A NOTE ON LIMIT THEOREMS FOR THE ENTROPY OF
MARKOV CHAINS!

By Harry Dym
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Let X;,7 = 1,2, - - - be a stationary ergodic m-step Markov chain defined on a
probability space (2, @, P) and having for its state space the finite set of in-
tegers {0, 1, --- , D — 1}. Here @, the sample (path) space, is equal to the set
of all sequences (wi, wy, ---) with w, = X,.(w) €{0, 1, ---, D — 1}. Q is the
Borel field generated by the cylinder sets of @ and P is a stationary probability
measure on  which for all n = m + 1 satisfies the relation

P{Xn = in/Xn—l = in—l; MY Xl = 7«1}
= P{Xm+1 = in/Xm = in—l, "" ’Xl = i"—"”}
where ix {0,1, --- , D — 1}, K =1, --- ,n.
For w & @ let [w], denote the cylinder set {u e @:u; = wy, -+, U = wa} and
correspondingly let P([-],) denote the random variable whose value at w is
P([w],) = P{ueQ: u e [w],}. In this note we establish a law of the iterated

logarithm for the sequence of random variables {—log P([:].)}:
THEOREM 1.

P{w: lim Supnw [(—log P([w].) — nH)/(2Bn loglogn)}] = 1} = 1
where H denotes the entropy rate of the process X, , i.e.,
H = limn.e [E(—log P([w]s))/n]
and
B = limy.o [B{(—log P([w]») — nH)’}/n].

E denotes the expectation operator relative to the measure P.

The proof of Theorem 1, to be presented below, depends essentially upon the
observation that there exists a function f and a one-step Markov chain Z;(w),
j=m+1,m+2 -, weQ, such that

(1) —log P([el.) = 2 5-mi1 f(Zi(w)) + O(1).

The proof is then completed by referring to a version of the law of the iterated
logarithm theorem which is applicable to functionals of a Markov chain (Chung,
[3], Theorem 5, p. 101). It is worth noting that (1) may be used in conjunction
with other established limit theorems for functionals of a Markov chain, (Chung,
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[3], Theorem 1, p. 94 and Theorem 2, p. 87) to derive, for example, the following
theorems:
THEOREM 2.

limy.o P{[—log P([w]a) — nH]/(Bn)! < a} = (2r)7 [2 ™" db.
THEOREM 3.
limg,» [—log P([w]s)/n] = H with probability one.

As it happens, both Theorem 2, the central limit theorem, and Theorem 3, the
Shannon-McMillan theorem, are known to hold in a more general setting. For
details concerning Theorem 2 see Ibragimov ([5], Theorem 2.6, p. 376); for
Theorem 3 see Breiman [1] and [2] and further extensions by Chung [4].

Proor oF TuEOREM 1. Let Y; = "y X, D i =mom 1, -
Then Y; is an irreducible simple (one-step) Markov chain on © with state space
{tD™},+=0,1,---,D" — 1. Fors,v» = 0,1, --+- , D™ — 1, let P,, denote the
probability of a transition (in one step) from the state sD™™ to the state vD™",
et (= P{Y) = sD™™}) denote the corresponding stationary initial probabilities
la.nd let New([wla), = m + 1, be the number of one-step transitions from the
state sD™™ to the state »D™™ in the sequence Y,(w), ++, Ya(w). (Note that
> oo Now([w]la) = n — m.) Then

—log P([w]s) = —log P([w]m) — 2osse Nuw([w]n) log Pus .
Now, the sequence of random variables
Zi=Y;+D"Y;a, j=m+1lm+2 -’
form a stationary irreducible Markov chain on © and

No([wls) = Z;';m-i-l Xoo(Zj(w))
where
Xw‘(a) =1 if a= D ™s+v)D™™

=0 if a (D ™s+ v)D™™.

Hence, setting f = — s, (108 Po)Xeo a0d mSn = D imi1 f(Z5) (0 = m + 1),
we conclude that —log P([w],) = —log P([w]m) + mSa(w).
It is easily checked that

E[f(Z;)] = — 2_ mPs log P,, = H.
Thus
lim SUPssw [(—log P([w]a) — nH)/(2Bn log log n)}]
= lim 8UPpsew [(mSn — E(mSa) — mH — log P([w]m))/(2Bn log log n)"]
= lim SuPnsw [(mSa — E(mSa))/(2Bn log log n)?].

Furthermore, since Z;,j = m + 1, is a finite irreducible (and hence recurrent)
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stationary chain it follows that (Chung, [3], Corollary, p. 32)
liMnse 7™ 2 0mis B{(f(Z;) — H) log P([w]m)}
= E(f(Zmy1) — H)E(log P([w]n))

= 0.
Consequently

limgw E{ (wSn — (n — m)H) log P([w]n)/n}
= limpsu ™ 2 7emis E{(f(Z;) — H) log P([]n)}

=0
and

B = limmw [E(=log P([0],) — nH)*/n] = limpw [E(nSe — E(Sa))*/nl.

The desired result now follows by Theorem 3, Theorem 5 and the ensuing re-
mark of Chung ([3], pp. 97, 101, 102).
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