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1. Introduction. A statistical problem consists in part of a sample space and a
set of probability distributions on that space. One can speak of the space and the
set of probability distributions as a “statistical system.” It is a familiar notion
that different statistical systems can sometimes be produced which may be
considered equivalent, in the sense that statement of a given statistical problem
in terms of either system gives the statistician the same amount of relevant in-
formation with respect to the specific problem. This notion of equivalence has
been given precise development in a number of papers dealing with the concept
of sufficiency and with the “comparison of experiments,” as will be noted below.
It appears to be generally accepted that the idea of equivalence is roughly as
follows. Given a sample space and a parameterized set of probability distributions
on the space, if there is a map which associates to each point of the sample space
(something like) a probability distribution on a second space, and an induced
set of probability distributions on the second space corresponding to those given
on the first, then one may speak of the second space and the induced probability
distributions as a second or induced statistical system, and of the first system as
being sufficient for the second. Two systems are “equivalent’ if each is sufficient
for the other.

There are a number of ways of giving precise definition to the concepts involved
in the discussion above; these have technical differences which stem from differ-
ent developments of the foundations of probability. Blackwell’s definitions [1],
[2], cf. DeGroot [4], are consistent with definitions which would restrict the
Kolmogorov axiom system [10] to measures or spaces (cf. [3], [6], [9]) which are
well-behaved in the sense that conditional probabilities can be smoothly intro-
duced into the development. LeCam’s definitions [11] seek to avoid the less
intuitive aspects of the Kolmogorov system, namely countable additivity and the
role of null sets. Halmos and Savage [8] essentially employ the Kolmogorov sys-
tem, as do we in this paper. This choice is somewhat arbitrary. The problems
which we attack here are also meaningful within the developments of Blackwell
and of LeCam.

This paper was motivated by the theory of categories (cf. Section 12), and it
appears that a very natural way of examining the notion of statistical equiva-
lence is through that theory. We have called our concepts by names which are
suggestive from that standpoint, hence our terminology differs from that of
Blackwell and that of LeCam. There are, in addition, technical differences be-
tween their concepts and ours. Our formal definitions are given in Section 3. OQur
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“statistical system’ is almost the same as the concepts of “‘experiment’ as used
by Blackwell and by LeCam. Qur “statistical operation,” a map which (roughly
speaking) associates to each point of a measurable space a probability measure
on a second measurable space, is analogous to Blackwell’s “stochastic transfor-
mation.” Our ‘“statistical morphism,” a map from one statistical system to
another which is induced in a natural way by a statistical operation, corresponds
to LeCam’s ‘“randomized map.” To our knowledge, the fourth of our basic
concepts, “statistical isomorphism,”” a statistical morphism which has an inverse
which is also a statistical morphism, has no counterpart in the papers of Black-
well or of LeCam.

2. The problem. The formal definition of statistical isomorphism which we
give is not convenient for determining whether two statistical systems are iso-
morphic, that is if there is a statistical isomorphism which maps one onto the
other. What is needed, therefore, is a complete set of invariants of the iso-
morphism classes. Our main result, Theorem 2, provides such a set of invariants
for dominated statistical systems. The invariants have a simple intuitive inter-
pretation which we illustrate in a simple case in this section.

Suppose that 9T = {u1, - -+ , ua} is a statistical system containing only finitely
many probability measures. Consider the following Bayesian problem: Let a;
be the probability that u; is the ‘“true” distribution. One is to guess which distri-
bution is the true one after observing a single point from the space X on which

the measures are defined. Denote by B(a¢) = B(a;, --- , a.) the probability of
making a correct decision by using the optimal decision procedure provided by
the Neyman-Pearson lemma. Similarly, if %t = {v, - - - , .} is another statistical

system whose elements correspond to those in 917, we let B*(a) be the function
analogous to B(a). Then it is intuitively clear that if 91 is obtained from 91
by a statistical morphism (i.e., is induced by a data reduction scheme), then
one should have B(a) = B*(a) for all a. This result is formally proved in our
setup by Theorem 1. It then follows that if 917 and 9T are isomorphic, B(a) =
B*(a). Therefore, the function B is an invariant of the isomorphism classes of
statistical systems. Theorem 2 asserts that B is a complete invariant, that is if
B(a) = B*(a), then 9 and 9T are isomorphic. Our results therefore can be
interpreted as saying that under appropriate conditions everything of interest
about a statistical system is determined by how well one is able to solve certain
very special Bayesian problems. In particular, if one is to solve a problem in
which a “value” or “cost’’ is assigned to each possible decision procedure, it
should be possible in principle to express the optimum value or minimal cost in
terms of B.

3. Basic concepts. The definitions and notation used here will conform to
those in Halmos’ book [7] as far as possible. A set 917 of probability measures on
a measurable space (X, Q) will be called a statistical system on (X, @). In Section
12, the closely related concept of a parameterized statistical system is defined.
The latter is the same as Blackwell’s “experiment”. A statistical operation on
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I to another measurable space (¥, A) is a map 7 from A x X to the real
numbers which satisfies the following conditions:

(i) T(F:z) is an Q-measurable function of z for every F ¢ A and T satisfies

O T(F:iz) £land T(Y:z) = 1.

(ii) If Fy, Fy, --- is any sequence of disjoint elements of A and S({F.}) =
{xe X:T(UL Fiix) # D o T(Fiix)}, then for every p & 9, u(S({Fi})) = 0.

If the sets S({F.}) were actually empty, rather than just of u-measure zero for
each u &9, T would assign to each x ¢ X a probability measure on (Y, A).
The main reason for permitting the sets S({F.}) to be non-empty and to depend
on {F;} is that it is useful to be able to consider conditional probabilities as
defining statistical operations.

A statistical operation T on 91 induces a map T« from 91 to a space of measures

9 on (Y, A) by the formula

(3.1) (Twn)(F) = [x T(F:z) dp.

Tt is easily verified that the integral exists and defines a probability measure 7' xu
on (Y, A) if the axioms (i) and (ii) are satisfied. The map T : 9 — I is called
a statistical morphism. ,

It should be noted that it is possible to have Sx = T'x where S4 and T'x are
induced respectively by S and T and where S and T are distinct statistical oper-
ations, in the sense that for some F ¢ A and some p ¢ 9, T(F:x) # S(F:z) on
a set of positive u-measure. For example, if T = T'(F:z) is any statistical oper-
ation which is not constant almost everywhere with respect to a measure u on
(X, Q) for some F ¢ A, let 91 = {u} and 9L = {Tsu}. Let S be the statistical
operation defined by S(F:x) = (Tsu)(F); clearly, T« = S« even though T and
S are essentially different.

It will be convenient to employ the following notation: If @ is a set of measures
on a measurable space (X, 2), the symbol [@] following a statement (e.g. an in-
equality) will mean that the statement is true except possibly on a subset S ¢ @
such that u(8) = 0 for every u £ @. If @ = {m} consists of a single measure we
write [m], rather than [{m}]. If m and u are measures on the same measurable
space, p << m will mean that u is absolutely continuous with respect to m. A
measure m is said to dominate a set @ of measures if u << m for every p £ G. In this
case, @ is said to be dominated.

4. The composition of operations and morphisms. We retain the notation
established in Section 3. A real-valued Q-measurable function f defined on X [91]
is said to be in L™(9M) if there is a constant C such that |[f| = ¢ [91]. Two func-
tions f and g in L*(91) will be identified if f = g [9]; foreach f e L~ (9m) define
[7]l as the smallest value ¢ such that |f| < ¢ [o1]. Then L”(9M) becomes a
Banach space. We shall now define a map

T*: L*(TxM) — L*(9M)
which is dual to T'x in the sense that if f ¢ L¥(T+91), then for each u £ 91,

(4.1) fx T*fd# = frfd(T*#)-
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The map is first defined for simple functions f = D%y cox(Fs), ci ¢ R', Fi e A by
the formula (T7f) (z) = X i ¢;T(F; :x). Here x(F;) is the characteristic func-
tion of the set F; .

The properties of the statistical operation 7' imply that (4.1), together with

(4.2) a = fy) b [T« implies a < (T*f)(z) = b [om],
and
(4.3) T*(eif + cg) = T + &T*g [0,

hold if f and g are simple functions in L*(T491).
One can also easily check that if f is a simple function,

(4.4) 171l = 1Ifll.

The simple functions are dense in L”(T'491), hence T™ has a unique extension to
L*(T ) satisfying (4.3) and (4.4). It is also clear that (4 .1) and (4.2) are valid
for the extension. Summarizing:

ProposrTioN 4.1. The map T™ defined above maps L™ (T 9N) linearly and iso-
metrically into L™ (9N) in such a way that (4.1) and (4.2) hold.

ProrositioN 4.2. Let (X, @), (Y, A), (Z, Z) be measurable spaces. Let I be a
statistical system on (X, Q) and N a statistical system on (Y, A). Suppose that T is
a statistical operation on M such that T« C R, and suppose that S is a statistical
operation on I to (Z,Z). Thenifx ¢ X, G ¢ Z,

(4.5) (8o T)(Gix) = T*(S(G, ))(z)

defines a statistical operation S o T on M to (Z, Z) such that (Seo T)sp = Ss(Tsp)
holds for every u e M. (In (4.5) S(G, ) is the function in L”(9) < L¥(T M)
defined by the statistical operation S, hence it makes sense to apply T™ to it.)

The proof of Proposition 4.2 is a matter of routine checking using Proposition
4.1. This proposition shows that the composition of two statistical morphisms is
again a morphism; in particular the composition of two sufficient statistics is a
sufficient statistic. The corresponding assertion within Blackwell’s development
may be found in the paper of DeGroot [4], Lemma 2.8.

5. Conditional probability and inverses of isomorphisms. In this section we
review some needed results which are essentially known. As before, 91T will denote
a statistical system on (X, Q).

ProprosiTioN 5.1. If u, v € M and v < u, then T s << T s where T su is defined by
(3.1). Consequently, if m & M domanates M, T sm dominates T xIN.

Proor. If F £ A and (T su)(F) =0, then fx T(F:x)du=0,hence T(F:x) =0 [u]
implies that T(F:z) = 0 [u]. Since » < p, the latter condition implies that
T(F:x) = 0 [], hence [x T(F:x) dv = (Tx)(F) = 0.

Proposition 5.1 shows that it is possible to extend the domain of the map T«
from 91T to include any measure which is absolutely continuous with respect to a
measure in 9. However, this extension depends on the statistical operation T'
rather than just on the morphism 7'y .
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Proposition 5.1 is used to define the conditional probability P(E:y:u) of
E £ Q, giveny ¢ Y, for the measure u & 9 relative to the statistical operation 7.
If u e 9 and E ¢ Q define the measure ug by uz(S) = u(S n E). Clearly uz << u
and hence Proposition 5.1 implies that Tsxuz << Tsu. The Radon-Nikodym theo-
rem then asserts that there exists a function P(E:y:u) ¢ L'(Y, A, T+u) with

(5.1) (Taps)(F) = [¢ P(E:y:p) dTsp.

This defines P = P(E:y:u) up to a set of Tywu-measure zero for each E ¢ Q.
One can always assume that P has been defined on the exceptional sets in some
arbitrary manner. One can then show (cf. the argument in [7], p. 208) that P has
properties which imply that P is a statistical operation from {Tu} to (X, Q).

ProposrTion 5.2.° A statistical morphism T’ is an isomorphism if there is a func-
tion P:Q x Y — R such that for every E € Q, u € 9N,

P(E:y) = P(E:y:u) [T

Remark. The conditional probabilities P(E:y:u) depend, of course, on the
operation T, rather than just on the morphism 7'y . Hence in Proposition 5.2 it is
assumed that the operation which induces 7'y is fixed.

Proor. The function P(E:y) defines a statistical operation on T+ to (X, Q).
Let Py be the corresponding morphism from T4 to 9. By (5.1),

(PsTsu)(E) = [y P(E:y) d(Tsn) = [y P(E:y:p) d(Tsp)
= [yd(Twps) = [ T(V:iz)du = u(E),

that is, Px«Tu = u; hence T is a isomorphism.

Proposition 5.2 shows that a sufficient statistic {: X — Y defines a statistical
isomorphism T'x : M — T4IN via the statistical operation T(F:x) = 8y (F).
Here and below §, will denote the measure with mass one concentrated at y.

6. Some extremum problems. It will become clear later that the solutions of
certain kinds of extremum problems are invariant under isomorphism of a statis-
tical system. The present section is devoted to the solution of these problems.

Again let (X, Q) be a measurable space and let u’, - - - , u? be finite measures on
(X Q) which need not be all different. Suppose (w1th0ut loss of generality) that
u’y - K u? are absolutely continuous with respect to a o-finite measure m, (e.g.
m = pu + p' + .-+ + u?), and let du’/dm denote the Radon-Nikodym deriva-
tive, which can be assumed to be defined everywhere and non-negative. Let F
denote the class of R”"'-valued measurable functions f = (f°, - - - , f*) defined on
X which satlsfy the conditions f'(z) = 0 [m] (1 = 0,---, p) and
>, f”(x) 1 [m]. We define the function B of @ = (a’, --- , a®) for a’ = 0,
1=20,---,p, by

B(a) = sup { D Poa’ [xf du’:feF}.

2 A subsequent paper by one of us contains a proof, obtained after the current paper was
written, of the converse to Proposition 5.2.
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B(a) is easily seen to be homogeneous of degree one, convex, and independent of
the choice of m in spite of the fact that F depends on m.
Let M(z) be defined for fixed a by

M(z) = max {ai[du"/dm](x):i =0,.--,p}
Define the class of functions F(a) C F as follows: f ¢ F(a) if f ¢ F and
fi(x) =0 [m] where o'ldu’/dml(z) < M(z),
fi() =1 [m] where ofdu’/dm](z) > &ldp’/dm](z)  (§ = ).
Tae NEYMAN-PEARSON LEMMA. If f ¢ F and g € F(a) then
Sred [xffdu’ £ Diod [xgids' = [x M dm.
Equality holds if and only if f € F(a). Consequently,
B(d, -+ ,d") = Xioa' [xg'du’ = [xM dm

for each g € F(a).

This statement of the Neyman-Pearson lemma is somewhat different from the
usual one, but it is proved essentially the same way as the usual lemma. We there-
fore omit the proof here.

The function B is convex, hence has a (one-sided) directional derivative in any
d1rect10n at any point a. It will be of particular interest to interpret

B'(a) = lim [(B(a;) — B(a))/t] ast——>0+ where a; = a + (1, 0, , 0). We
shall employ the notation Mo(x) = max {a’[du /dm](x) 1=5¢= p}
Prorposition 6.1. Let i’, -+ , u®, m, and a = (a’, --- , a”) be as above. Then

B'(a) = u’(8), where
S = {z: a’ldu’/dm](z) = Mo(z)}.
Proor. Note that M(z) = max {a’[du’/dm](x), Mo(x)}, hence the Neyman-
Pearson lemma implies that B(a) = a’%s’(S) + [x—s Mo dm, and an analogous

statement holds for B(a.). If t > 0, and T(¢) = {a: (a° + t)[du’/dm](z) =
Mo(z) > a°[du’/dm](z)}, then

(6.1) B(a) — B(a) = tw’(8) + [r@ ((a° + t) [du’/dm] — M) dm.
Since ¢ > 0, the definition of T'(¢) implies that
< (1/1) [z (Mo — &'ldp’/dm]) dm < [r¢o [du’/dm] dm.

Now ast— 0+ the integral on the right approaches zero, because T() < T(s)if
0<t<sand {T(t):t> 0} = &. It follows that B (a) = u*(8) by dividing
both sides of (6.1) by ¢ and letting ¢ — 0. This proves Proposition 6.1.

7. The effect of a morphism on B. We modify the notatlon established above
to 1ndlcate the dependence of B and F(a) on the measures ’, , u¥ by writing
B(a, i, - -, u?) instead of B(a) and F(a, ¢’, - - - , u”) 1nstead of F(a).

Now let 9 be a statistical system on (X, Q) and T a statistical operation on 9
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to (Y, A). The following theorem has an obvious statistical interpretation, but
nevertheless it requires a mathematical proof.

THEOREM 1. For every finite subset {n°, - - - ,u”} ¢ Mand everya = (a’, - -+ ,a?),
0<d < =,

B(a, I“Os <+, ") = B(a, T*ﬂoa coey Tan®).

Proor. Let ¢ = (¢°, --+, ¢°) e F(a, Ts’, -+, Tu®). Then Proposition 4.1
shows that T*q=(T*¢’, --- , T*¢") ¢ F. The relation (4.1) and the Neyman-
Pearson lemma then give

Z’f;o ai fx (T*T) d"‘i = th';o a’ifl' q'l d(T*"‘z) = B(a’ T*l"o, Tty T*l-‘p)‘

But clearly, T*q ¢ F implies that B(a, &', - - - , ?) is not smaller than the quanti-
ties above.

CoRroLLARY 1. Suppose that the morphism T s : M — N is an isomorphism. Then
B(a'al“o’ yl“p) = B(a, T*l‘O; oo, Tap?). )

Corollary 1 shows that the functions B are, in a sense, invariants of the iso-
morphism classes of statistical systems. Most of the remainder of the paper is
devoted to proving that, in certain cases, they are a complete set of invariants.
To formulate this more exactly, let 91T and 97 be statistical systems on (X, Q) and
(Y, A), respectively. A map H of 91 onto 9% will be called a B-equivalence if for
every finite subset {u’, ---,u?} e, and all @ = (a°, ---, a?), ' = 0,
B(a, ¥, -+, u®) = B(a, HY', --- , Hu®). The notion of B-equivalence is an
equivalence relation. The only thing to observe the verifying this is that if
a = (a’, a'), the equality B(a, u, ») = B(a, Hu, Hv) implies that H is one-to-one,
because B(a, u, ») = max (a°, a') if and only if u = ». Therefore B-equivalence is
symmetric. Reflexivity and transitivity cause no difficulties.

In this terminology, Corollary 1 asserts that any statistical isomorphism is a
B-equivalence. We are going to investigate conditions under which it is true that
a B-equivalence is a statistical isomorphism. The following example shows that
this is not always the case.

ExampLE. Let the measurable spaces (X, 2) and (Y, A) be two copies of the
interval [0, 1] with the usual Borel sets. Let m be Lebesgue measure and §, the
measure with mass one concentrated at the point x = a, or ¥y = a. Let
M = {u, : 0 < a = 1} be the collection of measures defined on (X, Q) by

ba(B) = 300(E) + 38.(E), EeQ,
and 9T = {y, : 0 < a = 1} the collection of measures on (Y, A) defined by
va(F) = 3m(F) + 36.(F), FeA.
Let T be the statistical operation defined on 91 by
T(F:0) = m(F),
T(F:z) = 6,(F) if = 0.
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Then T xu, = v, forall a,0 < a < 1. Now it will be proved that T4« does not have
aninverse. If P were an inverse and P the underlying statistical operation, one
would have

(71)  wo(E) = % [y P(E:y)dm + iP(E:a), EeQ,0<as=1
In particularif 0 s E,and a 2 E, , ua(E,) = 0 and
(7.2) P(E,:y) =0 [m)]

Now suppose that 0 < b < 1, b 5 a and apply (7.1) with b replacing a, and
(7.2) to the set E = E, = {b} C X, to obtain 3 = uy({b}) = $P({b}:b) or
(7.3) P({b}:b) =1 forany b, 0<b<=1.

Applying (7.1) to E = {0} C X gives
(7.4) 3 =% [+ P({0}:y) dm + 3P({0}:0).
* Only the last term involves a, so P({0} :y) is constant for 0 < y < 1 and
(7.5) P({0}:y) =3
is the only value for the constant which can satisfy (7.4). It follows from the
definition of a statistical operation that

1z P(X:y) z P({b}:y) + P({0}:y) [w],
hence by (7.5)

3 2 P({b}:y) [wl

This inequality contradicts (7.3) because the set {b} C Y is not of »,-measure
zero. This proves that T is not an isomorphism. The morphism T'x leaves the
function B invariant. In fact, it is easy to check that the restriction of Ty to any
finite number of measures in 91 is an isomorphism by Proposition 5 .2. However,
Theorem 2 below shows immediately that this is the case.

8. Domination and absolute continuity. In this section we investigate how the
absolute continuity of one measure with respect to another and the domination
of a statistical system are reflected in the properties of the functions B.

ProposITION 8.1. Let u and v be finite measures on (X, Q) and suppose m is a
o-finite measure such that u < m,v<<m.Thenif N = {x ¢ X : [du/dm](z) =20 =
[dv/dm](z)}, and if @, = (1, 1),

lim B (a;, p, v) = u(N) as t— 0"

(Here B’ is defined as in Section 6.) Consequently, u << v if and only if the above
limat is zero.

Proor. Let N, = {zeX: t[du/dm](z) = [dv/dm](z)} and note that
N=nN{N::t>0} = N{Nop-1:n=1,2, ---} because s < ¢ implies N, C N .
Propositon 6.1 implies that B'(a,~1, g, »v) = wu(N,-1). The desired relation
follows by letting n — o on both sides of this equality.
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9. Dominated statistical systems. Let 91T be a dominated statistical system
on (X, Q). The proof of our main result requires the construction of a measure m
which dominates 91T and has certain special properties. This construction is car-
ried out in this section.

It is known (see [8], Lemma 7) that there is a finite or countable subset
{u', 4%, - - -} < M with the properties that if for some u £ 9 and E ¢ Q, u(E) > 0,
then u'(E) > 0 for some 3. (Most of the results of this section are trivial if
{u', u’, - -} is a finite subset. We shall therefore only consider the countable
case.) Let mo be any measure which dominates 9, and let d; be the Radon-
Nikodym derivative of u* with respect to mo. Let ¢1, c2, - -+ be a sequence of
positive constants such that ..y c¢; = 1, and set Pi(z) = max {c; di(z):
1 £ ¢ £ k}. Each function Pj is well defined [mo] and the following relations hold:

(9.1) 0 £ Pi(z) £ Pru(z) < o [mg]

and

(9.2) 0 < Pu(z) < 2 iccidi(z) [mol.

The last inequality implies that

(9.3) [xPrdmo < D keici [xdidme = Diac = L

By B. Levi’s theorem, (9.1) and (9.3) imply limy .. Pir(z) = P(z) exists [mq]
and limy.., [x Pydmo = [x P dmo.

Let m be the measure defined on (X, 2) by m(E) = [z P dmo. The measure m
dominates 91 because P;(z) £ P(z) [mo] implies that for every E ¢ Q,

m(E) = cu'(E) where ¢; > 0,

hence if u*(E) > 0for some E ¢ @ and some ¢, then m(E) > 0.

Since m dominates 917, the process just described can be repeated with mq re-
placed by m, but with the same choice of ¢; , ¢z, - - - and p', u’, - -+ . If this is done,
the sequence P , P, , - - - will be replaced by @1, Q:, - - - , where

Qu(z) = 0 if P(z) =0,
Qi(z) = Pi(z)/P(z) otherwise.

We summarize:
Prorosrtion 9.1. Let 9 be a domenated statistical system on (X, Q). Then there

is a measure m which dominates M and hus the following properties: There is a
(finite or) countable subset {u', u’, ---} and a (finite or) countable sequence
1, C2, -+ of positive constants such that if Qw(x) = max {eildu’/dm](z): 1 S ¢ <
k}, then lim Qi(z) = 1 [m]. (If the subset has ¢ < « elements, we define Qu(x) =
Qq(z) for k> g.)

The following propositions follow easily from Proposition 9.1, the Neyman-
Pearson lemma, and B. Levi’s theorem. In them, m, M, @i, ¢1,¢2, - - -, hout e,
have the same meaning as above.

ProposiTion 9.2. Define the measures my by mw(E) = [zQidm. Let
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a = (ao’ e ,ap)’az > O’and“'l;”'?’ cee s kp €M ThenB(a’m7”'1’ e >:up) =
lime. B(a, muy pay 0 bp)-
ProposITION 9.3. Let a be as in Proposition 9.2 and let a;, = (a’cy, a’cs, -+,
aock’a1> et ’ap). Then B(a, my,p1, + -+ >/"p) = B(akﬂ"l’ ) ”’k’:ul’ Ut ’/"p)°
The point of Proposition 9.3 is that the measures u', -« -, u*, g1, =+, tp
are all in 9, hence B(a, mr, i, -, up) and (by Proposition 9.2)
B(a,m,p1, -+ ,up) are completely determined by the effect of B on measures in
I even though my and m need not be in 9N, in general.

10. Isomorphism theorems. The notation established in Section 9 will be
retained here. LetJ be an indexing set for 91T so that 9 = {u(j):j eJ}. Let R; be
a copy of the real line and let Z be the product space Z = X{R; :j ¢ J}, which is
given the structure of a measurable space (Z, £) by the structure induced from
the factors R; . Define the map ¢: X — Z by (¢(x)); = d;(x), where d; is the
Radon-Nikodym derivative of u(j) with respect to m. It can be assumed that the
function d; is defined everywhere on X by, for example, taking d; to agree with
some representative of the Radon-Nikodym derivative and defining d;(z) = 0
on the set where the representative is not defined. The effect of the statistic ¢ is
to identify points x; , x2 &€ X if d;(x,) = d;(x;) for allj ¢ J. The map ¢ depends, of

* course, on the choices of m and d; as well as on 9. We shall call the map ¢ a re-
duction map for I and the statistical system ¢« a reduced form of M.

Prorosition 10.1. The statistic ¢: X — Z is a sufficient statistic, hence ¢« is @
statistical isomorphism.

The first statement is an immediate application of the criterion of Theorem 1 of
[8], and the last one is just the final remark in Section 5.

The next theorem is our main result.

THEOREM 2. Let I and I be statistical systems on (X, Q) and (Y, A), re-
spectively, and H : W — 9T a B-equivalence. Then if M is dominated, H is a statistical

isomorphism.
Proor. Let u', u*, - - -+ & 9 be used to construct m as in Section 9, and construct
a measure n on (Y, A) by the same process from the sequence »', »°, - - - , where

»' = Hy', using the same sequence of constants ¢; , ¢z, « - - . Propositions 9.2 and
9.3 imply that if uy, -+ , upeMand v; = Hu; e N, a = (a°, ---, a?), a’* = 0,
then

(101) B(a’myﬂly'”’”p) =B(a>n> ”l"">"p)7

because H is a B-equivalence.

Since m dominates 9, (10.1) and Proposition 8.1 show that » dominates 9.
Let D; (resp. E;) be the Radon-Nikodym derivative of u; (resp. ;) with respect
tom (resp. n). Proposition 6.1 and (10.1) show thatif a; = (1,4, --- ,a”,1/t),
and

S(a:) = {zeX:a'Dy(x) <1 for ¢=1,---,p — 1,D,(x) < t},
T(at) = {ys Y:aiEi(y) =1 for ¢= 17 -, — 1, Ep(y) = t}’
(10.2) m(8(a:)) = n(T(a)).
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Now it will be shown that if

Ua) = {zeX:a'Dy(z) £1 for ¢ =1, ---p— 1}
and

V(a) = {yeY:a'Ei(y) <1 for ¢=1,---,p—1},
then
(10.3) up(U(a)) = vp(V(a)).

If @', .-+, a” " are fixed, the left side of (10.2) is a bounded nondecreasing
function of ¢, say f(t), hence the Stieltjes integral [o+ ¢ df exists and is easily seen
to equal [, D, dm, which is just the left side of (10.3). Similar considerations
apply to the right side of (10.3), hence (10.2) implies (10.3).

Now let ¢: X — Z be a reduction map for 9% and ¢: Y — Z a reduction map
for 9. (The image spaces Z can be identified because H is one-to-one.) If z ¢ Z,
let 2(7) € R; denote the jth coordinate of z. The relation (10.3) shows that if
W=1{2¢Z:a%(;) <1,i=1, ---,p — 1} where j;&J is the index corre-
sponding to u;, then [pxu,](W) = [Yar,](W). But according to a theorem
of Kolmogorov [10], p. 27, this equality implies that the measures ¢su, and
Vs, are the same. Therefore if ue M, v = Hp e 9N, then ¢4p = yYsv. Prop-
osition 10.1 shows that ¢4 and ¢4 are isomorphisms, hence H = (¥x) '¢x
is an isomorphism by Proposition 4.2. This proves Theorem 2.

The map ¢: X — Z constructed above depends on some special choices of the
functions d; , but it is easy to check that the corresponding isomorphism ¢ is
independent of these choices.

11. Possibility of characterizing morphisms. Theorem 2 is a kind of converse
of Corollary 1. It is natural to ask if there is an analogous converse to Theorem 1,
that is to ask if, when the hypothesis that H is a B-equivalence is weakened to

(11.1) B(a, u', -+, u®) = B(a, Hy', --- , Hu?)  forall p'eom,

one can obtain the weaker conclusion that H is a statistical morphism. The
purpose of this section is to give an example which shows that this is not the case.

Let X = Y = {0, 1}; M ={my, ms, ms}, N = {n1, ny, ns}, where m; has
measure p; at 0, hence 1 — p;at 1, and n; has measure ¢; at 0, hence 1 — ¢; at 1.
Suppose that p1 = ¢: = 1, p2 = ¢2 = ¢ = %, and p; = 0. One then easily calcu-
lates that if ¢ = (d', a’, a°),

B(a, my, ms, ms) = max (@', a’°/2) + max (d’/2, a°),
B(a, ny, ny, n;) = max (', a’/2, ¢*°/2) + max (a’/2, d°/2),
and it follows that B(a, my , ms, ms) = B(a, n1, na, ng).

Letm = (my + ms)/2,n = (ny + n3)/2. If H (Hu; = v;) were a morphism,
its domain could be extended by linearity to include m and one would have
n = Hm.But B(%, 3, m, m:) = % and B(%, %, n, nz) = § > %, hence Theorem 1
implies that H is not a morphism.
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This example shows that one must assume more than (11.1) in order to con-
clude that H is a morphism. Perhaps the following stronger and obviously neces-
sary condition would be sufficient: Require (11.1) to hold for all o’ rather than
just for non-negative a’. The definition of B still makes sense for such a’ and
Theorem 1 remains correct, although its intuitive interpretation is less clear.

12, Categories. It will be of interest to some readers to observe that the
results of this paper are really concerned with existence and structure of certain
categories in the sense of [5]. Let a parameterized statistical system (or experiment
[1]) be a parameterized set M = {u, : @ € A} of probability measures on a meas-
urable space (X, Q). To say that 91 is a parameterized set means that u, and us
are regarded as distinct elements of 9T whenever a and b are distinct elements of
A, even if u, and u;, are identical as measures. One can easily verify that for each
fixed indexing set A4, there is a category C 4 in which the objects are the statistical
systems parameterized by A and the morphisms are the statistical morphisms
between the objects compatible with the indexing. The only nontrivial part of the
verification that C, is a category is showing that the composition of two mor-
phisms is a morphism, but this is essentially the content of Proposition 4.2. It is
also true that a subcategory D, of C, is obtained by restricting the objects in
C 4 to those statistical systems which are dominated. This is an easy consequence
of Propositions 8.1, 9.2, 9.3, and Theorem 1. Theorem 2 then shows that the
functions B are a complete set of invariants of the isomorphism classes of the
objects in D, , that is, two objects in D, are isomorphic if and only if their asso-
ciated functions B coincide.
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