to zero and variance equal to —f(m)/f"(m). Four
examples of this result, relating to gamma, beta, Student’s ¢, and Snedecor’s F
variates, are given in Section 3. Asymptotic normality is of course well known
for these cases. )

Our main result, Theorem 1, is more general than Corollary 2 in two respects:

(a) The density of z, is assumed to have the form

(1) en{f(2)}"k(2)

where ¢, is a constant and k(z) is bounded. Order statistics have densities of this
form, and their asymptotic normality is a consequence (Example 5).

(b) The conditions f'(m) = 0, f”(m) s 0, are relaxed to allow more general
behavior at the mode. We allow cusps, as exemplified by f(2) = 1 — 2], (J¢] < 1),
or “flat” maxima for which f”(m) = 0. In these cases a limiting density is ob-
tained having the form ¢ exp {—|y|”} where v is the order of the first nonvanish-
ing term in the Taylor expansion of f(z) — f(m).

Theorem 2 is a multivariate analog of Theorem 1, applicable for example to
the Dirichlet distribution.

Theorem 1 is proved by first expanding f in its Taylor series about the mode,
and taking the limit of the nth power after “standardizing” the variate. The
result of this routine calculation is easily anticipated. The difficulty lies in the
normalization constants. By truncating the densities and by appealing to the
dominated convergence theorem, it is shown without evaluating the normaliza-
tion constants that these constants converge as desired. Convergence in dis-
tribution is then established by Scheffé’s theorem.

It may be instructive to cite an example wherein the assumptions are violated
in such a way that Scheffé’s theorem is inapplicable and the conclusion of
Theorem 1 is false. Suppose f(z) has a local maximum at z = 0 and an absolute
maximum at z = 1, with, say, f(0) = 1,f"(0) = —1, f(1) = 2. If z, has density
proportional to f*, ’rhen certain constant multiples of the densities of y, = (2n)%,
will approach exp {—%°/2}; but the densities themselves would everywhere ap-
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proach zero. This is so because the neighborhood of the mode at z = 1 accumulates
the bulk of the probability as n increases, and this mass of probability tends to
infinity on the scale of the variate (2n)%, . Thus it is clear the yn does not tend to
standard normal despite the convergence of the nonnormalized “densities.”

2. Main results.

Lemma 1. If for some a > 0,y > 0, g(z) = 1 — a” |z|" + o(|z|") as z — 0,
then {g(n"""y/a)} — exp {—|y|"} for —o <y < ® asn — .

Proor. Straightforward. ,

LEmMA 2. ¢(n) = (1 — 2/n)" S ¢ foralln > 22> 0.

Proor. Put z = (1 — 2°/n)™), so that 1 < z < o. Then {log ¥(n)} =
z—1—1logz > 0 (using ¢ > u + 1 for u > 0, where w = x — 1). But also
¥(n) > 0, so that ¢ = (log¢)'y > 0 and convergence of ¢ to the limit ¢~ is
monotone and increasing .

Lemma 3. If0 = g(z) £ p < lforallxze S, andiffg g(x)de = M < o, then
for any v > 0, n""" [ {g(x)}"dz — 0 asn — .

Proor. Fork = 0, 1, --- , define Sy = {z |z &S and 27 "p < g(z) < 27%p}.
Then the Lebesgue measure L of S; is easily seen to be bounded by L(S;) <
21,7 'M, and

Jslg(@)} de = 2k [adg(@)}"dz = 2 L(Sp)p"2 ™"
é 2Mpn—l Zk 2k(1—n) — 2Mpn—l(1 _ 21—7;)—1,
from which the result follows.

Lumma 4. If for some a > 0,7 > 0,8 > 0, p < 1, g(z) satisfies [Zo g(z) dz < w,
and 0 < g(x) < pfor x| > 6; if k() satisfies 0 < k(z) < K < o for all z; and if
ha( - ) and J, are defined by
(2) ha(y) = {g(n™"y/a)} k(0" "y /a)

(3) Jn= flyl>n”"a6 ha(y) dy,
thenJ, — 0asn — .
Proor. Putting y = n''” az gives

(4) Jn = 1" [ 1255 {9(2)}"k(z) do

< naK f|z|>s {g(x)}" dx

which tends to zero by Lemma, 3.

THEOREM 1. Let f( - ) and k( - ) be nonnegative functions satisfying f(0) > 0,
k(0) > 0, k(x) continuous atz = 0, k(z) < K < o and [Z, f(z) dx < . Define
g(x) = f(x)/f(0), and assume that for somey > 0,a > b>0,6> 0,0 < p< 1,

(5) g(z) =1 —a’lz|" + o(l2]"), as z—0
(6) g(x) =1 —b" 2", Jor lz| <&
(7) g(x) = p, for |z| > .
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Let x, denote a random variable whose density is proportional to {f( - )}"k( - ).
Then the distribution of y, = n'"ax, converges to the distribution whose density is
proportional to exp {—|y|"}.

Proor. The density of y, is proportional to (2). As n — %, the second factor
approaches k(0) for all y, by the continuity of k(z) at x = 0, and by (5) and
Lemma 1,

(8) ha(y) — k(0) exp {—[y["}  as n— w.
Let us define ' = min (5, 1/b), and
97 () = g(a), 7l <&
=0, lz| = o

R (y) = {g9 (7Y /a)} k(0 Y/ a).

Then lim 2, (y) = lim h.(y) = &(0) exp {—|y|"}, and by (6), k(z) < K, and
Lemma 2, the functions h,” (y) are uniformly dominated by an integrable func-
tion, namely,

hﬂ(O)(y) éKeXp{_]by/aP}) n = 1) 2)"') —x < y < o
We now consider the normalization constants,

I, = ffuo hn(y) dy =J, + K,

where J, and K, are integrals over |y| > n'"as and |y| < n''"as, respectively.

Appealing to Lemma 4 and the dominated convergence theorem, we have
lim I, = lim K, = lim [Z, b,V (y) dy
= [2.1im 2, (y) dy = k(0) [Zoexp {—|y|"} dy,

showing that the densities converge to a density, so that convergence in dis-
tribution follows from Scheffé’s (1947) theorem.

CoroLLARY 1 (unimodal case). The theorem remains true if (6) and (7) are
replaced by the assumption that f(x) is unimodal, that vs, nondecreasing for negative
x and monincreasing for positive x.

Proor. Choose b = a/2. The monotonicity assumptions and (5) imply that
6 > 0and p < 1 can be found such that (6) and (7) are satisfied.

CoroLLARY 2 (unimodal normal case). If Assumptions (5), (6) and (7) are
replaced by

f(x) nondecreasing (or nonincreasing) for x < 0 (or x > 0)
£ =0 5(0) <0

then the random variable n'z, will tend in distribution to a normal variate with mean
equal to zero and variance equal to —f(0)/ " (0).
We now state a multivariate analog which can be proved by the same methods.
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THEOREM 2. Let f( - ) and k( - ) be nonnegative functions of the vector x
(z1, -+, xp) satisfying (0) > 0, k(0) > 0, k(x) continuous at x = 0, k(x)
K < o, [Z4 -+ [2.f(x) dx < . Define g(x) = f(x)/f(0), ** = x'x, and
assume that for some positive definite matrices A, B and for some & > 0,
0<p<l,

A

g(x) = 1 — xX'Ax + o(r"), as r—0
g(x) =1 — x'Bx, for r<é
9(x) < p, for >34

Let x, denote a random vector whose density is proportional to {f( - )}"k( - ).
Then the distribution of y» = (2n)*x, converges to the multivariate normal distribu-
tion with density proportional to exp {— 1y Ay}.

3. Examples.

ExampLE 1 (gamma density). Let z = z — 1, f(z) = 2¢ %, (z > 0), and let
z» be a variate with density proportional toz"¢™™, (2 > 0). According to Corollary
2, n}(z, — 1) tends in distribution to standard normal. Of course z, is a gamma
variate, and the more familiar argument appealing to the central limit theorem
gives the equivalent result that n(n + 1)_*(2,. — 1 — n7") tends to standard
normal.

ExampLE 2 (beta density). Fora > 0,8 > 0, m = a/(a + 8), 2 = 2 — m,
let f(z) = 2*(1 — 2)’, 0 < 2z < 1, and let 2, be a beta variate whose density is
proportional to 2**(1 — 2)™. Corollary 2 implies that ¢ 'n}(z, — m) tends to
standard normal, where ¢* = —£(0)/f"(0) = oB/(a + B8)°.

ExampLE 3 (Student’s t). Let f(z) = (1 + 2°)™}, and let z, have density
proportional to (1 + z’)™2 Then ¢ = n'z, has Student’s distribution with =
degrees of freedom, and is asymptotically standard normal by Corollary 2.

ExaMpLE 4 (Snedecor’s F). ForB > o > 0, m= a/(8 — a),z = z — m, let
f(z) = 2%(1 + 2)™" for z > 0, and let 2, be a variate whose density is propor-
tional to 2**(1 + 2) ™ for z > 0. Corollary 2 implies that o n*(z, — m) tends to
standard normal, where ¢® = a8/(8 — a)®. If ky = 2na + 2,k =2n(8— a) — 2,
then F = ksz,/k; has Snedecor’s distribution with k; and k, degrees of freedom,
showing that the F distribution with large degrees of freedom is approximately
normal.

ExampLE 5 (order statistics). Let o and 8 be nonnegative integers, and let
h( - ) and H( - ) be a bounded density and the corresponding cumulative dis-
tribution function. Assume that there is a unique m such that h(m) > 0, &' (m)
exists, and H(m) = a/(ae + B). Let £ = z — m, and define k(z) = h(z) and
f(x) = {H(2)}*{1 — H(z)}®. Then f(x) is nondecreasing (or nonincreasing)
forz < 0 (or z > 0), and f'(0) = 0. The function {f(x)}"k(z) is proportional
to the density of . = 2, — m where 2z, is the (an 4+ 1)th order statistic in a
sample of size (a + B)n + 1 from the density h( - ). By Corollary 2,
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o 'n}(z. — m) tends in distribution to standard normal as n tends to infinity
where o* = —f(0)/f"(0) = aB/(a + 8)°K(m).

ExampLE 6 (distribution of the median in an irregular case). Consider the
U-shaped density h(z) = $2°, (—1 < z < 1). The median z, of 2n + 1 ob-
servations has density proportional to f"h where f(z) = H(1 — H) = (1 —2°),
(=1 < z < 1). Corollary 1 applies with v = 6, @ = 1, and shows that the
limiting density of y, = n'%z, is proportional to exp (—y°).
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