GOODNESS CRITERIA FOR TWO-SAMPLE DISTRIBUTION-FREE
TESTS!

By C. B. BeLL, J. M. MosER, AND Rory THOMPSON

San Diego State College

1. Introduction and summary. Some of the concepts and results of Chapman
|3] for one-sample distribution-free tests are extended to the two-sample problem.
Chapman’s lead will be followed since his work gives a goodness criterion for
comparing distribution-free tests, for finite sample sizes, over a large class of
one-sided alternatives. Since all two-sample distribution-free statistics known to
the authors satisfy Scheffé’s [10] boundary condition, and all, except those of
Pitman, also are strongly distribution-free (SDF) and therefore [1] are rank
statistics, consideration may reasonably be restricted to rank tests. Such tests
with the additional property of monotonicity are unbiased, partially ordered,
and assume maximum and minimum powers for certain reasonable alternatives.

Some of the maximum powers of the Mann-Whitney-Wilcoxon, Fisher-Yates,
van der Waerden, Doksum, Savage, Epstein-Rosenbaum, and Cramér-von Mises
statistics are tabulated. (For definitions and references, see Section 6.)

2. Preliminaries. Let X;, -+, X, ; Y1, ---, ¥, be independent random
samples with population distribution functions (cpf’s) F and @, respectively,
with F an arbitrary element of 9,*, the class of strictly monotone, continuous
cpf’s on Ry, and @ such that either Hy : G = F or H; : G < F. [G < F means
G(z) £ F(z) for all z, and that G(z) < F(x) on some set of positive measure.]
Let Wy, -+, Wy, where N = n + m, be the combined sample, and let R(X)
and R(Y;) be, respectively, the rank in the combined sample of X; and Y; .

A test of size a is a function of W such that 0 < ¢ < 1, and E{¢ | F, G} =«
whenever F = G. 8(¢; F, @) will denote the power function of ¢. A test ¢ is said
to be SDF if 8(¢; F1, Gi) = B(¢; Fs, Gz) whenever GiFy ™" = G.Fs Y ie.,
B8(¢; F, @) for given ¢ depends only on GF . A test ¢ is here said to be a rank
test if (X1, ---, Y,) is a function only of the set of ranks {R(Xk)} A test ¢ is
said to be a monotone test if ¢(X1, -, Ya) = &(Xy > .-+, Y,') whenever
X, < X;and Y,/ = Y; for all integer 1 g i 2 m, 1 < j £ n, and is said to be
partially ordered (p.o.) if, whenever G, = G1 = Fy = F», then B(¢; F1, G1) =
ﬁ(d” Fy ’ G2)

Let U be the standard uniform distribution (cpf): U(z) = = 1f 0=<z=1 Let
H(X,A) = U(X — A) for all X.

3. Unbiasedness
LemMA. Each two-sample rank test is SDF.
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Proor. [1]. Essentially, the ranking of W is not changed by a strictly increasing,
continuous map F*, so (¢, F, @) = B(¢, FF*, GF ™).

TuEOREM. Each monotone two-sample rank test s p.o.; and each p.o. test is un-
biased (for Hy versus Hy).

Proor. SDF implies 8(¢; F, @) = B(¢, U, GF ") = B(¢, U, U) = a, since
GF™' £ U when G £ F. This theorem is essentially that of Lehmann ([5], p.
187).

4. Power and power bounds. The pseudometric
p (F,G) = sup,(F(z) — G(z))

and the classes C(F, A) = {G|G < F and p(F, G) < A} and D(F, A) =
{@| G < Fandp (F,G) = A} yield power bounds for monotone, p.o., rank tests.
Define (¢; F; A) = sup B(¢; F, G) with the supremum over C(F, A) and
B(é; F; A) = inf B(¢; F, @) where the infimum is taken over D(F, A). The prob-
lem may be reduced to cpf’s on the unit interval [0, 1] by the following lemma.

LemMa. For a two-sample rank test ¢ and arbitrary F in Qs , B(¢; F; A) =
B(¢; U; A), and B(¢; F; A) = B(¢; U; A), where the class of alternatives to U s
restricted to [0, 1].

Proor. 8(¢; F, @) = B(¢; U, GF") since ¢ is SDF; and sup, (U — GF') =
sup; (F — @) and inf, (U — GF ) = inf, (F — @), since F* is continuous and
strictly increasing; GF ' is (any) cpf on [0, 1].

The problem now is to derive a method for computing the maximum and
minimum powers. The first step in this direction is to define the Birnbaum
alternatives on the unit interval. Let

G(z;0) =0 if 0z =4
=z —A if A<z<1
=1 if z=1,

G(z;u,A) =0 if =0
=z if <z =Zwu
=u if u<z<u++A
=z if +A=Z2<1
=1 if =21,

where 0 = A<1,0=u=<1-—A.

The next theorem asserts that maximum and minimum powers are attained
against intuitively appealing alternatives.

THEOREM. For each F in Q*, A = 0, and monotone, two-sample test ¢,

(ii) B(¢; F, A) = inf B(¢; U, G(-, u, 4)),

where the infimum is over win [0, 1 — Al.
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Fig. 1. Sample sketches of maximum and minimum alternatives

Proor. (i) Let @ be a cpf on [0, 1] such that U(x) — G(z) = sup, (U(z) —
Gz)) =A 2A0Qz) 2z —A =Z2z—A=0G@xA) forA <z <1
G(z) 2 0 = G(x, A) forz < A; G(z) = 1 = G(x, A) for z = 1. Therefore,
G z G(-, A), so, since ¢ is p.o., inf B(¢; U, @) = B(¢, U, @) Z inf B(¢, U, G)
since G is in C(U, A).

The proof of (ii) is similar. By the preceding lemma it need only be shown that
B(¢; U, A) = inf, 8(é; U, G(-, u, A)). Observe that G(-, u,A) isin D(U, A), so
inf, B(d” U7 Q(7 U, A)) = g(d” U7 A)~

Now consider any @in D(U, A), sosup (U — @) = A" = A. If G is continuous,
U — @ assumes its maximum at some point, which may be used as u 4+ A below;
in any case, there must exist a sequence {z;} such that {U(z;) — G(zx)} in-
areases to A’; so there are an infinite number of distinct z;’s in [0, 1], so there is an
cccumulation point. Let u + A denote the supremum ( < 1) of such accumula-
tion points. Then % + A is also such an accumulation point, so there exists a
sequence {r;} increasing or decreasing to 4 + A such that {U(zx) — G(xx)} in-
creases to A’. If {z} is increasing, then, for every e > 0, there is an N > 0 such
that k = N implies 2 — G(z) = A" — ¢, 50 G(z) S — A +e S u+ A
— A" + ¢ so, since G is increasing, sup.<uia G(z) = supy G(zx) < u + A
— A" + € 50 SUPzcura G(z) < u + A — A'. On the other hand, if {x;} decreases to
u + A such that {U(z;) — G(x)} increases toA”, then {u + A — G(x)} increases
t0 A, 50 infesuia G(z) = u 4+ A — A" 2 Supzcura G().
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Fisher-Yates

A

0.00 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.75 0.90

n=4m=25 .0100 | .0155 | .0235 | .0506 | .0989 |.1763 |.2886 |.4362 | .7013 | .9370

9 .0500 | .0772 | .1147 | .2226 | .3700 |.5405 |.7081 |.8468 | .9678 | .9989
n=5m=25 .0100 | .0163 | .0259 | .0599 | .1234 |.2259 |.3707 |.5489 | .8201 | .9816
10 .0500 | .0801 | .1215 | .2416 | .4057 |.5899 |.7608 |.8892 | .9831 | .9997
n=5m=26 .0100 | .0171 | .0284 | .0702 | .1496 |.2769 |.4497 |.6460 | .8957 | .9950
11 .0500 | .0838 | .1315 | .2703 | .4543 |.6495 |.8156 |.9262 | .9921 | .9999
n=6m=26 .0100 | .0179 | .0311 | .0822 | .1815 |.3377 |.5369 |.7396 | .9462 | .9989
12 .0500 | .0856 | .137 | .288 | .485 |.686 |.846 |.944 | .9950 |1.000
n=6m=7 .0100 | .0188 | .0336 | .0921 | .2046 |.3764 |.5845 |.7812 | .9604 | .9993
13 .050 | .089 | .146 | .311 | .522 |.726 |.878 |.961 | .997 {1.000
n="7Tm= .0100 | .0196 | .0364 | .1045 | .2374 |.4343 |.6564 |.8431 | .9803 | .9998
14 .050 | .091 | .152 | .332 | .555 |.761 |.902 |.972 | .999 |1.000
n="7Tm=38 .0100 | .0204 | .039 | .116 | .265 |.478 |.705 |.879 | .9886 | .9999
15 .050 | .094 | .159 | .351 | .584 |.790 |.921 |.980 | .999 |1.000
n=8m=38 .010 | .021 | .042 | .129 | .295 |[.523 |.749 |.907 | .993 |1.000
16 .050 | .097 | .167 | .374 | .617 |.819 |.938 |.986 | .999 [1.000
n=8m= .0100 | .022 | .045 | .141 | .322 |[.562 |.785 |.928 | .996 [1.000
17 .050 | .099 | .173 | .390 | .639 |.838 |.948 |.989 |1.000 |1.000
n=10m = 10 7 18 44 154 367 | 631 | 845 | 961 | 1000 | 1000
20 52 109 211 451 720 | 913 | 979 | 997 | 1000 | 1000

van der Waerden

n=4m=>5 .0100 | .0155 | .0235 | .0506 | .0989 |.1763 |.2886 |.4362 | .7013 | .9370
9 .0500 | .0770 | .1139 | .2196 | .3646 |.5333 |.7009 |.8412 | .9659 | .9988

n=5m=35 .0100 | .0163 | .0259 | .0599 | .1234 |.2259 |.3707 |.5489 | .8201 | .9816
10 .0500 | .0801 | .1215 | .2416 | .4057 |.5899 |.7608 |.8892 | .9831 | .9997

n==5m=6 .0100 | .0171 | .0284 | .0702 | .1496 |.2769 |.4497 |.6460 | .8957 | .9950
11 .0500 | .0837 | .1313 | .2698 | .4538 (.6489 |.8152 |.9260 | .9921 | .9999

n=6m=6 .0100 | .0179 | .0311 | .0822 | .1815 |.3377 |.5369 |.7396 | .9462 | .9989
12 .0500 | .0856 | .137 | .288 | .485 |.686 |.846 |.944 | .9950 |1.000

n=6m=7T .0100 | .0188 | .0336 | .0921 | .2046 |.3764 |.5845 |.7812 | .9604 | .9993
13 .050 | .088 | .142 | .303 | .511 |.716 |(.871 |.958 | .997 [1.000
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A

0.00 0.05 0.10 0.20 0.30 | 0.40 | 0.50 | 0.60 | 0.75 | 0.90

.0100 | .0195 | .0361 | .103 | .234 |.430 |(.653 |.841 | .980 | .9998
.050 | .091 .151 .329 | .552 |.760 |[.901 |[.972 | .999 [1.000

n=7m=38 .0100 | .0204 | .039 | .115 °| .262 |.473 |.700 |.876 | .988 | .9999
.050 | .093 158 | .347 | .579 |.785 |.918 |.979 | .999 (1.000
.010 | .021 042 | 127 | .292 [.519 |[.746 |.906 | .993 [1.000
.050 | .096 | .165 | .369 | .610 |.813 |.935 [.985 | .999 |1.000
010 | .022 | .044 | .139 .320 |.560 |[.784 |.928 | .996 |1.000
9 23 52 172 397 | 661 | 87 | 966 | 1000 | 1000
53 107 201 445 711 | 899 | 977 | 997 | 1000 | 1000

Mann-Whitney-Wilcoxon

.0100 | .0155 | .0235 | .0506 | .0989 |.1763 |.2886 |.4362 | .7013 | .9370

.0500 | .0767 | .1126 | .2150 | .3561 |.5222 |.6897 |.8326 | .9629 | .9987

.0100 | .0163 | .0259 | .0599 | .1234 |.2259 |.3707 |.5489 | .8201 | .9816

.0500 | .0796 | .1201 | .2379 | .3992 |.5819 |.7533 |.8842 | .9819 | .9997

.0100 | .0171 | .0284 | .0696 | .1481 |.2742 [.4460 |.6424 | .8940 | .9949

.0500 | .0808 | .1238 | .2497 | .4209 |.6098 |.7798 |.9025 | .9864 | .9998

.0100 | .0179 | .0309 | .0803 | .1753 |.3247 |. 517/2 L7175 | .9335 | .9978

.0500 | .0832 | .1304 | .2699 | .4568 |.6546 |.8211 |.9301 | .9928 | .9999

= .0100 | .0187 | .0331 | .0894 | .1979 |.3650 |.5706 |.7692 | .9563 | .9997
.050 | .085 | .136 | .287 487 1.691 |.853 |.949 | .996 (1.000

= .0100 | .0193 | .0352 | .0989 | .2226 |{.4090 |.6269 |.8201 | .9746 | .9997
.050 | .087 | .142 | .305 | .516 |[.724 |[.877 [.961 .998 |1.000

= .0100 | .0198 | .037 | .108 | .245 |.446 |.670 |.854 | .983 | .9999
.050 | .090 | .148 | .324 | .547 [.756 -|.901 |.972 | .999 |1.000
= .010 | .021 | .039 | .118 | .270 |.487 |.715 |.887 | .990 {1.000
.050 | .091 | .153 | .338 | .570 |.780 (.920 |.979 | .999 (1.000
= 8 21 44 149 359 | 605 | 829 | 953 999 | 1000
47 93 164 385 639 | 851 | 958 | 992 | 1000 | 1000
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Doksum-Bell

A

N «
0.00 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.75 0.90
n=m=35 12 16 22 51 106 | 170 | 232 | 323 401 454
10 54 98 131 238 360 | 506 | 693 | 751 815 885
n=m=6 6 19 28 46 128 | 213 | 292 | 429 522 625
12 59 97 139 248 416 | 584 | 741 | 860 930 950
n=m=7 10 21 31 89 155 | 293 | 425 | 552 726 792
14 64 103 136 256 474 | 660 | 798 | 908 975 980
n=m=10 4 22 40 140 335 | 529 | 720 | 831 951 977
20 57 101 201 406 662 | 868 | 956 | 986 999 | 1000

Similar Savage

n=5m=35 .0100 | .0163 | .0259 | .0599 | .1234 |.2259 |.3707 |.5489 | .8201 | .9816
10 .0500 | .0776 | .1157 | .2271 | .3820 |.5613 |.7346 |.8717 | .9789 | .9996

n=6m=26 .0100 | .0179 | .0306 | .0787 | .1705 |.3148 |.5020 |.7001 | .9233 | .9970
12 .0500 | .0817 | .1273 | .264 | .448 |.645 [.813 |.925 | .992 | .9999

Tm =7 .0100 | .0189 | .0340 | .0948 | .2135 |.3946 |.6104 |.8073 | .9715 | .9997
14 .050 | .087 | .141 | .305 | .517 [.725 |(.878 1.962 | .998 |1.000

S
I

n=8m=3_§8 .010 | .020 | .038 | .115 | .264 |.480 |.709 |.883 | .989 |1.0000
16 .050 | .092 | .155 | .345 | .581 |.789 |[.922 ].981 | .999 |1.000

Cramér - von Mises

n=4m=235 .0100 | .0109 | .0137 | .0262 | .0510 |.0928 |.1562 (.2437 | .4129 | .5802
9 .0500 | .0544 | .0677 | .1214 | .2134 |.3431 |.5019 [.6712 | .8868 | .9903
n=5m=35 .0100 | .0111 | .0147 | .0312 | .0660 |.1285 |.2282 |.3707 | .6511 | .9232
10 .0500 | .0553 | .0713 | .1365 | .2486 |.4031 |.5822 |.7559 | .9388 | .9975
n==5m= .0100 | .0114 | .0158 | .0365 | .0813 |.1621 |.2892 |.4631 | .7648 | .9733
11 .0500 | .0547 | .0691 | .1305 | .2405 |.3965 |.5801 [.7584 | .9423 | .9979
n=6m= .0100 | .0117 | .0170 | .0431 | .1011 |.2064 |.3667 |.5696 | .8611 | .9927
12 .0500 | .0558 | .0736 | .149 | .282 |.461 |.656 |[.825 | .969 | .9994
n==6m= .0100 | .0120 | .0182 | .0484 | .1156 |.2362 |.4139 |.6257 | .8961 | .9957
13 .050 | .057 | .077 | .163 | .311 |(.504 |.704 |.865 | .982 |1.000

n="T7Tm=7 .010 | .012 | .018 | .049 | .119 |.250 |.442 |.664 | .923 | .998
14 .050 | .057 | .080 | .176 | .341 |.550 |.753 |.900 | .990 |1.000
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A
N
0.00 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.75 0.09

n=4m=>5 .0100 | .0152 | .0227 | .0476 | .0914 |.1617 [.2651 |.4046 | .6684 | .9247
9 .0500 | .0717 | .1005 | .1815 | .2938 |.4315 |.5828 |.7312 | .9087 | .9920
n=5m=25 .0100 | .0154 | .0231 | .0489 | .0949 |.1686 |.2762 |.4190 | .6825 | .9296
10 .0500 | .0719 | .1009 | .1831 | .2971 |.4365 |.5885 |.7365 | .9114 | .9923
n=5m=26 .0100 | .0159 | .0248 | .0553 | .1102 |.1968 |.3187 |.4725 | .7328 | .9469
1 .0500 | .0749 | .1091 | .2071 | .3401 |.4947 |.6520 |.7925 | .9389 | .9955
n=6m=6 .0100 | .0162 | .0255 | .0585 | .1201 |.2204 |.3631 |.5401 | .8135 | .9805
12 .0500 | .0752 | .1100 | .2112 | .3512 |.5153 |.6809 |.8240 | .9589 | .9984
n=6m=7 .0100 | .0167 | .0271 | .0647 | .1341 |.2433 |.3922 |.5692 | .8301 | .9826
13 -0500 | .0784 | .1186 | .2352 | .3901 |.5612 |.7230 |.8537 | .9680 | .9988
n="7Tm= .0100 | .0170 | .0281 | .0699 ' 1512 |.2823 |.4582 |.6537 | .8964 | .9941
14 .0500 | .0788 | .1200 | .2431 | .4106 |.5956 |.7645 |.8904 | .9829 | .9997
n=7Tm=38 .0100 | .0176 | .0299 | .0769 | .1668 |.3069 |.4877 |.6815 | .9111 | .9959
15 .0500 | .0822 | .1291 | .2668 | .4452 |.6310 |.7916 |.9057 | .9857 | .9997
n=8m=38 .0100 | .0178 | .0306 | .0810 | .1797 |.3335 |.5265 |.7220 | .9313 | .9973
16 .0500 | .0830 | .1317 | .2792 | .4739 |.6725 |.8333 |.9355 | .9933 | .9999
n=8m=9 .0100 | .0185 | .0329 | .0919 | .2074 |.3817 |.5884 |.7814 | .9587 | .9992
17 .0500 | .0859 | .1399 | .3008 | .5022 |.6979 |.8496 |.9427 | .9942 | .9999
n=9m=9 .0100 | .0188 | .0338 | .0952 | .2158 |.3959 |.6051 [.7951 | .9629 | .9993
18 .0500 | .0878 | .1449 | .3192 | .5386 |.7416 |.8862 |.9635 | .9973 | .9999
n=9m=10 | .0100 | .0205 | .0385 | .1150 | .2629 |.4703 |.6889 |.8615 | .9826 | .9998
19 .0500 | .0947 | .1611 | .3520 | .5759 |.7691 |.9012 |.9683 | .9975 | .9999
n=10m = 10 | .0100 | .0200 | .0384 | .1145 | .2624 |.4702 |.6886 |.8614 | .9825 | .9998
20 .0500 | .0933 | .1623 | .3656 | .6043 |.8028 |.9244 |.9790 | .9985 | .9999

Therefore, G(z) < G(x,u,A),since G(z) < u = G(z,u,A) foru <z < u -+ A,
and G(z) £ U(x) = G(z,u,A) forz < u + Aand foru + A < z. But ¢ is p.o.,
so B(¢; U, G) = B(o; U, G(-, u, A)), 50 8(¢; U; A) z inf, B(¢; U, G(~;u, A)),

which finishes the proof of (ii)

The maximum power is equalled by uniform shift power.

LeEMMA. B(¢; U, G(-,A)) = B(¢; U, H(-, A)).

Proor. Consider any arrangement of X’s and Y’s (from H) with J of the
Y’s = 1:similarly, consider the same arrangement of X’s and Y’s (from @) with
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j of the Y’s = 1. Since Pr {Y = 1} = A in both cases and otherwise H and G are
identical, it is obvious that the probability densities of the two arrangements are
equal. But these yield the same ranking, whence-the lemma.

5. Maximum power results. The numbers in the tables indicate the supremum
of the powers against C(F, A) for various statistics defined below. An expression
for the probability of any ordering for m X’s from U and n Y’s from G(-, A) was
summed over the rejection region of each statistic, randomized to sizes .05 and
.01, except that the factorial increase of the rejection region forced the use of
monte carlo approximation for N = 20, and also for the Doksum-Bell statistic,
since it does not have a fixed rejection region. The results of the monte carlo are
shown as the number of rejections out of 1000 trials. The round-off errors for
A = 0 on the exact calculations indicate that the powers are correct to the number

of decimal places given.
With X () the jth order statistic of m X’s from U and Y (k) the kth order

statistic of n Y’s from G(-, A),
Pra{R(X(m)) = m+ p, R(Y(1)) =m + 1 — ¢}
= Do D o Pr {k) of Y’s 21,7 of X’s £ A}.
Pr{R(X(m)) =m+p,R(Y(1))=m+1—gq|k of Y’s=1,57 of X’s < A}
= 20 250 (DAL — &) (AL = A)"B(j, k)
where
B(j, k) =0, if E>n—p orif j>m—yq,

= (55 (M5 otherwise.

P. van der Laan [13] showed that, for fixed A, the probability under uniform
shift of a particular ranking is a function only of R(X(m)) and R(Y (1)). There-
fore, the probability of any one of the (?3%7°) rankings is given by

B )A" 2055 (TN — A"
withp = R(z(m)) — m,q = m + 1 — R(y(1)). This formula checks correctly
against P. van der Laan’s expression ([13], Table 8) for the special case
m =n= 3.

Letting A(p, q, N, ) be the number (which may be non-integer) of distinct
orderings which lead to rejection with R(X(m)) = m + p, R(Y(1)) =
m -+ 1 — g, the following lemma has been shown:

LemMA. The maximum power against C(F, A) is
B(A) = Xm0 Lo A(p, g, N, ) ()7 2050 (A" 2558 ("7)A7(1 =)™,

If this is differentiated with respect to A and A is set to zero, one has
61(0) = N(ﬁ)—l[ZLo ;n=0A(p7 9, N, a) - ZZ=1 A(P; m, N, a)

- qu’;l A(ny % N; 0{)],
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and since B(0) = «, B'(0) = N(a — Pr{reject and a Y smallest | Ho}
— Pr {reject and an X largest | Ho}), so

Lemma. 8'(0) = Na — m Pr, {reject | Y (1) < X(1)} — n Pro {reject | Y(n) <
X (m)} s the initial power slope against uniform shift, with size .

6. Statistics used. Let Z(k) denote the kth order statistic from the standard
normal cpf, ®. Let {(k) be the expected value of Z(k). Let R be the ranking
function for the combined sample. Then the statistics were used in the forms:

Fisher-Yates [12]: X e ¢ (R(Y%))

van der Waerden [14]: D iy & (R(Y:)/(N + 1))
Mann-Whitney-Wilcoxon [8]: D ey R(Y3)

Doksum-Bell [2]: D iy Z(R(Y%)) — Dorm Z(R(X2)), (n = m)
Similar Savage: Y iy S(R(Y%)), with S(k) = D Xwirwi ™
Cramér-von Mises [4]: D ry > 7y (R(Y:) — R(X;))*

The test corresponding to each of the above statistics was: “reject if too large”.
Therefore, the Similar Savage is not equivalent to the test proposed by Savage
[9], but the results are included since the work had been done, and the test is
undoubtedly the most powerful rank test against some class of alternatives. The
Epstein-Rosenbaum-Moses test [8] used was, “‘reject if too many Y’s are greater
than all of the X’s” i.e., if X < Y for a specified k. The Cramér-von Mises
test is not one-sided, but was included for a few cases for general interest .

Perhaps it should be commented that, as well as being asymptotically equiva-
lent, the Fisher-Yates and van der Waerden tests were equivalent up to n = 6,
m = 7 and also coincided with the Similar Savage up ton = 5, m = 5.
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