A NOTE ON UNDISCOUNTED DYNAMIC PROGRAMMING'

By AsHOK MAITRA®
M athematisch Centrum, Amsterdam

1. Introduction. We consider a system with a finite number of states
1,2, ---, S.Once a day, we observe the current state s of the system and choose
an action a from an arbitrary set A of actions. As a result, two things happen:
(1) we receive an immediate income (s, @), and (2) the system moves to a new
state s” with probability ¢(s’ | s, a). Assume that the incomes are bounded, that

is, there exists a positive number M such that [i(s, a)| = M,s = 1,2, ---, 8§,
a ¢ A. The problem is to maximise the average rate of income (to be defined
below).

Denote by F the set of all functions f on S into A. A policy = = {f1, fo, -+ -}
is a sequence of functions f, ¢ F. Thus, to use policy = is to choose the action
f(s) on the nth day, if the system is in state s on that day. We shall call a policy
7w = {f.} stationary if f» = fyn = 1,2, ---, and denote it by .

With each f ¢ F, associate (1) the S X 1 vector r(f), whose sth coordinate is
i(s, f(s)) and (2) the 8 X S stochastic matrix Q(f), whose (s, s') element is
q(s" | s, (s)). Hence, if we use the policy = = {f.}, the n-step transition matrix
of the system is Q.(7) = J]i-: Q(fi). In particular, if our policy is stationary,
the system becomes a discrete time-parameter Markov chain with stationary
transition probabilities.

Given a policy , let us denote by W, () the 8 X 1 vector of incomes on the
nth day, when the policy = is used. Set

2(r) = lityw N7 D 0=t Wa(r)

whenever the limit exists. Blackwell [1] has shown that the limit exists whenever
« is a stationary policy. In the case of a stationary policy, z(f*) is the vector
of average rates of income, when the policy 1 is used.

We shall say that a policy /o' is optimal among stationary policies if z( f6) =
z(f) for all f & F (for any two S X 1 vectors w; and w. , we shall write w1 = w»
if every coordinate of w; is at least as large as the corresponding coordinate of
we, and wy > we if w1 = we and wy # we).

Blackwell [1] showed that, if 4 is finite, there exists an optimal policy among
stationary policies. When A is not finite, there may not exist an optimal policy.
Consider, for instance, a system with a single state and A = {1, 2, - - -}. Choice
of action ¢ brings an income of 1 — 1/ dollars. It is clear that there is no op-
timal stationary policy.

The purpose of this note is to prove:

TuroreEM. Let A be arbitrary. Given ¢ > 0, there exists a stationary policy fe(”)
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such that z(f) = supsrz(f) — ee, where e is the S X 1 vector with all co-
ordinates unity.

2. Proof of theorem. We introduce a discount factor 8,0 < 8 < 1, so that the
value of unit income n days in the future is 8”. Blackwell [1] has shown that the
total expected discounted return from a policy f is given by the S X 1 vector

Ve(f) = 20 8" QUNI" ()
and that
2(f7) = limg., (1 — B) Va(f™).

With each f ¢ F and each 8, 0 = 8 < 1, let us associate the transformation
Lg(f) which maps the S X 1 vector w into Lg(f)w = »(f) + BQ(f)w. We note
that Lg(f) is monotone, that is, w1 = w. implies Lg(f)wi = Ls(f)w. . Note that
Ve(f*) is the fixed point of Ls(f).

In order to prove our theorem, we need a lemma.

Lemma. Letfi,fo, -+, fr € F (k = 2). Then there exists h ¢ F such that
Va(h®) z V(5:), i=1,2 -k

for all B = some By .

Proor. It suffices to prove the lemma for k¥ = 2. The proof for general k then
proceeds by induction.

Denote by u; the sth coordinate of the S X 1 vector w.

Consider Vs(£;”), and Vs(£2*”), . Either Vs(fi), = V(£2), for all § =
some 8 or Va(fi). < Va(£a™), for a sequence of 8’s tending to 1. But for each
s and each f, Vg(f*), is a rational function of B, as the representation Vs(f*) =
I — BQU)T'(f) shows. Consequently, either Vs(fi'), = Vs(£a™), for all
B = some 8" or Vs(f1), < Vs(fa'), for all 8 = some §". Thus, for each s,
there exists a 8, < 1 such that either Vs(fi), = Va(f2'), for all 8 = B, or
Va(hi)e < Vo(fa™)s for all 8 = 8, .

Let By = max;<,<s B, . For each 8 = By, define u(8), = max (Vs(£s"®),,
Ve(f2),). We now define h £ F as follows:

h(s) = fi(s)  if Va(H)s 2 Vo(£e'), for allg = B
= fols) i Va(i)s < Va(fe'), forall = By, 1 <s < 8.

Set u(B) = (w(B)1, u(B)z2, -+, u(B)s). It is easy to check that Lg(h)u(B) =
u(B) for all B = B, . Denoting by Ls'™ (h) the nth iterate of Lg(h), we see that
Ls™ (W)u(B) = u(B) for N = 1,2, --- and all 8 = B, . For fixed 8 = B, let
N — o, We get: V(™) = u(B) for all 8 = B . This completes the proof of
the lemma.

Proor or THEOREM. Set 2,* = sups.r (z(f),) and z* = (", 2%, -+, xs).
Let ¢ > 0. For each s, choose f, ¢ F such that z(f,*), > z,* — e. Hence, for
each s, there exists 8, < 1 such that (1 — 8)Vs(f,), > x,* — eforall 8 =
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B, . Let 8 = maxi;<s B, . But by the preceeding lemma, there exists h ¢ F and
8" < 1 such that Ve(h™) = V(f,?) for 1 < s < Sand all § 2 ”. Hence
(1 — B)Vs(h™) > z* — ceforall g = max (8, "). Let 8— 1. We get: 2 (™) 2
z* — ee. The proof is completed by taking h = f. .

RemArk. In [2], I gave an example of a system with countably infinite state
space and finite action space A, where there exists no optimal policy among sta-
tionary policies. It would be of interest to know if there exist e-optimal policies

in this case.
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