FIDUCIAL THEORY AND INVARIANT ESTIMATION!

By R. B. Hora®’ anp R. J. BUEHLER

University of Minnesota

1. Introduction. A class @ of distributions may be called invariant under a
group G of transformations of the sample space {z} if @ is closed under G; that
is, whenever z has a distribution belonging to ©, so does gz for any g ¢ G. In a
fairly large body of decision theoretic literature, invariance enters into criteria
for solutions, or is used as a tool. Fiducial theory is also intimately connected
with invariance theory. In the present paper some links will be established be-
tween the decision theoretic and fiducial viewpoints.

Fisher (1934) gave fiducial distributions which he considered to be appro-
priate for location and scale parameters. These solutions were studied in detail
by Pitman (1939), who showed, among other things, how certain “best” es-
timators could be defined in terms of expectations with respect to fiducial dis-
tributions. In the terminology of decision theory, Pitman’s estimators are
“best invariant” or “minimax invariant” estimators. Fraser’s (1961a), (1961b)
group-theoretic approach to fiducial theory, using Haar measures, is useful in
providing a precise mathematical framework which is consistent with Fisher’s
in the case of location and scale parameters, and apparently in most other cases
as well.

The present paper shows how certain of Pitman’s results can be generalized
using Fraser’s theory. The results in Section 5 on “best” invariant estimators
defined by means of fiducial distributions could actually be formulated and
proved without reference to fiducial theory. For example, Blackwell and Gir-
shick (1954), p. 314, express the best estimator of a location parameter in terms
of the conditional expectation of the first observation x; given the differences
Xz — X1, **+ , o — o1 . Thus fiducial theory may be regarded as a convenient,
but not essential, tool for obtaining desirable estimators.

In Section 2, assumptions similar to Fraser’s on the class of distributions are
spelled out in detail. The equivalence of the fiducial distribution to a posterior
distribution is pointed out. Theorem 2.1 establishes the identity E,H = E,"H
where H is an invariant function of the observations and parameters, E;° denotes
expectation with respect to the fiducial distribution given x, and E,” denotes
conditional expectation given any value of the ancillary statistic. The theorem
is not restricted to location and scale parameter cases.

Section 3 gives four examples of location and scale parameter families whose
generality increases from the case of one location parameter to that of two loca-
tion and two scale parameters. The latter includes the Behrens-Fisher problem
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as a special case. It is to be emphasized that an assumption of the existence of
sufficient statistics is not needed at any point, nor need the variates be either
independent or identically distributed. The group structure is the essential
ingredient which makes these other assumptions unnecessary.

In Section 4 a definition is given of an “invariantly estimable function”
¥(w), w € 2. The concept (but not the term) can be found in Lehmann (1959),
p. 243. It is shown that when ¢ is invariantly estimable, there exists a group of
transformations of {¢} which is homomorphic with G. This result is used to de-
fine invariant functions of r and w in terms of invariant estimators of ¢. From
the decision theoretic viewpoint, invariant estimability of ¢ implies the existence
of an “admissible group” with respect to the decision (i.e., estimation) problem
in the sense of Blackwell and Girshick. )

In Section 5 we consider the definition of best invariant estimators of in-
variantly estimable functions in terms of fiducial expectations. A number of
examples are given (in addition to Pitman’s) wherein “best”” corresponds to
“minimum mean square error,” and the estimator is given explicitly in terms
of fiducial expectations.

In Section 6 we consider the relation between confidence and fiducial limits,
showing in particular that limits obtained from the “derived fiducial”’ distribu-
tion of an invariantly estimable function correspond to confidence limits in the
sense of Neyman.

We will complete the present section with brief mention of other related work.
The unpublished Wald Lectures of Tukey (1958) contained remarks relating
fiducial distributions and Haar measures, as well as a recognition of the fact
that orbits in the sample space correspond to ancillary statistics. Other uses of
Haar measures in related problems are found in Peisakoff (1950), Kudo (1955),
Kiefer (1957), Wesler (1959), and Stone (1965).

Peisakoff (1950) identified parameters with elements of a transformation
group, and obtained (under distributional assumptions not differing essentially
from ours) theorems characterizing best invariant decision functions. Our results
differ in making explicit use of the fiducial distribution and in the formulation of
the nuisance parameter problem (Section 4 below).

General discussions of the invariant decision problem are given by Blackwell
and Girshick (1954) and by Lehmann (1959). There is a considerable body of
literature relevant to the question of whether best invariant procedures (such as
those in Section 5 below) are minimax among the class of all procedures. We
may mention Wald (1939), Hunt and Stein (see Lehmann (1959), Chapter 8),
Girshick and Savage (1951), Peisakoff (1950), Kudo (1955), Kiefer (1957),
and Wesler (1959). The last four give generalizations of the Hunt-Stein theorem.
Kiefer (1957) gives a good review of earlier work in this general area.

Kiefer (1957) considered models which are more general than ours in several
respects: randomized decisions and sequential problems are included, and the
group which transforms @ is not necessarily transitive on Q. Kiefer shows, in-
cidentally, that in the transitive case, it suffices for minimax considerations to
restrict to nonrandomized decision functions.
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The question of admissibility of Pitman estimators has been considered, for
example, by Stein (1959b).

2. Generalization of Pitman’s expectation identity. In this section we state our
assumptions and generalize an identity due to Pitman (1939). Our distributional
assumptions are essentially equivalent to those of Fraser (1961b), but the par-
ticular formulation is somewhat closer to that of Peisakoff (1950) or Stone (1965).

2.1 Assumptions.

AssvmprioN 1. (X, Bx), (3, Br), (@, B4) and (2, Bg) are measurable spaces
such that there is a one-to-one correspondence between X and 3 X @,

(2.1) z = (i a),

and By corresponds to the minimal o-field on 3 X @ generated by Br and B, .
Here % is the sample space, ¢ € @ is an ancillary statistic, and ¢ ¢ 3 is a con-
ditionally sufficient statistic given the ancillary, and € is the parameter space.
AssumpTiOoN 2. G = {g} is a group and (G, Be) is a measurable space on which
there exists a left invariant Haar measure p satisfying

(2.2) w(g@) = w(@) all geg,  GeBa.

We note that Assumption 2 will be satisfied whenever G is a locally compact
topological group (Halmos (1950), Section 58).

AssumprioN 3. There exist one-to-one correspondences between the three
spaces 3, @ and G such that all images of measurable sets are measurable.

Thus 3 and Q inherit a group operation from G and are isomorphic to G.

AssumptioN 4. There is a family P, w e Q, of probability distributions on
o such that for corresponding g ¢ G and w € Q, ‘

(2.3) P(X) = [xf(g"'t| a)\(da)u(dt) all X eBx,

where \ is a probability measure on @ and f(- | @) is a density with respect to
u on 3 for each a € Q.

Here, following Fraser (1961b) and Stone (1965), we find it convenient to
use the same symbol to denote corresponding points in different spaces. Thus in
(2.3), ¢ 't denotes the element of 3 corresponding to g 'teg where g &G is
given, and ¢ ¢ G corresponds to the integration variable ¢ ¢ 3. In all the following
formulas the space to which a symbol belongs should be clear from the con-
text.

Our final assumption rules out the possibility of different parameter values
giving the same distribution. When this does occur, one would ordinarily arrange
to identify equivalent values (see, for example, Kudd (1955) p. 33).

AssumprioN 5. If w; and w, are distinct, then P“* and P“* are not identical.

It is readily seen that the transformations of X defined by gz = (gt, a) form
a group isomorphic to G. At this point we might distinguish six spaces, all in
one-to-one correspondence: G, 3, 2, and the isomorphic groups which transform
Q, 3, and . The group G is exactly transitive on 3 (i.e., &1, & ¢ 3 imply a unique
g € G such that ¢, = gt;) and on €, but not on & unless @ contains but one point.
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From (2.3) follows, incidentally,
(2.4) P*(gX) = P°(X) all geg, weQ, X eBx.

The above assumptions are chosen for their convenience in our particular
applications. From some points of view it might appear more natural to arrange
the assumptions so as to relate more directly to the family P“. Thus one might
begin with a group G of transformations of %, and a family P closed under the
group. From these and other assumptions, one might define gw by means of
the invariance condition (2.4), define the spaces @ and 3 and derive results like
(2.3). For approaches of this kind, the reader is referred to Kudo (1955),
Fraser (1961b), and Hora (1964). When X and G are taken as the starting point,
then @ is defined as the space whose points are the oxbits Gz = {gz | g € G}. The
measure N on @ is then induced from P®, and is shown not to depend on w.
The correspondence z = (¢, a) can be defined by assuming the existence of a
“cross section” set X € By which contains exactly one point z, of each orbit.
The ¢ coordinate of an arbitrary point x on the orbit having label a can be defined
to correspond to that element g € G for which = gz, . Topological and measure
theoretic problems relating to the distributions on 3 and @ have been considered
by Kudo (1955) and Wijsman (1965).

2.2 The fiducial distribution. We define as usual a right Haar measure » and a
modular function A by

(25)  w(@) =w(@), u(Gg) =A(gr(G) all geg,  GeBe.
From (2.2) and (2.5) follow
(2.6) w(g(dr)) = w(dt),  p((do )t) = A()r(dw).’

Given the assumptions of Section 2.1, the fiducial distribution of « given
2z = (¢, a) is defined to have the probability element

(2.7) flo7't| a)A(t)r(dw).

The definition (2.7) is intended to agree with that of Fraser (1961a), (1961b),
to whom the reader is referred for a discussion of its interpretation. A similar
formula was mentioned in an incidental way by Peisakoff (1950), p. 38. For the
special case of location and scale parameter families, (2.7) is consistent with
the definitions of Fisher (1934) and Pitman (1939). Kudo (1955), p. 42, defines
“the fiducial measure for z” (where z is the ancillary), which differs from (2.7)
in that it depends only on the ancillary and not on the conditionally sufficient
statistic ¢, and thus it gives the “‘shape’ of the fiducial distribution without giving
its “location.”

As is fairly well known (Peisakoff (1950), p. 38, Wallace (1959), p. 872),
(2.7) is equivalent to a posterior distribution when the prior measure is given
by »(w). This is evident because the likelihood can be factored into the marginal
distribution of a times the conditional distribution of ¢ given a. Since the former



FIDUCIAL THEORY AND INVARIANT ESTIMATION 647

does not depend on w, the posterior distribution is proportional to (2.7) and
hence equal to it. Our examples are typical in that »(w) is not a probability
measure but an unbounded measure. Such prior measures are sometimes called
“improper” distributions or “quasi” distributions (Wallace (1959), Stone
(1965)). If the group G is compact so that the Haar measure is bounded, then
the fiducial distribution is a posterior distribution for a true prior density.
Such cases, while uncommon, can occur with rotation groups, as indicated in
Section 3.2 below.

2.3 The expectation identity. We will denote expectation with respect to the
fiducial distribution (2.7) by E;° (f denotes ‘“fiducial’”), and expectation with
respect to the conditional distribution of « or ¢ given a by E,”. In the interest of
economy these are preferred to the more complete notations: E;” = for Ef,
and E* ' * for E,°.

TueoREM 2.1. If the five assumptions of Section 2.1 are satisfied, and of H(zx, w)
satisfies

(2.8) H(gz, go) = H(z, w),
then
(2.9) EfH(z, w) = ESH(z, ).
Proor. Define H(-, -, -) by H(¢, a, w) = H(x, w). Then (2.8) gives
(2.10) H(gt, a, g0) = H(i, a, »),

and by (2.6) and (2.10) (e denotes the identity element),
ESH(z, 0) = [ H(t, 6, 0)f(07't] a)u(dt)
= [ H(o™, a, e)f(o™'t | @)u(w™(dt))
= [ H(s, a, e)f(s| a)u(ds)
= [H(™t, 0, e)f(o7't| a)u((do™)1)
= [H(t, a, 0)f(w"'t| a)A(t)r(dew)
= EfH(z, w).

2.4 A counterexample. We give an example to show that the expectation
identity (2.9) can hold for a function H which does not satisfy the invariance
condition (2.8). Take p(x;60) = % forf < z < 6 4 4 and take

H(z,0) = —(x+80), 6<z=0+1 or 60+3<z=0+4
=+@+06), 0+1<z=0+3

= 0, otherwise.
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Here there is no ancillary and we may put E* for E,".
E'H = {7 + [ + [} H (=, 0) do
=3{(—20— %) + (46 +4) + (—20 - 7/2)} =
EfH = }{[in+ [55 + [ H(, 0) do
=H(-22+3)+ e —-4)+ (-20+7/2)} =

3. Examples of invariant families. In this section we give examples of families
of distributions which satisfy the assumptions of Section 2. Four location and
scale parameter families will be given in detail (Section 3 1) and some other cases
will be mentioned briefly (Section 3.2).

3.1 Details of four location and scale parameter families. The general absolutely
continuous bivariate distribution having a single location parameter 8 has a
density of the form p(x; — 8, z» — 6). This class of distributions is easily seen
to be equivalent to the class obtained by putting x; = ¢, 2 — #1 = a, where a
has an arbitrary density f(a) and the conditional density of ¢ given a has the
form f(t — 6 | a). More generally the class p(21 — 6, - - - , 2, — 0) is obtained by
giving an arbitrary density to the ancillary statistic represented by the n — 1
differences (a1, -+, @p1) = (€2 — 21, -+, T» — Z1), and by taking the con-
ditional density (given the ancillary) of ¢ — 6§ = x; — @ to be independent of
6 but otherwise arbitrary. This n-dimensional case is our Example 3.1.

In general, location and scale parameters will be denoted by 6 and o respec-
tively. Quantities z, y, 8, « range over (— , » ) while o, 8 range over (0, « ).
Briefly we may describe the four cases thus:

ExampLE 3.1. 6;

ExampLE 3.2. (6, 0);

ExampLE 3.3. (61,602, 0);

ExampLE 34. (01, 0, 01, 02).

It may be noted that in none of the examples are the variates assumed to be

independent and identically distributed (iid). Estimation of 6; — 6, in Example

3.4 is the Behrens-Fisher problem generalized to the non-normal, non-iid case.
The density for Example 3.4 has the form

(3 1) g1 n0'2_m {(xl - 01)/‘711 Sty (xn - 01)/‘717
(y1 — 02)/o2, *++, (Ym — 02)/02}.

Example 3.3 is obtained by putting ¢; = ¢; = ¢; Example 3.2 is obtained by
deleting the y variates and writing (6:, o1) = (0, ¢); Example 3.1 is obtained
from 3.2 by putting ¢ = 1. The space (X, Bx) is (R, , B,) in Examples 3.1 and
3.2 and (Rpim, Bnim) in Examples 3.3 and 3.4, where Rj is k-dimensional
Euclidean space and By is the class of Borel sets. Table 3.1 gives the definitions
of gz and gw. To save writing, gz is defined only on z; and y; with the understand-
ing that the definition on other z’s and y’s is analogous. Table 3.2 gives the
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conditionally sufficient statistic ¢, where ¢;, - - - , # are defined by
(3.2) =11, th=|o— @, =19y, ta = |y — Yal,

and gives also the modular function A and the right Haar measure element
v(dw). The left Haar measure element u(dg) is deducible from A and »(dw)
(in Example 3.4, u(dg) = B Bs " day day dB: dBs). The definition of g¢ may be
obtained by putting (6, ¢) = (61, 1) and by substituting (4, &, 5, &) for
(61, 01, 05, 02) respectively in the column gw in Table 3.1.

Suitable representations of the ancillary statistic are: Example 3.1: a =

(al’ Ty a'n—-l); i = Tiy1 — xl;Exa'mple 32:a = (ao, ay, =--, a"""’)’ a; =
(Tiye — 21)/(22 — 1), 1 = 1, .-+ ,n — 2,a = sgn (2, — z)(= —1lor +1)
according as z; — 1 < 0 or = 0); Example 3.3: a’= (ap, a1, -+, Gns, b1,

bs, -+, bus, ¢) with the a’s as in Example 3.2, b, = (y132 — 41)/ (%2 — %),
J=1-,m—2¢c= (y — y1)/(xa — 21); Example 3.4:a = (ag, -+ , Gn_s,
bo, -+, bmsz) where by = sgn (y» — y1) and the other quantities have the same
definition as in Example 3.3.

TABLE 3.1
Example ® gz gow

3.1 0 T + 0+ a

3.2 8, o a + Bz a -+ B9, Bo

3.3 6,,0:,0 a1+ﬂx1,az+ﬂy1 a1+ﬁolya2+502)ﬁa'

3.4 61,01,0:,02 a1 + Bty , az + Bay1 ai + 161, Bio1 , az + B, Baos
TABLE 3.2

Example t (see (3.2)) A(2) v(dw)

3.1 191 1 dé

3.2 i1, 8 g1 o~ 1dodo

3.3 t1,82,1% 2 o~1d0,d0:do

3.4 t1,8,8, 8 ta 1t 17 o2 1d0,d0ydo do

3.2 Other examples of invariant families. We briefly mention some other cases
which are not considered in the later sections.

Clearly the location and scale parameter discussion could be extended to
more than two ¢’s and more than two 6’s in a straightforward manner. Stone
(1965) gives this case as well as certain generalized and multivariate scale
parameters.

For any bivariate distribution of variates (z, y) which is not symmetrical
about the origin, one may consider the parametric family generated by rotation
through an angle a: about the origin. It is possible to obtain the fiducial distribu-
tion of & given n bivariate observations. Indeed the fiducial distribution equals
the posterior distribution given a uniform prior over the interval (0, 2r). The
special case (, y) independent normal with Ex = R, Ey = 0, Varz = Vary = 1,
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n = 1, was considered by Fisher (1956), p. 135. More general cases have been
considered by Hora (1964), particularly with regard to the problem of obtaining
“best” estimators of a.’

4. Invariant estimation. In this section we consider the estimation of a
parameter point w and of functions ¢(w) which are required to be ‘“invariantly
estimable” according to a definition depending on the group structure assumed
above. It is shown that for such functions ¢ it is possible to define a group 9'
on {¢} = ¥ which is homomorphic to G. It is further shown how invariant func-
tions on % X € can be défined in terms of invariant functions on . In decision
theoretic terms, where we identify the decision or action space with ¥, the group
g’ corresponds to the group {g.} of Blackwell and Girshick (1954), p. 224, and
an invariant loss function can be identified with a real-valued function of the
above mentioned function on & X Q. Thus invariant estimability of ¢ allows us
to define a G’ to complete the triple (G, G, §'), which transforms (X, 2, ¥), and
which Blackwell and Girshick call an “admissible group” with respect to the
decision problem. Finally it is shown how the space ¥ can be identified with a
coset space, so that estimation of ¥ is equivalent to the estimation of cosets.

4.1. Estimation of w. Let &(x) be a mapping of & onto Q. We will say that
&(z) is an invariant estimator of w if

(4.1) o(gz) = go(zx) allgeg.

This has been called the “principle of cogredience” by Lehmann (1950), Chap-
ter 1, p. 17. Let us define

(4.2) H(z, w) = o '0(z).

If &(x) satisfies (4.1), then H(gz, go) = (gw) 'd(gz) = H(x, w), so that H
satisfies (2.8).

4.2 Invariantly estimable functions Y(w). Frequently one does not wish to
estimate the parameter point « but only some function of it, say ¢¥(w) with
range ¥. An equivalence relation “~’’ among elements of  is defined by

(4.3) wr~ wp means Y(w) = P(ws).

We will say that ¢ is an tnvariantly estimable function (compare Lehmann (1959),
p. 243) if

(44) w1 ~ wy implies gwy ~ gw, all gegG.

If ¢ is a one-to-one function of 2 onto ¥, then it satisfies (4.4) trivially. If not,
a necessary and sufficient condition for ¢ to be invariantly estimable is that
¥(gw) have the form ¢(¢¥(w) ). To illustrate, in Example 3.2, if ¢ (w) = ¢(8,0) = 6,
then ¢(gw) = a + (6, which depends on w only through ¢(w) = 6, showing that
¥ is invariantly estimable, as is also seen directly from (4.4). Similarly ¢(8,0) = ¢
is invariantly estimable, but 8/¢ is not. Other examples which are easily verified
are given in Table 4.1. Note that in Example 3.4 (generalized Behrens-Fisher
case), the difference of means, §; — 6., is not invariantly estimable. Fraser
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(1961b), Section 12, has noted that in the Behrens-Fisher problem, “a fiducial
interval for u; — e will not be an invariant interval with respect to transforma-
tions for the z’s and for the »’s. In fact, under separate linear transformations
for the z’s and for the y’s the parameter u; — us is not transformed but is ‘pulled
apart’.” The present section is intended to formalize and generalize Fraser’s
observation. Related remarks referring to interval estimation will be found in
Section 6 below.

TABLE 4.1
Example Invariantly Estimable Not Invariantly Estimable

3.1 gt gy =0,1,2 - Lemn=1,2 -

3.2 0, o, c10 + c20 0/a, 6% + o

3.3 6, 3’ 62 ) 018 + 028, (01 - 02)2’
¢101 + c202 + czo 6102

3.4 01,0 ,01,02, 0, £ 0,01 k02,
a17a2® (01 + 1)/ (02 + 02)

4.3 Imvariant functions of ¥ and w. For any point ¢ ¢ ¥ let w denote any point
of © such that ¥(w) = . Then for any g £ G a transformation g’ of ¥ onto ¥ is
defined by

(4.5) g¥(w) = ¥(g),

and the definition is unique when (4.4) holds. In general, different elements g;

and g, may define the same transformation ¢’, e.g., in Example 3.2, if (6, 0) = o,

then both g1 = (a1, 8) and g2 = (a2, B) give g'c = Bo. When ¢ ang g arein

one-to-one correspondence, then there is an automatic isomorphism. Lemmas

4.1 and 4.2 below will be used to show that in any case a group operation can be

defined on G’ = {g'} such that the mapping of G onto G’ is a homomorphism.
An equivalence relation “~” on § is defined by

(4.6) g1 g2 means g~ gow forall weQ.

Lemma 4.1 If g1 & g2 and gs X g then gigs X gaogs .

Proor. Since g3 X g1, ¥(gsw) = ¥(gaw); and using (4.4), ¥(g1g50) = ¥(g1guw).
Since g1 X g2, ¥(g191w) = ¢¥(gogsw). Thus gigs X gags .

LevMa 4.2. If g1 & gs then gi" = g5 .

Proor. For any given g1, ¢z, », define ' = g: 'w so that w = gsw’. Since
g1 X ga, W(gw') = ¥(gw'); and using (4.4), (g g1w’) = ¥(g1 'gw’). But
also n//(gl_lglw') = Y(gs 'gew’) so that ¢(g1_lg2wl) = ¥(gs 'gew’), and substituting
for o’ gives ¢ (g1 'w) = ¥( gs ).

Using Lemmas 4.1 and 4.2 we may now give unique definitions

(4.7) g’ g) = (girg2) and (¢ = (g7,

and the mapping of G onto ¢’ is a homomorphism.
The natural definition of an invariant estimator ¢(x) of ¥ is

(4.8) ¥(gz) = ¢ ().
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We may note that a y-estimator defined in terms of an invariant w-estimator is
invariant; that is, it is easily shown that if &(z) satisfies (4.1) and §¥(z) =
¥(&(x)), then ¢ satisfies (4.8).

Our next lemma gives the natural extension of the definition (4.2) which
will be used in Section 5 below.

Lemva 4.3. Assume §(z) satisfies (4.8), let ' G’ be the tmage of w £ Q, and
define

(4.9) H(z,0) = (o) 7(2).

Then H satisfies (2.8).

Proor. H(gz, gw) = ((gu))¥(gz) = ()7 (¢)g¥(z) = H(z, w).

A real valued function of (4.9) will presently be identified with a loss function.
Note that the right hand side of (4.9) depends on z only through ¢¥(x), ¥ ¢ ¥,
and it depends on w & © through the correspondence between w and «’. The space
of decisions is identified with ¥, so that the loss function is defined on ¥ X Q
as desired.

4.4 Remarks on subgroups and coset spaces. Using the equivalence relation
(4.3) we define

(4.10) H={g|g~e}, K ={g|gw~ o al weQ}.

For all of the following incidental remarks, ¢ is assumed to be invariantly es-
timable, so that equivalences can be left-multiplied (that is, wx ~ wp implies
gwi ~ guwe). Only one proof is given; the rest are left to the reader.

(i) K € H ¢ g. (ii) K is the kernel of the homomorphism between ¢ and
g’, and it follows from group theory that K is a normal subgroup of G and that
the quotient group G/K, whose elements are the cosets gK, is isomorphic with
g'. (iii) H is a subgroup, but not necessarily a normal subgroup of G. (iv) The
cosets gH are in one-to-one correspondence with the values of ¢.

We indicate the proof of (iv), showing the equivalence of (a) g1 ~ gs, and
(b) g:H = goH. If (a) holds, then g, g1 ~ e, so that g, 'g: = k, (h & H), whence
g1 = goh. Conversely if (b) holds, g1 = gsh, (b & H), whencegs ‘g1~ e,and g ~ g .

Kudo (1955), p. 55, considered briefly the “estimation of cosets;” the result
(iv) shows that coset estimation is equivalent to estimation of an invariantly
estimable function. Apparently different relationships between decision spaces
and coset spaces are given by Peisakoff (1950), pp. 44, 73.

Table 4.2 gives some examples of the subgroups H and K.

TABLE 4.2
Example ¥ (w) H K
3.1 0 {0} K =H
3.2 0 {©, B} {0, 1)}
3.2 a {(a, 1)} K=H
3.2 0+ {(@, )i + 8 = 1} {0, 1)}
3.3 c10, + co6: {(ar, a2, B)icio1 + cos = 0} {(o1, az,1):c101 + coaz = 0}
3.4 o17as® {(ar, B1, az, B2):B1B2* = 1} K=H
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6. Examples of best invariant estimators. It is well known that by restricting
attention to invariant procedures, the decision problem is simplified by the fact
that such procedures have constant risk (Peisakoff (1950), p. 26, Blackwell and
Girshick (1954), Theorem 8.6.3, Kiefer (1957), p. 57, Wesler (1959), p. 4).
Thus a “best” invariant procedure (when one exists), is simply one having the
minimum risk. We now wish to apply Theorem 2.1 to express best invariant
estimators in terms of fiducial expectations. When z is observed, the decision
will be to estimate ¥(w) by ¥(z). The corresponding loss is assumed to depend
on (&)Y where o’ ¢ g' corresponds to w £ 2. (We may note incidentally that
(&)™ is not necessarily a unique function of ¢ (w) and .)

TuroreM 5.1. With the structure assumed in Section 2, suppose that ¢ (w)
is tnvariantly estimable, and that the loss when Y (w) s estimated by ¥ has the form
®((o') ) where®(-) is a real-valued function having domain ¥. Suppose that for
each x there is a unique value ¥ = Jo(x) which minimizes

(5.1) E/3((o)79).

Then $o(x) minimizes the expected loss amongst all estimators J(x) which satisfy
the invariance condition (4.8). ’

Proor. It can be shown that ¥o(z) satisfies (4.8). Let ® and &, correspond
respectively to ¥ and ¢, . By definition of { , E;"(® — ®o) = 0 for all z. By Lemma
4.3, both (') ™'¥ and (") ™', satisfy the invariance condition (2.8), and hence
so does (® — &;). By Theorem 2.1, E,°(® — &) = E/*(® — &) = 0 for all g,
and taking expectation with respect to the distribution of a gives E°® = E“®, .

COROLLARY 5.1. When ¥ is a subset of the real line, and when ®( (")) has
the form

(5.2) 3((o)Y) = o(0)@ — ¥)°
where o(w) > 0, then
(5.3) do(z) = Ef(Y(w)e(w))/Ef (¢(w))
is the minimum mean square error invariant estimator of ¥, that is, it minimszes
E(§ —¥)

Proor. Clearly E/{¢(w) (¥ — ¢)*} is minimized when § = ) given by (5.3).
Since ¢(w) is a constant for the operator E,°,

o(0)Es*(f0 — ¥)* = Ef{eo(w) (o — ¥)7)
< Effe(0)(F — ) = o(@)BS(F — ).

Thus E“($o — ¢)° < E.°(§ < ¢)°, and therefore E“($o — V< B — )

Table 5.1 gives six examples of invariantly estimable functions ¥(w) and the
corresponding expressions for ¢'¥(w) and (') "'y implied by the definitions of
g given in Table 3.1. If the quantity N = (") 7§ equals zero when ¢ = ¢ then

reasonable loss functions are |A|, A%, \*, etc. If \ = 1 when ¢ = ¢ then one may
use N — 1], (A — 1)% (A — 1) ete. Theorem 5.1 would apply in any of these

cases.
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TABLE 5.1

Example ¥ (@) g¥ () = ¥(gw) = ()W
3.1 0 v +a b —
3.2 0 BY + a 20
3.2 o [ A4
3.2 0+ BY + o @ -/
3.3 €101 + c20s BY + cion + coas W —¥)/e
3.4 or'oe® B1"B2Y o

Table 5.2 shows how ® can be chosen in each case so that Corollary 5.1 can
be applied to give the minimum mean square error invariant estimator exhibited
in the last column. The first three of the six examples were considered by Pitman
(1939). Of course it is not to be inferred that Corollary 5.1 would apply in any
example. For instance, in Example 3.1 if we take y(w) = 6°instead of 6, then ¢ is
still invariantly estimable, g’y = (¥ + a)®, A = (o = (;/7* - gb*)a. Here the
loss function A leads to ¥(z) = (E,4¥*)°. Of course this is simply a translation
of the solution obtained in Table 5.2; the point is that it cannot be called a
minimum mean square error invariant estimator of ¢ = 6°.

TABLE 5.2
Example ¥ (w) d(Q\) Minimum mean square error
invariant estimator

3.1 0 A2 Ef~y

3.2 0 A2 Ep(o™%) /By (07?)

3.2 o A —1)2 EpFs@ )/ EF (W)

3.2 0+ Az Ep= (%) /Es*(s72)

3.3 c161 + c202 A2 Es=(o%)/Es*(c7?)

3.4 o1'o2® a—1)2 Epr@)/EfF @)

6. Some relationships between fiducial limits and confidence limits. In this
section we consider the question of whether fiducial distributions can be used to
obtain confidence limits or confidence regions in the sense of Neyman. Relation-
ships with Bayesian theory are also indicated.

We begin by indicating the construction of invariant confidence sets. (Such
sets are discussed by Lehmann (1959), Section 6.10, who considers optimal prop-
erties.) When ¢ = e (the identity), A(¢) = A(e) = 1, and the fiducial probability
element (2.7) becomes f(w ' | @)»(dw). Suppose that for each a £ @, a set R, <
is determined which satisfies

(6.1) JrF(o7 | @)(de) = 1,

where 0 < v < 1. Let I(w, a) be the indicator function which equals 1 for w & R,
and zero elsewhere. Defining further I(z, w) = I.(t"'w, a), we have I(gz, gw) =
I(z, ). From (6.1) follows E,’I(z, w) = v, all z, so that the region S. =
{w]|I(x, w) = 1} has fiducial probability v for all z. By Theorem 2.1,

(6.2) E°I(z, ) = E°EI(z, 0) = B°EfI(z,w) = By = v
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for all w, which shows that the system of regions {S,} are confidence regions in the
sense of Neyman with confidence coefficient . Thus regions constructed in the
above natural way from fiducial distributions (in the sense of Fraser) invariably
have the frequency interpretation associated with confidence regions. A similar
result for the location parameter case was pointed out by Pitman (1939),
p- 396.

We now consider a different construction, also seemingly natural, wherein the
confidence region property may be lost. Suppose that ¢ (w) is a real-valued meas-
urable function, not necessarily invariantly estimable. The fiducial distribution
of w then defines a “derived” or “induced” distribution of ¢ having percentile
points ¥(z, v) satisfying .

(6.3) Pify(w) = ¢¥(z, v)| 2} = v

where P denotes fiducial probability. In most cases of interest, ¢ (z, v) satisfying
(6.3) will exist uniquely, and we will suppose for simplicity that this is the case.
The “derived fiducial limits” ¢(z, v) will be said to have the confidence interval
property if

(6.4) Ply(w) = ¥(z,v)| 0} =y forall o

TrEOREM 6.1. If (i) ¢(w) is invariantly estimable, (ii) (6.3) has a unique
solution for ¥(x, v), and (iii) ¢'y increases as ¢ increases for each g' £G’, then
¥(z, v) has the confidence interval property.

Proor. The defining equation for ¢(z, v) is

(6.5) Jyw siem (@7t @) A()r(dw) = ¥.
Substituting gr = (g¢, @) for z = (¢, a) gives
(6.6) Jow shem F(o7'gt | 0)A(gt)v(dw) = 1.

Putting v, = ¢ ' and using the Haar measure identities A(gt) = A(g)A(t) and
A(g)v(g(dw)) = v(dw) gives

(6.7) Jowon st e Flon ™'t | @)A()p(der) = 5.

Since ¢ is invariantly estimable, we may write ¢(gw1) = ¢'¥/(w1), and comparison
of (6.5) and (6.7) shows that g'¥(w) < ¥(g, v) is equivalent to ¥(w) < ¥(z, 7).
By assumption (iii) the first inequality is preserved under left multiplication by
(¢")7", so that by (ii) (¢ gz, v) = ¥(=, v). It follows that the associated
indicator function I(x, w) (which equals 0 or 1 according as y/(w)> or <¢(z, v))
satisfies I (g2, go) = I(z, w), and the proof is completed as in (6.2).

The Behrens distribution of the difference 6 of two normal means is known
(from its relation to Bayesian analysis) to be a ‘“‘derived fiducial” distribution in
the above sense. Since 6 is not invariantly estimable (Table 4.1), the known
failure of Behrens’ solution to have the confidence interval property might have
been expected from the group theoretic viewpoint. Indeed, we conjecture that
invariant estimability is a necessary condition for the conclusion of Theorem 6.1.
For a different example exhibiting a more pronounced discrepancy, see Stein
(1959a).
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Finally, we may combine Theorem 6.1 with the relation noted in Section 2.2
between fiducial and posterior distributions.

COROLLARY 6.1. When ¢(w) is snvariantly estimable, confidence limits obtained
from the “derived fiducial” distribution correspond to Bayesian limits for an ap-
propriate prior distribution.

The special case corresponding to our Example 3.1 with ¢ (w) = 6 has previ-
ously been pointed out by Welch and Peers (1963), Section 5.
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