ON AN OPERATOR LIMIT THEOREM OF ROTA

By Norton Starr

Massachusetts Institute of Technology

1. Introduction. Let (X, Σ, μ) be a probability measure space and let $f \in L^p(X, \Sigma, \mu)$ for some p > 1. Given a sequence P_1, P_2, \cdots of doubly stochastic operators on $L^1(X, \Sigma, \mu)$, Rota [4] has shown that $\lim_{n\to\infty} P_1^* P_2^* \cdots P_n^* P_n P_{n-1} \cdots P_1 f$ exists a.e. (Convergence in the L^p norm also holds, by a variety of proofs $(1 \le p < \infty)$). Almost everywhere convergence does not extend to the case p = 1 [1].) In the same article it was stated that a convergence theorem using the reverse index product $P_n^* P_{n-1}^* \cdots P_1^* P_1 P_2 \cdots P_n$ was a possible generalization. The impossibility of such a result, or even of a strongly continuous inhomogeneous semi-group analog thereof, is shown in this note. We thank D. L. Burkholder for permission to include, as a second example, a result he discovered in connection with a distinct problem.

By a doubly stochastic operator on $L^1(X, \Sigma, \mu)$ is meant a linear operator on $L^1(X, \Sigma, \mu)$ into itself such that

- $(1) \int |Pf| d\mu \le \int |f| d\mu,$
- (2) $f \ge 0$ a.e. $\Rightarrow Pf \ge 0$ a.e., and
- (3) P1 = 1 a.e., where 1 is the constant function assuming everywhere the value 1.

It is readily shown that the adjoint operator P^* satisfies (2) and (3) and does not increase L^1 norms of L^{∞} functions. Thus P^* may be extended to an operator on L^1 and this extension, denoted also P^* , is doubly stochastic.

We say a family $\{P(t, s)\}_{\{t \geq s \geq 0\}}$ of bounded operators on a Banach space B is an *inhomogeneous semi-group* if P(t, r)P(r, s) = P(t, s) for $t \geq r \geq s$ and P(t, t) = I, the identity operator. The semi-group is *strongly continuous* if for each $b \in B$, P(t, s)b is a continuous function on the subset $\{t \geq s \geq 0\}$ of R^2 to B.

Given $f \in L^1(X, \Sigma, \mu)$, $E\{\cdot \mid f\}$ denotes conditional expectation with respect to the σ -field determined by f.

2. Continuous parameter example. Let $\{P(t,s)\}$ be an inhomogeneous semi-group of doubly stochastic operators on $L^1(X, \Sigma, \mu)$. Using the separability theory of Doob [2], the following version of Rota's theorem can be proved: Given p > 1 and $f \in L^p(X, \Sigma, \mu)$, the family $\{P^*(t, 0)P(t, 0)f\}_{t\in[0,\infty)}$ can be redefined for each t on a set of μ -measure zero in such a manner that $\lim_{t\to\infty} P^*(t, 0)P(t, 0)f$ exists everywhere. If one reverses the operations and considers the limiting behavior of $P(t, 0)P^*(t, 0)f$ as $t \to \infty$, pointwise convergence need not hold, even if $\{P(t, s)\}$ is strongly continuous in each $L^p(1 \le p < \infty)$. This we now show.

Let (X, Σ, μ) be the unit circle with normalized Lebesgue measure: $d\mu = \frac{1}{1}$ Received 17 February 1965.

 $d\theta/2\pi$. In the expressions $\theta I_{(a,b)}$, θ denotes the argument function on the circle and $I_{(a,b)}$ the indicator function of the arc (a, b). Letting $n = 0, 1, \cdots$ and $f \in L^1(X, \Sigma, \mu)$, define

$$P(t, s)f(\theta) = f(\theta + \pi(t - s)) \qquad \text{for } 2n - 1 \le s \le t \le 2n;$$

$$P(t, s)f = E\{f \mid \theta I_{(-s\pi,(2-t)\pi)}\} \qquad \text{for } 4n \le s \le t \le 4n + 1;$$

and

$$P(t, s)f = E\{f \mid \theta I_{(t\pi,(s+2)\pi)}\}$$
 for $4n + 2 \le s \le t \le 4n + 3$.

Denoting P(n, n - 1) by P_n , it is evident that

 P_{2n} is rotation through π radians,

$$P_{4n+1} = E\{\cdot \mid \theta I_{(0,\pi)}\},\$$
 $P_{4n+3} = E\{\cdot \mid \theta I_{(-\pi,0)}\}, \text{ and }$

$$P(n,0)P^*(n,0) = P_n P_{n-1} \cdots P_1 P_1^* P_2^* \cdots P_n^*.$$

Hence

$$P(4n+1,0)P^*(4n+1,0) = E\{\cdot \mid \theta I_{(0,\pi)}\}\$$

and

$$P(4n+3,0)P^*(4n+3,0) = E\{\cdot \mid \theta I_{(-\pi,0)}\}.$$

Thus as $t \to \infty$ neither pointwise a.e. nor L^p norm convergence need hold for $\{P(t, 0)P^*(t, 0)f\}_{t\in[0,\infty)}$ (we assume the process is separable). It is easy to see that $\{P(t, s)\}$ is strongly continuous in each L^p space $(1 \le p < \infty)$.

3. Discrete example using only conditional expectations. In the following example, due to Burkholder, all the P_k are conditional expectation operators. Besides being doubly stochastic, conditional expectation operators are self-adjoint, idempotent, and are Hilbert space positive-definite.

Let (X, Σ, μ) be a probability space on which there are defined independent random variables f, g each having the normal distribution with mean zero and variance one. Define

$$h_{\theta} = (\cos \theta)f + (\sin \theta)g.$$

Since linear combinations of normal random variables are normal, the h_{θ} are normal. Since h_{θ} and $h_{\theta+\pi/2}$ are orthogonal, they are independent. Finally, since $h_{\theta} = \cos (\theta - \varphi) h_{\varphi} + \cos (\pi/2 - (\theta - \varphi)) h_{\varphi+\pi/2}$, it follows that

$$E\{h_{\theta} \mid h_{\varphi}\} = \cos (\theta - \varphi)h_{\varphi}.$$

Setting $P_k = E\{\cdot \mid h_{\theta_k}\}$, one obtains

$$P_n^* P_{n-1}^* \cdots P_1^* P_1 P_2 \cdots P_n f = \cos \theta_n \cos^2 (\theta_n - \theta_{n-1}) \cdots \cos^2 (\theta_2 - \theta_1) h_{\theta_n}.$$

Now since $|\cos(\pi/2n)| > 1 - 2/n^2$, and $(1 - 2/n^2)^{2n-2} \to 1$ as $n \to \infty$, there exist sequences $\{\theta_n\}_{n=1}^{\infty}$ which contain both 0 and $\pi/2$ infinitely often and satisfy $\prod_{n=2}^{\infty} \cos^2(\theta_n - \theta_{n-1}) > \frac{1}{2}$. For such a sequence $|P_n * P_{n-1}^* \cdots P_1 * P_1 P_2 \cdots P_n f|$ is equal to 0 for infinitely many n and greater than |f|/2 for infinitely many n. Thus neither a.e. nor L^p norm convergence holds.

REFERENCES

- [1] Burkholder, D. L. (1962). Successive conditional expectations of an integrable function. Ann. Math. Statist. 33 887-893.
- [2] Doob, J. L. (1952). Stochastic Processes. Wiley, New York.
- [3] Dunford, N. and Schwartz, J. T. (1958). Linear Operators, Part I. Wiley, New York.
- [4] ROTA, GIAN-CARLO (1962). An "alternierende Verfahren" for general positive operators. Bull. Amer. Math. Soc. 68 95-102.