ESTIMATION OF NON-UNIQUE QUANTILES

By Dorian FerbmaN! AND Howarp G. Tucker?

Michigan State University and Unaversity of California, Riverside

1. Introduction and summary. This paper is concerned with consistent es-
timates of a quantile of a distribution function when the quantile is not unique.
To be more precise, since the quantile is assumed not to be unique, we are con-
cerned with obtaining a consistent estimate of the smallest pth quantile for a fixed
p(0 < p < 1), and from this procedure we can estimate the largest pth quantile.
In Section 2 we consider the oscillating character and limit distribution of the
sample pth quantile. Also included in this section is a precise statement of the
problem to be solved. In Section three the problem of medians only is considered.
Here we treat the sample median of the set of averages of all ("3) pairs of
observations X;, ---, X,, which is briefly mentioned in [1]. We give a proof
that this sample median converges almost surely to the center median of the
original population, provided that the original distribution function is symmetric
about a median. If this symmetry condition is relaxed, it is shown that this sample
median of averages of pairs need not converge; and even if it did converge, it
might converge to a number which is not a median of the parent distribution. In
Section 4, strongly consistent estimates of the smallest pth quantile are obtained
(for fixed p, 0 < p < 1) which do not depend on the functional form of the
parent distribution function, and a characterization of weakly consistent estimates
is given.

2. Oscillatory effect of the pth sample quantile. Let {X,} be a sequence of
independent identically distributed random variables with common distribu-
tion function F. For fixed p £ (0, 1) we assume there exist numbers a < b such
that a = inf {z | F(z) = p} ann b = sup {z | F(z) = p}. Let X,1 £ X, <
-++ £ Xy na.8. denote the order statistics of Xy, - - - , X, , and let 1, = X 1np
where [z] denotes the largest integer which does not exceed x. In this section the
oscillatory property and the limit distribution of 7, are obtained.

THEOREM 1. The sequence {1h.} obeys the oscillatory effect with respect to the
interval [a, b], i.e., P[M, = aio.] = Plf, = bio.] = 1, whatever be F and p.
(i.0. means “infinitely often.”)

Proor. We prove that P[#, = bi.o.] = 1 and show that this does not depend
on p or F. Thus the other conclusion will also hold. We define {U,} by U, =
Iz, >0 — Iix, <a1 - The random variables {U,} are independent, and P[U, = 1] =
1 — pand P[U, = —1] = p. We first establish that

[, U = n(1 — 2p)] < [ = .
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Indeed,
[, = b] = [at least n — [np] 4+ 1 of the X;,1 = ¢
=L Uz n — 2mp] + 21 D[22 Ui 2 n(1 — 2p)).

One easily verifies that EU, = 1 — 2p and Var U, = 4p(1 — p). By the law of
the iterated logarithm (see Logve [2], p. 260)

. DraUp —n(l — 2p)
P [h“:fi‘p Bra(l — p) log log #p(l — PP 1] =1

Hence for any ¢ > 0,
P[ Y Uy — n(1 — 2p) > [8np(1 — p) loglog 4np(1 — p)IH(1 — ¢) i.0.] = 1,

A

n, are = b)

or

[a—y
.

P i, Ue 2 n(l — 2p)io] =
Hence Plf, = bi.o.] = 1. Similarly,
[205 Ur = n(1 — 2p) — 1] C [hn < a].
Also, by the law of the iterated logarithm,
. U —n(l — 2p)
P [llm inf —1|=
i et ) g Tog TSP = )=

and we obtain, as in the above case, P[f, < a i.0.] = 1, which concludes the
proof of the theorem.

Not only does {7} oscillate across [a, b] infinitely often with probability one
but actually {#,} does not converge in probability to any constant. We can,
however, show that whatever be F and p that X, 1., has equal chance of being
below @ and of being above b. More precisely, we have

TarorREM 2. The limiting distribution of X, (np %8

limpsw P[Xa,me < 2] =0 if z<a
if aZz<bd
if x=b.

Proor. Let Y, be a random variable whose distribution is binomial B(n, F(x)).
Then

— N

PlXo tp = 7] = Z’:;[ﬂpl (I?)(F(x))k(l - F(x))n—k
P[Y, 2 [np]].

Now
{lnp] — nF(z)}/{nF(z)(1 — F(2))}} ~ {n*(p — F(2))}/{F(z)(1 — F(z))}*
By the Laplace-DeMoivre theorem,
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[ Yo, —nF(z) _ [np] — nF(2) ]
nF(x)(1 — F()} = [nF(z)(1 — F(x))}

= 0, 1/2 or 1 according as F(z) < p, F(z) = por F(z) > p,

i.e., according as ¢ < @, ¢ < < b or z = b, which proves the theorem.

We would still get the oscillatory effect of Theorem 1 if we were to try to
estimate @ by Xa,Lmy where L(n) < [np] but [np] — L(n) < 6(8np(1 — p)
log log 4np(1 — p) )¥ for sufficiently large n, and where 0 < 8 < 1. Thus, even
the dropping below the pth sample quantile by a relatively slowly increasing
number of ordered observations does not assure us of a consistent estimate of a.

The problem then is: given p, can one estimate @ and b, and what are such
estimates? It is true that by the Glivenko-Cantelli theorem the empirical dis-
tribution function F, converges uniformly to F with probability one. Hence
eventually #,(z) will be between the horizontal lines p = ¢, but when this will
happen we do not know. Even if we knew, the curve of F(x) might drop off
ever so slowly to the left of @ and might increase ever so slowly to the right of b,
so that if n is too large, the intersections of F.(x) with p == ¢ would be far re-
moved from a and b. The problem is thus not easily solvable by use of the
Glivenko-Cantelli theorem and hence is non-trivial.

P[Xn,[np] = .’17] = lim P

n—>0

3. Sample medians of averages of pairs. In case the quantile that one wishes
to estimate is a median, and if the distribution function F is symmetric about a
median, then it is possible to find a consistent sequence of estimates of the center
median (a + b)/2 (where now p = %). In this section we prove that under the
hypothesis on F given above, F x F(2x) has only one median u which is the
center median of F. A very easily obtained consistent estimator of u is exhibited,
and the inadequacy of this approach to the more general case is demonstrated.

LemMA 1. If F is symmetric about a median u, then F x F(2x) has only one
median, which s equal to .

Proor. We may assume p = 0. Let X and X be independent and identically
distributed random variables with F as their common distribution function. Then
(X + X')/2and (—X — X ’)/2 have the same distribution which is also sym-
metric about 0. It is sufficient to show that for every n > 0 the event [—2y < X +
X' < 29] has positive probability. But this event is implied by the event

[~b—n=X=<-b+nNPb—-—n=X =b+n,

whose probability is positive because of the independence of X and X " and the
definition of b. Q.E.D.

Thus there is a unique median of F * F(2z), and it is the center median of F.
We now show how this center median of F can be estimated. Let X;, X, - -+, X,,
-+ be a sequence of independent observations on a random variable X whose
distribution function is F. Let fi, denote the sample median of the following
(*+") random variables: {(X: + X;)/2,1 £ ¢ < j < n}.

TaroreM 3. Under the hypotheses of Lemma 1, pn — p a.8..

Proor. Let F, be the empirical distribution function of Xy, -+, X,, and
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let G, be the empirical distribution function of {(X; + X;)/2,1 £ i < j < n}.
It is easy to see that F, % F,(2z) is the empirical distribution function of
{(X:+ X;)/2,1 =i =<n,1=j = n}. Let f, be the (empirical) characteristic
function of F, . The Glivenko-Cantelli theorem states that

Plsup, |F.(z) — F(z)| — 0] = 1.
Hence P[f,(u) — f(u) at all u] = 1. (Note where “at all ” occurs.) Thus,

Plf.2(u/2) — f*(u/2) at all u] = 1,
where f is the characteristic function of F, which in turn implies (because of
the continuity theorem) that
P[P, % F,(2x) — F % F(2z) at all  at which F % F(2z) is continuous] = 1.
An easy computation shows that

Fo.xF.(22) = n Zl§i§n.1§j§n Iyx,4xj)/252)
= [(n" + n)/1G.(x) — (1/n)F.(2).
But (1/n)F,.(z) — 0, so
P[G.(x) — F » F(2z) at all z at which F % F(2z) is continuous] = 1.

Since #, is the sample median of G,(z), and since F % F (2z) has exactly one
median, namely g, it follows that 4, — p with probability one. Q.E.D.

This procedure is inadequate for estimating the center median x of F if F is
not symmetric about u. This statement is justified because: (i) if F is not sym-
metric about a median, then it can occur that F % F(2z) has a median outside
the interval of medians of F, and (ii) unlike the symmetric case, F % F(2z)
can have a non-degenerate interval of medians. As an example of (i) we con-
sider 0 < @ < b, and let ¢ > 0 be small, i.e., 0 < ¢ < @, let ¢ > 2b + ¢ and let
0 < & < }. Let F have a density f defined by

flx) = 1/2¢ if ze(a—¢a)
= 6/(c — b) if ze(b,c)
=(—206)/e if ze(c,c+e)
=0 otherwise.

Let X, Y be independent, identically distributed random variables with density
f just given. The medians of X are all the points in [a, b]. We shall show that the
smallest median of (X + Y)/2 is greater than b, and shall do this by proying
P[(X +Y)/2 > b] > }.Since ¢ > 2b we need only show that P[X + Y >¢] > 1,
or PIX + Y = ¢] < 1. Now it is easy to see that

PX+Y = <}+2/2) +8 =G+,
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and since § < %, we have
PX+Y=sd< @' <%

We now construct an example to prove assertion (ii) given above. Let F have
a density

f(x) = 1/4¢ if ze]0, ¢
= 1/4e if ze[2,2 4+ ¢
=1/2¢ if ze[4,4+ €
=0 otherwise,

where 0 < € < 1. Then it is easily seen that F'  F has a triangular density over the
intervals [0, 2¢], [2, 2 + 2¢], [4, 4 + 2¢], [6, 6 + 2¢] and [8, 8 + 2¢] and spreads
over these'intervals the probabilities &, 3, 1%, &, : respectively. Hence F % F(2z)
has triangular densities over [0, €], [1, 1 4 €], [2,2 + €], [3, 3 + €, [4, 4 + ¢
with probabilities &, %, %, 5> 1 associated with the corresponding intervals.
Thus, in this non-symmetric case F * F(2z) has an interval of medians [2 + ¢, 3]
of positive length.

4. Consistent estimates of the smallest pth quantile. We have seen in Section
2 that the [np]th order statistic Xa,p) is not a consistent estimate of the smallest
pth quantile, a. In this section we show that in the notation of Section 2 there
does exist an order statistic X, 1y , where L(n) < [np], which does converge
with probability 1 to the smallest pth quantile, a.

TurorEM 4. If for some selected K > 0, 6 > 0 the sequence of integers {L(n)}
satisfies (1) 0 < [np] — L(n) = Kn't for some ¢, 0 < ¢ < %, and (ii) [np] —
L(n) = (1 + 8)(2nlog log n/2)}, then X, .00 — @ a.5.

Proor. The theorem will be proved when we have proved

(i) P[Xn.1my < @ — 8" i.0.] = 0 in Case (i) for any &' > 0, and

(ii) P[Xn,1y > @ i0] = 0 in Case (ii).

We first prove (i). Let 8’ > 0 be arbitrary, and let p' = P[X; £ a — §].By the
definition of @ and p, p’ < p. Let us denote V, = Iix,<as1 — Iix,>e—s1 - Since
the event [Xn, . < @ — 8']is the event that at least L(n) of the random variables
{X1, -+, Xa} are < a — &', we have the identity

Xonim = @ — 81 = [2ora Vi = 2L(n) — n].

Now EV, = 2p’ — 1 and Var V,, = 4p’(1 — p’). By the law of the iterated
logarithm,

V. — !
P [lim sup 2 V"p(n np(,?p D _ 1] =1,

where ¥(n, p’) = [8np'(1 — ) log logl4np'(1 — p/)]. This implies that
P[>t Vi > n(2p' — 1) + (1 + n)¥(n, p) 0] = 0
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for any 9 > 0. From the inequality [np] — L(n) < Kn”‘, we obtain
2L(n) —n = n(2p’ — 1) + 2n(p — p') — 2Knl* — 2.

Butp — p' > 0,50 2n(p — p') — 2Kn*™ — 2is greater than (1 + n)y¥(n, p’)
for sufficiently large n. Hence P[) 71— V; = 2L(n) — n i.0.] = 0, which proves
(i). In order to prove (ii), let U, be as in the proof of Theorem 1. Then

(X1 > a] = [2554U; 2 n — 2L(n) + 2],
and again by the law of the iterated logarithm, for any 4 > 0,
P[25-1U; 2 n(1 — 2p) + (1 + n)¢(n, p) 0] = 0.

Since for z £ [0, 1], 0 = (1 — z)z < %, then (2n log log n)? = y(n, p) for all
p € [0, 1]. Hence, since [np] — L(n) = (1 + 8)(2n log log n/2)},

PlXuim > aio] £ (X U; 2 n(1 — 2p) + 2([pn] — L(n)) i.0.
S P27 U; 2 n(l — 2p) + (1 4 8)(2n log log n)? i.0.]
< P27« U2 n(1 = 2p) + (1 + 8)¢(n, p) i0] = 0,

which concludes the proof.

In Theorem 4 sufficient conditions on L(n) were obtained in order that
X1y — @ With probability one. For convergence in probability slightly broader
conditions are both necessary and sufficient, as is shown in the following theorem.

THEOREM 5. A necessary and sufficient condition that X, 1y — a in probability
is that (i) L(n)/n —p asn — o and (i) n}(p — L(n)/n) — + o asn — o,

Proor: Letb—a> e> 0. Then P[|X,,10y — @ 2 €] = P X1y < 0 — €] +
PXo1y =2 a0 + ¢ = A, + B, , where

Ay = Yirm(B)F*(a — €)(1 — F(a — €)™,

and B, = 2 <97 (M)p*(1 — p)™*. By the definition of @ and b, Fla — ¢) <
p = F(a + ¢), so by the Laplace-De Moivre theorem,

A, = 1—3{(L(n) — nF(a— ¢))/InF(a— e)(1 — F(a — ¢))I}} + o(1), and

B, = ®{(L(n) — 1 — np)/[np(1 — p)I}} + o(1), where & is the normal distribu-
tion function with mean zero and variance one. We first prove that Conditions
(i) and (ii) are sufficient. Condition (ii) immediately implies that B, — 0 as
n — . Both conditions imply, for sufficiently large n, that L(n)/n e
(F(a — €), p], and thus (i) implies that A, — 0. Thus X,, .,y — ain probability.
In order to prove that the conditions are necessary we assume 4, — 0 and B, — 0
asn — «. But B, — 0 immediately implies that (L(n) — np)/n! = n’(L(n)/
n — p)— — o, which proves that (ii) is necessary. Since 4, — 0 as n — w,
we have, for every p’ < p, that (L(n) — np’)/nt = n(Ln)/n — p') — .
Hence L(n)/n > p — efor every ¢ > 0 and all large n. Also, for large n, L(n) <
np because of Condition (ii) which was already proved necessary. From these
two observations, Condition (i) follows. Q.E.D.
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It should be noticed that Conditions (i) and (ii) of Theorem 5 are equivalent
to requiring that p — L(n)/n = g(n)/n!, where g is some function such that
g(n)/n* — 0 and g(n) — « as n — . Hence for weak consistency there is a
slight improvement over both Conditions (i) and (ii) of Theorem 4 in an obvious
way.
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