A STATISTICAL BASIS FOR APPROXIMATION AND OPTIMIZATION
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1. Summary. Let T be a compact metric space and let D = {4, t,, ---}
be a countable dense subset. We propose to show that if for z ¢ C(T') we define
z,(t) = E(z(t) | z(t), - - ,z(ts)) (conditional expectation) then E|z, — z|*—0
where || denotes the sup norm and p = 11is such that E[z|® < «. Furthermore,
if we measure the distance between z, and x by f |za(t) — z(t)|* du(t) for some
finite measure u on T, then z, is (in a least square sense) the optimal prediction
for x given x(t1), « -+, (t.).

We also consider an optimization problem in this same probabilistic setting.
Roughly stated, we consider how, given z(¢), -+, (¢.), one should choose
t e T so as to maximize E(z(¢)). The existence of an optimal policy is proved.
If we let S(x) denote the supremum of z over T and let v,(x) denote z(¢) where
¢ is the point chosen in accordance with the optimal policy then it is shown that
E[S(z) — va(z)| — 0 as n — . This last result is obtained under the assump-
tion that E[z| < .

2. Conditional expectation.

DeriNITION. A probability space (X, Z, m) is called inherently regular if
for every c-algebra, =’ C =, a regular conditional probability for =’ exists.

Recall that a regular conditional probability for =’ is a family (m, |z e X)
of probabilities on (X, =) such that if 4 ¢ 2 then m.(A) as a function of z
is ='-measurable and forany 4 ¢ =, B ¢ 2’ we have fB mz(A) dm(z) = m(4 nB).
When such a family exists then the conditional expectation ¢ of any integrable
random variable ¢ defined on (X, =, m) can be given by ¢(z) = [ ¢ dm. . For
definitions and a general discussion of these ideas, we refer to [4].

In this section, we assume that (X, Z, m) is an inherently regular probability
space and that =’ is a sub-c-algebra of =. Moreover, we will denote by (m. | z £ X)
a regular conditional probability for ='.

Throughout, B will denote a separable Banach space with norm |-|. The
dual of B (continuous linear functionals) will be denoted by B* and the natural
pairing between B and B* by (-, -), i.e. (b, £) = £(b) for all b ¢ B and £ ¢ B*.

We shall use the theory of vector valued integration as developed in Dunford
and Schwartz [1]. Briefly, we recall that if J:X — B is Z-measurable (i.e.,
&J is =-measurable for all £ ¢ B*) then J is integrable if there exists b ¢ B such
that [ (J(z), £) dm(z) = (b, £) for all £ & B*. In this case, we write [J dm =
EJ = b. Moreover, if J is Z-measurable and E|J| < « then.J is integrable. By
L,(X, Z, m; B), we mean the space of all Z-measurable functions of X into B
such that E|J|? < «. For these functions, we define |J|, = (E|J[?)"?. It follows
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60 R. N. RICH

that with ||, as a norm and with the obvious linear operations L,(X, Z, m; B),
for p = 1, is a Banach space. Henceforth, since X and m are to remain fixed,
we shall denote this space by L,(Z; B). We shall always assume p = 1.

By restricting the probability m to =’, we can obtain another space L,(Z'; B).
Since L,(2'; B) € L,(Z; B) and since they both are Banach spaces, it follows
that L,(Z'; B) is a closed subspace of L,(Z; B). We can conclude, by applying
a well-known theorem concerning approximations in Banach spaces, that for
everyJ & L,(Z; B) that there exists P & L,(2'; B) such that |[J — P|, < |J — K|,
for all K € L,(Z'; B). In the case p = 2 and B is a Hilbert space, we can find P.
To do this, however, we shall need the notion of conditional expectation of a
vector valued function.

DrriNiTION. For J & Li(Z; B), we define E(J | =Yz = EJ(z) = fJ dmg .
Since © > [ |[J|dm = [ ([ [J| dm.) dm(z), it follows that for almost all z ¢ X,
J |JIm. < = and so by a previous remark [J dm, exists. We read E(J | Z)
as the conditional expectation of J given Z’.

Since the preparation of this work, it has been pointed out to the author by
J. L. Doob that a more general definition of conditional expectation has been
formulated by Scalora and that Scalora has proved Theorem 2.4, see [5].

LemMa. E'(J, £) = (E'J, £) for almost all z € X.

Proor. E'{J, Oz = [{J, & dm. = ([ J dm, , &) = (EJ)z, ).

Using this lemma and the corresponding facts for conditional expectation
in the case of real valued random variables, we can easily prove the following:

TaEOREM 2.1. IfJ £ Li(X, Z) then

(1) E'J is Z'-measurable; _

(2) [eJdm = [ E'J dm for all F e Z';

(3) E(EJ) = EJ;

(4) |EJ(2)| = E'VJ|(z); and

(5) if J is ='-measurable then E'J = J.

DEeriniTION. By a projection of a Banach space B onto a subspace V, we
mean an operator (bounded) P: B — B such that P* = P and P(B) = V.

Turorem 2.2. E’ is a projection of L,(2; B) onto L,(Z'; B) and ||E'|| = 1.

Proor. First we show that if J & L,(Z; B) then EJ ¢ L,(Z; B). Since
|7| € L,(Z; R), we know that E'|J| ¢ L,(Z; R); and since by Theorem 2.1 (Part
4) |[E'J| £ E'|J|, it follows that E'J ¢ L,(Z; B). Now by Theorem 2.1 (1) and
(5), it follows that E’ maps L,(Z; B) onto L,(Z'; B). To complete the proof,
we note that E|EJ|” < E(E'|J|)* < E(E'|J|?) = E|J|” and if J is a constant
map EJ = J.

We can now prove a theorem which generalizes the principle of least squares.

TueoreM 2.3. If B is a Hilbert space then Ly(Z; B) is a Hilbert space and E' is
the orthogonal projection of Lo(Z; B) onto Ly( ='; B).

Proor. We let (-, -) denote the inner product in B and we define [J, K] =
[ (J(z), K(x)) dm(z). It is readily verified that [-, -] is an inner product in
L,(Z; B) which induces the norm. We can now apply a theorem (proved in [6])
which asserts that a projection of norm 1 is orthogonal.
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We remark that if H is a Hilbert space and P is the orthogonal projection of H
onto a subspace M then for any h ¢ H the element of M closest to k is P(H).
Hence, this last theorem answers the question posed earlier. We proceed to
establish a convergence theorem.

DerintTiON. If Z.(n = 1) is a sequence of o-algebras contained in = such that
(1) 2: © 244 for all ¢ = 1 and (ii) = is the minimal o-algebra containing the
algebra u =, then we write =, — =.

THEOREM 2.4. IfJ & L,(Z; B) and if Z, — = then E(J | Z,) —J.

Proor. Since 2 is minimal over the algebra u =, we know ([1], p. 167) that
we can find a sequence J; of u Z, simple functions such that J; — J. We can
assume that J; ¢ L,(Z; ; B). Now denoting E(- | Z,) by E.(-) and the identity
map of L,(Z; B) into itself by I, we have

(I = B, = [(I = Ea)(J = Ja) +Ja)lp £ (I — BT — Ja)l,
+ (I = Bl S I = Ball-W = Jul, .

Note that (I — E,)J. = 0 by Theorem 2.1 (5). Since |[I — E,| £ 2
and |[J — J.|, — O the theorem is proved.

3. Probability in Banach spaces. We now turn to the study of probabilities
in Banach spaces. We let X denote a separable Banach space with the norm
of z ¢ X denoted by N (z) and D a countable determining set for X. That is, D is
a countable subset of X * such that N (z) = sup {|&(z)|: £ € D}. That such a set D
exists is proved in [2].

DrriniTiON. We let = denote the o-algebra of X generated by the open sets
of X.

TurorEM 3.1. Let Zp be the smallest o-algebra making all the functionals inD
measurable. Then £ = Zp .

Proor. Clearly Z, C 2. For a £ X we define N,(z) = N(z — a). Since D is a
determining set for X, we have N.(z) = sup {[¢(z) — &(a)|: £ ¢ D} andsince
each £ ¢ D is Zp-measurable it follows that N, is Z,-measurable. Therefore,
2p contains all the open spheres of X. Now X is second countable and since the
open spheres form a base for the topology of X it follows that every open set is
a countable union of spheres. Therefore, 2, containing all the open sets must
equal Z.

TuaroreEM 3.2. If m is a probability on (X, Z) then (X, =, m) is inherently
reqular.

Proor. Since X is a separable metric space, it can be homeomorphically im-
bedded in R” (a countable product of the reals). For a proof see [3], p. 125.
Moreover, since X is complete in its metric, it follows [3], p. 207 that its image in
R%is a G5 and hence is a Borel set. Now we can apply a theorem of Doob (proved
in [4], p. 361) the essential content of which is that Borel sets in R* are inherently
regular for any probability defined on their Borel subsets.

We now proceed to prove a lemma which we will use later. We assume that a
probability m has been defined on (X, 2).



62 R. N. RICH

LemMA. Let =’ be a o-algebra contained in = and let =’ be the minimal o-algebra
containing a given countable algebra II. Then if (m. | € X) is a regular conditional
probability for >’ there exists a set M € =’ such that m(M) = 0 and x £ M implies
ma(F) = xr(z) for all F £ Z'. Here xr denotes the characteristic function of F.

Proor. For F ¢ 11, we define F* = {z | mo(F) # x#(x)}. It is easily seen that
F’ &3 and that m(F°) = 0. Let M = v {F°: F e 1}. Clearly m(M) = 0 and
for  # M and any F ¢ I we have m,(F) = xr(z). Both m.(F) and xr(z), for
fixed « £ X, define measures on =’ and since they agree on a ring which generates
=’ they must agree on all of 2. This completes the proof.

TraEOREM 3.3. Let O be a continuous linear map of X into a separable Banach
space Y. Let II denote the o-algebra for Y generated by its open sets and let = =07m
Denote by I the identity map of X into itself and suppose that EN < . Then for
almost all z € X, we have O(z) = O((E'I)z).

Proor. Clearly II is generated by a countable ring (Y is second countable)
and so 2’ is also. We let M be the set guaranteed by the preceding lemma.

We assume z 2 M. Let y = O(z) and let V = O07'(y). We know by the lin-
earity and continuity of O that V is a closed convex subset of X. If £ = (E "Nz eV
then there exists £ ¢ X* and a real number a such that £(£) < o < £(2) for all
zeV, ([1], p- 417).

Since z ¢ V and z £ M, we have that m.(V) = 1 and so £(%) = E(f Idm;) =
fz(z) dm,(2) = va £(2) dmas(z) = a. This contradiction completes the proof.

This theorem may be given the following interpretation: if we consider O(x)
to represent an observation and (E'I) (x) to represent a prediction for z given
O(z) then the theorem asserts that the predicted value for 2 will be consistent
with the observation.

Derintrion. If (Y, II) is a measurable space with II a o-algebra and if
@1, , o are -measurable maps of X into Y, we define, for any J & Li(Z; B),
E(J | @1, -+, oa) to be the conditional expectation of J given the smallest o-al-
gebra making ¢1, - - - , ¢» measurable.

4. Applications to function spaces. We let T be a compact metric space with
D = {t;, 1y, - - -} a countable dense subset and we let X = C(T') the space of all
continuous real valued functions on 7. For z ¢ X, we define the norm of z by
|z| = sup {|z(¢)|:te T}. It is known ([3], p. 245) that X is a separable Banach
space. For ¢ ¢ T, we define ¢ *(z) = z(t). We let I be the identity map of X into
itself. We assume that (X, Z, m) is a probability space where Z, of course, is the
o-algebra generated by open subsets of X.

TaeoreM 4.1. If E|z|® < o« and i P, = E(| ¥, -, taY) then
E|P.x — z|” > 0asn — .

Proor. First note that E|z|? < o is equivalent to I ¢ L,(X, Z, m; X) and
so the conditional expectations P, of I are well defined. Also {t*: t e D} is a
determining set for X. The conclusion follows from Theorem 2.4 and Theorem
3.1.

We remark that if 2’ is a -algebra contained in = (as e are assummg) and if
(m. |z e X) is a regular conditional probability for =’ then E(I | Z')x is the
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function £(t) = f 2(t) dm.(2). Note that using this last equation, we candefine
Z without using the notion of vector valued integration. More precisely, if
Elz| < o then Elz| = [ ([ |¢| dm.(2)) dm(x) and so [ |z| dm.(2) is finite for
almost all z ¢ X. Since |2(¢)| < ||, it follows that [ 2(¢) dm.(z) is defined for
almost all z £ X. We now show that the functionJ (z) = Z is, in a certain sense,
an optimal prediction (given =) for the function I(z) = z.

We denote by II the o-algebra generated by the open subsets of 7" and we let u
denote a finite measure on (7, II) which we take, for convenience, to be nor-
malized (i.e., u(T) = 1). Welet H = Ly(T, I, u; R) and we denote the inner
product in H by (-, -) and the norm by |- |. . We remark that X < H. Note that
we still denote the norm in X by |-|.

LemMA. Let h e H and let b'(z, t) = z(t)-h(t). Then b’ is = x II measurable.

Proor. If h is continuous on T then ' is continuous on X x T and so is
2 x II measurable. If h, — h pointwise (a.e) on T then k, — k' pointwise
(a.e) on X x T and so the lemma follows from the fact that every & ¢ H is the
pointwise (a.e) limit of continuous functions ([1], p. 170).

TurorEM 4.2. Assume E|z|* < o and letJ: X — H be defined by J (z) = Z.
Thend € Lo(Z'; H) and if K & Ly(2'; H) 4t follows that E [ |x(t) — Kx(t)|® du(t)
= E [ |z(t) — 2(¢)]* du(t), thatis, E(|z — K.|2)* = E(Jz — &2)".

Proor. Let I: X — H be the inclusion map. We shall show that (E'I)z = Z.
The theorem will then follow from 2.3. Let y = (E'I)z. Then for all & ¢ H we
have, by the definition of vector valued integral and by an interchange in the
order of integration (justified by the previous lemma), the followingequality :

(y, 1) = [ (2, ) dma(2) = [ ([ 2(t)h(2) du(t)) dm.(2)
= [ (J 2(O)h(t) dm(2)) du(t) = [ &()h(t) du(t) = (&, h).

Since this holds for all 4, it follows that y = Z.

TueorEM 4.3. If E|z| < » and if P, = E(I | 4%, ---, t.*) then for almost
all z e X, (Pux)t; = x(t;) fori =1, -+, n.

Proor. The theorem follows from 3.3 by letting O(z) = (z(t1), -+, z(ta)).

We now turn to the study of an optimization problem. We shall first give an
intuitive formulation of the problem. Let X, Z, m be as before and let O be a
continuous linear map of X into Y. An element = £ X is to be chosen in accord-
ance with the probability m, and we are then to be told the value O(z). On the
basis of this information, we are to choose a point t ¢ T'; and after having chosen
this point, we receive as payoff the value z(¢). What policy shall we adopt so
as to maximize our expected payoff? A policy is essentially a function ¢ from ¥
into T or equivalently a function ¢ from X into 7 such that ¢ is constant on the
sets 07 (y) for all y ¢ Y. The expected payoff for a policy ¢ would be, of course
E(z(¢z)). This motivates the following definitions :

DEeFINITION. For z ¢ X, we define V(z) = 07'(Ozx).

DEeriNiTION. A function ¢ from X to T is called admissible if (i) ¢ is constant
on each V(z) and (ii) z(ez) is =-measurable in x. Remark. If ¢ is admissible
and if Elz] < « then Ez(pz) < .
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We now assume E|z| < « and we let =’ denote the s-algebra induced by O.
We let (m. |z € X) denote a regular conditional probability for =’. By earlier
results, we know there exists a set M ¢ =" such that (i) m(M) = 0, (ii) z 2 M
implies m.(F) = xr(z) for all F ¢ =, and (iii) z ¢ M implies O(z) = O(Z),
i.e. £ ¢ V(). For the remainder of this section, M will denote such a set.

DEeriNITION. If fis any real valued function, we denote by S(f) the supremum
of f(z) for all z in the domain of f.

We will use this notation only when the domain of f is understood. In par-
ticular if z ¢ X then S(z) = sup {z(¢):¢ ¢ T}. We remark that on X, S is =-meas-
urable.

DEerFINITION. A function 8 of X into T is called =-measurable if § *(B) ¢ =
where B is any set in the o-algebra of T generated by the open subsets of 7.

We remark that an admissible function of X into 7' need not be Z-measurable.

LeMMA. There exists a map 6 of X into T such that 0 is Z-measurable and
z(6z) = Sz.

Proor. Let K denote a compact subset of the real line. For z ¢ C(K) define
o(z) = inf {¢t: t ¢ K and z(t) = S(z)}. We first show that ¢ is lower semicon-
tinuous. To do this, let a be a real number.and let 4 = {z: z ¢ C(K) and
o(z) £ a}. If {x,} is a sequence in A and z, — z, we can assume ¢(z,) —t ¢ K.
Since ¢(z,) = a for all n, it follows that ¢ < a. Moreover, z.(¢z,) — z(t) and
it is easily verified that S(z,) — S(z). By the definition of ¢, we know that
2o (or,) = S(z,) and so S(z) = z(¢) from which we can conclude that p(z) =
t < a and so A is closed.

To prove the lemma, we let K denote the Cantor discontinuum and let §
denote a continuous function from K onto T (see [3], p. 166). We define the
function 6*: X — C(K) by 8*(z) = 6 for all z ¢ X and we define (z) =
3(¢(8%z)). Since each of the maps 8, ¢, 8™ is either continuous or semicontinuous,
it follows that 8 is measurable. That z(6z) = Sz is easily verified.

LemMA 4.1. Let ¢ be admissible. Then x £ M implies f 2(pz) dm(2) = E(ef).

Proor. If z ¢ M then m,(V(z)) = 1and Z & V(z). Therefore, [ z(¢z) dm.(z)
= [vw 2(e2) dma(2) = [v 2(0%) dma(2) = #(eE).

DerinITION. As before, we let I denote the identity map of X into itself and
weletJ = E(I|3).

Recall that J(z) = Z.

LemMma. For dll x ¢ M, we have J’z = Jz.

Proor. First we note that J is ='-measurable and so J is constant on the sets
V(z). Moreover, by Theorem 3.3 we have J(x) ¢ V(z) for all z g M. Since
z € V(z), this proves the lemma.

TarEorEM 4.4. Let 0 be a Z-measurable function of X into T such that z(6z) =
S(z) and let § = 6J. Then 8 is admissible and if ¢ 1s any admissible function then
E(z(6z)) Z E(x(ez)).

Proor. Since J is T'-measurable, it follows that 8 is ='-measurable. There-
fore, 8 is constant on the sets V(z). Moreover, the map of X into X x T de-
fined by = — (z, fz) is measurable and since the map of X x T into the reals
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is defined by (z, t) — :v(t) is continuous it follows that 2(8z) is Z-measurable,
in fact z(z) is even ='-measurable. Now let z £ M. Then since J% = Jz we
have that 8(Z) = 0(&). Therefore, [ 2(82) dm.(z) = #(6) = Z(0E) = Z(of)
= [ 2(¢2) dm.(2). Now E(z(bz)) = [ #(6%) dm(z) and similarly E(z(¢z)) =
f Z(¢Z) dm(z) and so the conclusion follows.

We now proceed to prove a convergence theorem. To do this, it will be con-
venient to change the notation slightly. We will denote the norm of z ¢ X by
N(z), i.e. N(z) = sup {|z(t)|: te T}. We will use |-| only to denote absolute
value. As before, we let I denote the identity map of X onto itself and we let 6
be a measurable map of X into T such that z(6z) = Sz.

Lemma. Let K, — K in Li(X, 2; X ). Then SK, — SK in Li(X, Z; R). Here
R denotes the reals.

Proor. It is easily proved that |SK,z — SKz| < N((K, — K)z) and so the
lemma, follows.

THEOREM 4.5. If EN < o then E|Sx — z(6.z)| — 0 as n — oo where 0,
0E(I | t,*, -+, t.%).

Proor. LetJn =E(I|t* -, t.%). It follows from Theorem 4.1 that J, — I
in Li(X, Z; X). Now by Lemma 4.1 and Theorem 4.4, we have that (1)
[ 2(642) dm.(z) = SJ.x for almost all z ¢ X. Since S(z) =z z(@) forallte T,
it follows that E|S(z) — z(6.z)| = ES — Ez(6.x). In view of (1), we have
Ez(0.x) = ESJ, and since ES — ESJ, < E|S — SJ,| the conclusion follows
from the preceding lemma.
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