PROPERTIES OF THE MEDIAN AND OTHER ORDER STATISTICS OF
LOGISTIC VARIATES
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1. Introduction and summary. Recently, increasing use has been made of the
logistic distribution. In addition to the many investigations of the logistic as a
regression curve, several authors have investigated the properties and suggested
the use of the logistic as a density function. One reason for this is the property
that the inverse of the logistic distribution function can be expressed as the
logarithm of a rational function. A general background for the work in this field
can be gained by reading references [1], [2], [3], [7], and [10]. In this paper several
additional properties of a sample of logistic variates will be described.

In Section 2, it will be shown that the logistic distribution and its moment
generating function can be expressed as a Maclaurin series where the coefficients
are simple functions of Bernoulli numbers. In Section 3, the moment generating
function of the median is given. In Section 4, the variance of the median will be
determined and the relative efficiency of the median of logistic variates to the
mean for various sample sizes as well as the asymptotic efficiency is given. In
Section 5, the cumulant generating function of the median of logistic variates is
derived and the cumulants, themselves, given in terms of zeta values. In Section
6, the variance and covariance of any two order statistics are given.

The order statistic variance-covarance matrix can be used to determine the
BLUE estimators of the population location and scale parameters. These may be
expected to have high efficiency for the estimation of logistic parameters [4].
Although the maximum likelihood estimate of the population location parameter
0 satisfies the relationship,

3 = (2 F(zi — 0))/n,
iterative methods must be used to solve for §. Therefore the computational ad-

vantage of the BLUE estimates as well as their probable efficiency would tend to
make them useful in the case of the logistic distribution.

2. Expression for the logistic distribution and its moment generating function
in terms of Bernoulli numbers. The cumulative distribution function of the
logistic distribution in its reduced form is defined by the expression, F(z) =
1/(1 4+ €°) for — o < z < o and the density function is f(z) = ¢*/(1 + ¢ %)
The distribution is symmetric about 0 and graphically resembles the normal dis-
tribution. It possesses the following properties listed by Gumbel [7],

1) f(z) = F(z)[1 — F(x)]
(2) ¢ =In[F(z)/(1 — F(z))]
(3) @ =7/3
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The cumulative distribution function of the logistic distribution can be ex-
pressed as

(4) F(z) = /(1 + &)
or
(5) F(z) = 3+ 22702 = 1)/(2)) 1Beia®™

where B; are Bernoulli numbers as defined by Knopp [10] (By = 1, B; = —1,
By = §,B; = 0,By = —dg, -+*).

The moment generating function, MGF (¢), of the logistic distribution is given
by Talacko [14] as

(6) MGF (&) = =nt/sin nt for Ji< 1
which can be expressed in terms of Bernoulli numbers as

(7) MGF (1) = 22520 (=1)"712(2 — 1)/(2)) 1Ba(t)*

or

(8) MGF () = 22520 [(—1)7/(2) 1Bes(3) (2mt)"

for the Bernoulli polynomial in terms of B,(3). Therefore the 2jth moment is
|Bai(3)|(2m)".
3. Moment generating function of the sampling distribution of the median

of logistic variates. The density function of the median, .., of a random sample
of size n (n odd) for any density function, f(z), equals

(9) g(an) = [nY/ (k1)’)f(z)[F(z)(1 — F(2))]*
where k = 3(n — 1). Considering a logistic distribution with a scale parameter, b,
(10) F(z) = 1/(1+ ™),

the moment generating function of the sampling distribution of the median can
be expressed as

(11) MGF (¢) = ([If= (1 = ¢/ + )™
Similarly, the characteristic function can be written as
(12) CF (t) = [[T% (1 + ¢/ (k + )")HI™

using an infinite product expansion of the hyperbolic secant.

4, Variance of the median and its relative and asymptotic efficiency. The
variance of the median can be found directly by taking the second derivative of
the moment generating function of the median

(13) d* MGF (¢)/df’ |s <o = 20°[3n"° — D im1d )

which equals the variance of the median of the logistic distribution. This can be
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approximated by replacing the summation operation by integration and there-
fore

(14) Var (median) = 4b°/n.
The variance of the mean of logistic variates is
Var (mean) = #°b°/3(2k + 1).
Using (13), the inverse of the efficiency is
(15) E™ = 6(2k + 1)/x'fr’ — 25,

It can be shown that E~' — 12/2° as k — « and consequently E — #°/12 or
.8225. This is a greater relative efficiency than a similar comparison using the
mean and median of the normal distribution where E = .64.

Table 1 lists the relative efficiency of the median of the logistic variates, as ob-
tained from (15) for odd n between 3 and 19 and n = 51 and 101. It can be seen
from Table 1 that E rapidly approaches its asymptotic efficiency. The asymp-
totic efficiency of the median relative to the Cramér-Rao lower bound is

(16) E (median) = (#°/12)(9/7%) = .75.

TABLE 1

Relative efficiency of the median when compared with the mean for the logistic distribution and
normal distribution

For For
n Logistic Dist. Normal Dist.
3 .85018 743
5 .83302 .697
7 .82795 .679
9 .82581 .669
11 .82471 .663
13 .82408 .659
15 .82368 .656
17 .82341 .653
19 .82322 .651
51 .82257
101 .82249
© .82247 .637

5. Cumulants. In this section, the cumulants of the median of logistic variates
will be given. Taking logarithms of (11)

(17) CGF median (¢) = — > s In[1 — (B*¢/(k + 1)H)].

Using the Maclaurin expansion of In (1 — ) and reversing the order of sum-
mation,

(18) OGF median () = 227 [(b€)7/71¢ (25, k + 1)
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where (27, k + 1) is a generalized zeta function [15]. Thus, the 2jth cumulant
is

(19) (O/5)(2)! = ¢(24, k + 1).

Further, it can be shown that CGF [(n — 1)*] — 2b°%" as n — = and, therefore,
all cumulants except the second approach zero. Thus agreeing with theory,

Cramér [6], the distribution of (n — 1) times the median approaches the normal
distribution.

6. Covariances of logistic order statistics. The covariance of any two order
statistics of a random sample of logistic variates can be derived by using a
method similar to that used in Section 4.

The covariance of the Kth and Lth order statistics for L > K is

(20) Cov (zr, 21) = E(zxzr) — E(zx)E(zy).

To evaluate E(zxx.), a variation of the usual moment generating function of the
joint distribution of the K and L order statistics will be used. From Sarhan and
Greenberg [12] the joint distribution for L > K is

(21) F(ax,21) = ol Flax) /(K — )1 (L — K — 1)1 (n — L)]]

[F(zL) — F(ae)]" "1 — F(a )" “f(zx)f(z.) dag dzy for zx< z.

Using (21), the moment generating function of the joint density of order sta-
tistics zx and z,, can be written as

(22) MGF (tx, t1) = C [Zs [* exp (txtx + t12)F (25)
[F(x) — F<xK)]L_K_1[1 - F(xL)]"_Lf(xx)f(xL) drg dxy,
where C = n!/(K — 1)! (L — K — 1)! (n — L)L

The expression for MGF (tx, t.) given in (22) is difficult to evaluate directly.
However, the partial derivative

(23) dMGF (tx, t.)/dtx = C [Zo [*% zge'™L[F (xx)]* "
(F(xy) — F(xx)]L_Kﬁl[l - F(xL)]"_Lf(xK)f(xL) drg dxy,

can be evaluated. By using the transformations yx = F(xg) and y, = F(xy),
(23) can be expressed as

(24) 0 MGF (tx, 1) /ot = C [3 (1 — y)" “yo/(1 — y.)]**
'f“ F_I(Z/K)Z/KK_I(. — yr) dyx dy., .
Since F'(yx) = log yx/(1 — yg)] = —2 D p (1 — 2ux)" /(20 + 1), which
converges uniformly for all 0< yx< 1, (24) may be expressed as
(25) 9 MGT (ix, to)/dtx = —2C 2720 1/(20 + 1) [5 (1 — y,)" "
yu/ (1 — Z/L)]”' fo (1 - 2?/K)21+IZ/KK_1(?/L - ?/K)L_K_1 dyx dy, .

27+1

The expression (1 — 2yx)™" may be represented as

(26) 2 (=R k.
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Let G represent [§% (1 — 2yx)* 'y " (yr — yx)" ™" dyx . Since a finite sum
may be integrated term by term,
(27) G = ?Zgl (— l)jzj(%j ! f o Z/xK+j_1(yL - Z/x) fx dyx .
The integral in (27), [¥* y<"* " (y, — yx)" ™" dyx, equals y," " B(K + j,
L — K), where 8 represents the beta function. Therefore,
(28) 9 MGF (¢, t.)/dtx
= —20 3%, (20 4+ D7 25 ()R
B(K +j, L — K) [oy 7 (1 — yu)" T dys
or
(29) = —20 2% (20 + 17 X (- DRCTBE +5, L~ K)
B(L+j+t,n—L—t,+1).

Assuming that the series may be differentiated term by term, the produect
moment E(zxx.) equals

(30) —2¢ 2%, (2 + 17T XN (- 1)RCTBE + 4, L — K)
(d/dtL)B(L +] + tL, n— L + 1 - tL)ItL—O-
The derivative (d/dt,)8(L +j + to,n — L + 1 — {1) equals

(31) 1/(n+ ! (d/dt )TN G + &) TIIS" G — o) (tun/sin wtn)].

However, t,m/sin 7, is the moment generating function of the logistic dis-
tribution (6) and therefore its derivative evaluated at zero is zero and its limit
as t;, — 0 is 1. Therefore the derivative evaluated at zero is

Do = TN 45— D (v — L)Y/ (n + )

The expression for E(zxx.), when simplified is

(32) E(zxry) = =2 2 (20 + )7 255 (=2)CF
o — R NSRS/ )

As recently as 1963 it was stated that “It would be desirable to augment
‘asymptotic calculations’ with exact computations of covariances of some logistic
order statistics, Cov (x;, z;), evidently numerical integration is required, and
this has not been undertaken,” [3]. Actually, by means of recurrence formulas,
Kjelsberg in 1962 obtained exact numerical results for the covariances of logistic
order statistics from samples of size five or less [9]. In the next three sections, (32)
is reduced to a finite sum which can be easily used to evaluate logistic product
moments for any sample size.

In Section 7 a lemma is derived which can be used to evaluate series of the
type D10 A'F(0)/7 where A*is the sth forward difference from F(0). In Section 8
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the expression D o (—1)'A'F (0)/7 is evaluated where the terms F(2¢ + 1)
are the coefficients of (2¢ 4+ 1)™" in (32). Finally, in Section 9 the series, simpli-
fied by combining the results of Sections 7 and 8, will be expressed as a finite
sum.

7. Reverse use of Euler’s transformation. Euler’s transformation may be
expressed as

(33) =0 [F(8)/t7] = 2205 [AF(0)/(t — 1)
By multiplying the left side of (33) by ¢ and the right side by (¢ — 1) + 1 and
simplifying one obtains

(34) DL [AF(0)/(t — 1)) = 2L F(s)[1/t — 1/ — [F(0)/4].

By substituting ¢ = ve“*™ and integrating with respect to w from zero to infinity,
one obtains

(35) w1 [AF(0) /"] = DLy [F(s)/s(v + 1)'] — F(0)log [(v + 1)/v]
orwithv =1
(36) 1 [AF(0)/s] = 2L [F(s)/s2°] — F(0) log 2.

8. Evaluating the alternating series in the special case. E(zxz;) was obtained
by differentiating the expression

(37) €[5 (1 — yu)" "(y/A = yu))™ [8 F (yn)yx™" s — yx)* =" dyx dys,

with respect to ¢, and evaluating the derivative at zero. The relationship

(38) log [yx/(1 — yx)] = =227 (1 — 2yx)*™/(20 + 1)
forms the series of odd terms of (32). The series
(39) =227 (1 = 2yx)'/i = 2log 2yx = F*(yx).

If exp [teF* (yx)] = exp [2tx log 2yx] is substituted for F~'(yg) in (37) the
expression may be evaluated as

(40) 2"7CB(K + tx, L — K)B(n — L — t, + 1, L + f + tx)
which when differentiated with respect to ¢, and ¢x yields
(41) 2((x*/6) — Dt

+ llog 2 4+ 2050 = 2L S T = ).

9. The expression for E(zxz.) as a finite sum. By combining (36) and 41),
E(zgx.) can be expressed as

(42) («'/6) — 205 + [T = T I T - Y +
= [((K)i/iln + DT = 35T

where (K); is Pochammer’s symbol for K(K + 1) --- (K +j — 1). Since

(43) (K)i/(n+1);i=(n—K +1) (K_I)Zs T TO(=1)/K + i+ 3],
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the infinite series in (42) may be written as
(44) (n — K + 1)(x) 2055 (") (=1)°
=[S = AR TVAK + i+ s)).
The expression
(45) 1_1 [(K + s + ’L)l ZL+1+1 —1
(46) = (K + 97T — (K + i+ o) 10k
(47) (K + 8) [ZK‘FS —1 L+1.—1 -—l Zl_—l (K + s + /L)_l f+lf4+zs+t—lj—1]
(48) = (K + )™
SHOXATTH EET ELIE s+ )@ 45+ 0
Since
(49) 2K +s+ (L +j+ )™
= [(K+s) — (L+HNZE T - X2,
if K+ s L + j and otherwise = (#°/6) — D12y 7 . Series (42) has been
reduced to a finite sum and
E(xxxz,)
(50) = (@"/6) — 2L 4 [ = o IS =
+ (n— K+ 1)(x2) 205 (T (—1)(K + s)7"
[Zx+s —IZL+1—I —1 + ZK;}-O: —1 1,—1 [(K + s + 1,)(L+ ] +’L)]_I
}:1[' J_I Zf:x' ]'—l I
Exact numerical values for E(zxx.) have been obtained by means of this formula.
These values were found to be exactly equal to the values for n less than five
obtained by Kjelsberg using recurrence relations and Monte Carlo generated
values obtained by the authors for larger sample sizes.
The cumulant generating function of the Kth order statistic, CGFx(t), for

K > median can be expressed in terms of cumulant generating function of the
median.

(51) CGFx (t) = CGFmedian (t) + D i=tninye log [1 + (bt/7)]

2 log [1 — (bt/4)).
The first derivative of (51) at ¢ = 0 is

(52) E(xx) d CGFmedmn (t)/at It =0 + Z n—K+1 (b//l')
or
(53) E(zx) = 2 i=axn (b/2).

By symmetry,
(54) E(%n_xy1) = —E(zx).
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Thus, the covariance of the K and L order statistic can be found by substituting
(50) and (53) and/or (54) into (20).

Also using the second derivative of the cumulant generating function, the
variance of the Kth order statistic can be found.

(55) 8" CGFx(t)/0f im0 = 8° CGFmedian (2)/3t" |0

+ DoENE (Y — e (B/E)  for K > median.
Using (13), the second cumulant can be written as
(56) 20°((n°/6) — oIV + EDL (840 — Xl (B/4).

Formula (56) checks with the formulas obtained by Plackett [11], and the
numerical results attained by Birnbaum and Dudman [3].

Having convenient formulas for the covariance of any two logistic order
statistics as well as their variances, it is possible by inverting the variance-
covariance matrix to find best linear unbiased estimates of the logistic location
parameter.
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