NEGATIVE DYNAMIC PROGRAMMING'

By Rarru E. STraucH

University of California, Berkeley

1. Introduction. A dynamic programming problem is determined by four
objects, S, 4, ¢, and r. S and A are non-empty Borel sets, ¢ is a regular condi-
tional probability on S given S8 X 4, and r is a Baire function on § X 4 X 8.
We interpret S as the set of states of some system, and A as the set of actions
available at each state. (The set of actions available is assumed to be independent
of the state.) When the system is in state s and we take action a, we move to a
new state s selected according to (- | s, @), and we receive a return (s, a, s').
The process is then repeated from the new state s', and we wish to maximize the
total expected return over the infinite future.

A policy = is a sequence m, T2, - -+ , Where m, is a regular conditional prob-
ability on A given 2 = (s1, a1, -+, @1, S»), the history of the system up to
the nth stage. Given that we have experienced history & up to the nth stage, we
choose the nth action according to m,(- | h). Certain types of policies are of
special interest. A random semi-Markov policy is one in which m, depends only on
81 and s, , and a random Markov policy is one in which m, depends only on s, .
A non-random policy is one in which each m, is degenerate, i.e. is a measurable
function from histories to actions. A semi-Markov policy is a sequence f1, fa, - -,
where each f, is a measurable function from S X S to A, and f.(s1, 8,) is the
action we take at the nth stage if we start in state s; and the nth state is s, . A
Markov policy is a sequence fi , fa , - - - where each f, is a measurable function from
S to A and f,(s) is the action we choose at the nth stage if the nth state is s.
(Notice that the term Markov policy and semi-M arkov policy refer to non-random
policies, and are modified by the adjective random if the elements of the policies
are probability distributions.) A stationary policy is a Markov policy in which
fa = f for some measurable f from S to A and all n.

If = = {fi,f:, - -+ } is a Markov policy, the function of g is w-generated if there
exists a measurable partition Sy, Sz, - - - of S such that g = f, on S, . A Markov
policy ©' = {g1, g2, - -+ } is w-generated if each g, is w-generated.

Associated with each 7 is a Baire function on S, I(7)(s), the total expected
return starting from s and using . This total return may well be infinite, or may
be undefined. There are, however, three cases in which the problem is well defined,
which may be described as follows:

(a) The discounted case. If the return function r is bounded, and we discount
our future return with a discount factor 3, 0 < 8 < 1, so that a return of one
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unit 7 stages in the future is worth 8" now, then the actual total return, hence
the total expected return, will be bounded. This case has been studied by Black-
well in [3].

(b) The positive bounded case. In this case we assume that the return function
is non-negative and bounded, and that the structure of the problem is such that
the expected return from any policy is bounded by R, where R is a positive
number independent of the policy chosen. This case has been studied by Black-
well in [2].

(¢) The negative case. In this case we assume that the return function is non-
positive. The total return is thus well defined, but may be — . The problem is
clearly of interest only if there is a policy with finite return, but we find it con-
venient not to require this at the outset. A more natural setting for this case
might be to assume a non-negative cost function, and ask how to minimize cost,
but our formulation has the advantage of being consistent with the other two
cases.

The purpose of this paper is to make a study of the negative case similar to
those made by Blackwell of the other two cases in [2] and [3], and to answer in
all three cases some questions, primarily concerned with measurability, raised
by Blackwell in [2] and [3].

Our main results are the following: Every policy can be replaced by a semi-
Markov policy which dominates it in the discounted or negative cases, or which
e-dominates it in the positive case (Section 4). In all cases, the optimal return,
sup, I(w) is absolutely measurable, and satisfies the optimality equation. For
any probability p on S and e > 0, there exists a policy =* such that
p{I(r*) = sup. I(r) — ¢ = 1. In the negative case, if there is an optimal
policy, there is one which is stationary (Sections 7 and 8), and if A4 is finite,
there is an optimal policy (Section 9). Not every Markov policy is dominated
by a stationary policy, but every sequence of Markov policies is e-dominated by
a Markov policy (Section 6). In the negative and discounted cases, if we are
given two policies and at each stage use the one which would be better if we were
to continue to use it from that point onward, then the resulting policy is as good
as either of the two given ones (Section 9).

Our methods differ from those used by Blackwell in the following manner: His
general method of proof may loosely be described as neglecting the tails, while
ours may loosely be described as improving on the tails. That is, he asks how to
behave if we are going to play for a large finite number of stages, then stop, re-
ceiving no terminal return. We ask how to behave if we are going to play for some
finite number of stages, then receive some previously fixed terminal return. The
former method works in the discounted and positive bounded cases, but not in
the negative case, while the latter works in the discounted and negative cases,
but not in the positive bounded case.

Throughout the paper, we shall indicate the cases for which each result holds
by use of the letters D, P, and N. If the result is previously known in a particular
case, the identifying letter will be enclosed in parentheses, and a proof will be
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given only if our method of proof differs substantially from Blackwell’s, or if it
follows from a minor modification of the proof in the negative case. Throughout
the paper, we shall denote the completion of a proof by [].

2. Probabilistic definitions and notation. In this section we develop the
probabilistic notation to be used throughout the paper. We follow [3] as closely
as possible. All facts in this section with the exception of Lemma 2.1 are con-
tained in [9].

A Borel set X is a Borel subset of a complete separable metric space. Unless
otherwise indicated, measurable means measurable with respect to the o-field of
Borel subsets of X. This measurability structure will not be explicitly indicated.
A probability on a non-empty Borel set X is a probability measure defined on the
Borel subsets of X, and the set of all probabilities on X is denoted by P(X). If
X and Y are non-empty Borel sets, a (regular) conditional probability on Y
given X is a function ¢(- | -) such that for each z ¢ X, ¢(- | z) is a probability
on Y and for each Borel subset B of Y, q(B| -) is a Baire function on X. We
denote the cartesian product of X and Y by XY. Every probability m ¢ P(XY)
has a factorization m = pg, where p ¢ P(X) is the marginal distribution of the
first coordinate variable under m, and ¢ € Q(Y | X) is a version of the conditional
distribution of the second coordinate variable given the first.

If X is a non-empty Borel set, then M (X) will have one of two possible mean-
ings, depending on the case under consideration. In the discounted or positive
bounded cases, M (X) will denote the set of all bounded Baire functions on X,
and in the negative case, M (X) will denote the set of non-positive, extended
real-valued Baire functions on X. Unless otherwise noted, when no case is spe-
cifically mentioned statements made about elements of M will be valid for either
definition. If u, v ¢ M(X), 4 = v means u(z) = v(x) for all z ¢ X, and in the
discounted and positive bounded cases, ||u|| = sup u(z), z ¢ X. For any p ¢ P(X),
u e M(X), pu is the integral of u with respect to p. For any u ¢ M(XY) and
any q € Q(Y | X), qu denotes the element of M (X) whose value at z ¢ X is
given by

qu(z) = [yu(z,y) dg(y | 2).

For any p ¢ P(X), q ¢ Q(Y | X) pq is the probability on XY such that for all
u ¢ M(XY), pgtu) = p(qu).

The above notation extends in an obvious way to a finite or infinite sequence
of non-empty Borel sets X1, Xz, ++- . If ¢ € Q(Xpa | X1 --- X,) forn = 1
and p ¢ P(X;), then pgr --- ¢ € P(X1 -+ Xup1), p1ge -+ - € P(XiX, - -+),
00 € Q(X3Xs| X1 X5) and for any u € M(Xy -+ Xpg1), M = 0, @ * - QuU €
M(X; --- Xn), ete. To avoid further complicating the notation we shall use the
following convention: for any function % on Y, we shall use the same symbol
to denote the function » on XY such that v(z, y) = u(y) for all y. Thus, for
example, if g e Q(Y | X), u e M(Y), then qu ¢ M(X), and ¢ ¢ Q(Y | X) will also
denote the element ¢’ ¢ Q(Y | ZX) such that ¢'(- |2, -) = q(- | -), ete.
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A p e P(X) is degenerate if for some x ¢ X, p{ax} = 1, and will sometimes be
denoted by 6(z). A g € Q(Y | X) is degenerate if ¢(- | z) is degenerate for each z,
and this happens if and only if there is a measurable function f from X to ¥
such that ¢(- | z) = 8(f(x)) for each x. We will also denote by f the associated
degenerate g, so that for w e M(XY), fu(z) = u(z, f(z)) for all x ¢ X.

We shall need the following lemma.

Lemma 2.1. For any qe Q(Y | X) and any u ¢ M(XY), there is a degenerate
FeQ(Y | X) such that fu = qu.

That is, if we observe z, and then choose y ¢ ¥ according to ¢( - | ) and receive
a return of u(z, y), any random plan ¢ can be replaced by a non-random plan f
with the property that our expected income under f is at least as great as it was
under q for each z. The lemma is contained in Lemma 2 of [3], and the proof is
immediate from Theorem 2 of [4].

3. The dynamic programming problem. A dynamic programming problem is
defined by four elements, S, A, ¢, 7, and in the discounted case, a discount factor
B. The set of states S and set of actions A are non-empty Borel sets. The law of
motion g is an element of Q(S | SA). The return function r ¢ M(SAS), with the
following additional restrictions. In the positive bounded case r = 0, and in the
negative case we assume r > — o and ¢r > — «, i.e. both the actual return
and the expected return from any action at any state are finite. In the discounted
case, 0 = 8 < 1, and in the positive bounded and negative cases, 8 = 1. (We
introduce the discount factor 8 = 1 in these cases only to allow a common nota-
tion throughout the paper.) A policy = is a sequence (i, 72, - -+ ) where
T &€ Q(A |H,) and H, = SA --- S8 (2n — 1 factors) is the set of possible his-
tories of the process when the nth action must be chosen. A policy 7 is (non-
random) Markov if each m, is a degenerate element of Q(4 | S), ie., if 7 =
{fi,f2, - - - } where each f, is a measurable function from S to 4, and is random
Markov if each m, € Q(4 | 8). It is (non-random) semi-Markov if each m, is a
degenerate element of Q(A4 |SS), and is random semi-Markov if each
7. € Q(A4 | 88). The interpretation is as follows: a Markov policy is one such that
the action taken at the nth stage depends only on the nth state and the integer =,
while a semi-Markov policy is one such that the action taken at the nth stage
depends only on the initial state, the nth state, and the integer n. A stationary
policy is a Markov policy such that f, = f for some f and all n. The stationary
policy defined by f will be denoted by f.

For any policies = and o, let 7"¢ = {m1, - -, T, Gua1, - - - } denote the policy
which follows = for n stages then switches to o. If 7 is Markov or random Markov,
we let " = {Tn41, Tny2, - - -} denote the policy which 7 defines from the n + 1st
stage onward. In particular, “r = x. We shall denote the nth policy in a sequence
of policies by ="

Any policy w, together with the law of motion ¢, defines a conditional prob-
ability on the set X = ASAS --- of futures of the system given the initial
state s, i.e. it defines

exr = mqmq -+ €Q(X | 8).
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Any return function r defines a total discounted return function on SX given by
p(S, x) = Z:=1 1"(8” y Qn sn+1)6n—.1

and an expected return function on S given by
I(7l') = Ezp = 2077:1 Bn—lﬂ'lq B

For any v e M(S), we shall denote by I.(w, v) the expected return if we ter-
minate after the nth stage and receive a terminal reward v(s,+1) at the terminal
state. Thus

L(m, v)(s1) = e,[Z};l 5j—17‘(8i ) @5y Si41) + B"v(8nq1)].

We shall denote I.(w, 0) by I,(w).Itis clear that if w < v then I,(m, ) =<
I.(m, v) for all = and all n. In the discounted case it is clear that for any wu,
v e M(8), |I.(xr, w) — I.(m v)|| £ 8"lu — v|. In particular, if = and =" are
policies such that m, = m,’ forn £ N then ||I(x) — I(«")| = 28"|7|l/(1 — B8).
From the dominated and monotone convergence theorems it is clear that
Lemma 3.1. D. I,(7) — I(x);
P. I(m) T I(m);
N. L,(w) | I(r).

For any p ¢ P(S) and e > 0, we say that =" is (p, €)-optimal if p{I(x*) =
sup, I(w) — ¢ = 1. The above set is in general not Borel, however we show in
Section 7 that it is in the completion of the Borel sets with respect to p, hence
the statement has meaning. (Note that this definition of (p, €)-optimality is
stronger than that given by Blackwell in [3].) We say " is e-optimal if T () =
sup, I(7) — e. We say that = is p-optimal or optimal if the corresponding state-
ments above hold for ¢ = 0, and that =™ (p, €)-dominates, e-dominates, p-domi-
nates, or dominates w if the corresponding statements hold with sup I(w) re-
placed by I(x).

4. Semi-Markov policies are enough. It seems clear that we should be able
to restrict our attention to Markov policies. We are interested in maximizing
our total return, so at any stage we want to maximize our total return from that
stage onward, and should be able to do this knowing only our present state,
without regard to our past history. In other words, we would expect that, given
any policy , and any ¢ > 0 there would exist a Markov policy =’ such that
I(7) £ I(r') + e Blackwell has shown in [3] that this is not the case. We repro-
duce his example here with slight modification.

ExamprLe 4.1. Let X = Y = (0, 1), and let S = Bu X u {0}, where B is
a Borel subset of the unit square XY whose projection D on X is not
Borel. Let A = (0, 1). The law of motion ¢ is degenerate and independent of a:
q(- | (z,9),a) = 8(z), ¢(- |z, @) = 5(0) and g(- | 0, a) = 6(0);7(s,a,8) =1
if seX and (s, a) € B, and r = 0 otherwise. (The example as stated is for the
positive or discounted case, but applies with obvious modification to the negative
case.) Any policy 7* such that m*(- | s1, a1, s;) is degenerate at y whenever
s = (z,y) has I(x*) = B on B, but for any = for which = ¢ Q(A | S), i.e., does
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not depend on the initial state, the set of z ¢ X for which m gr > 0 is a Borel
subset of D. Pick z, ¢ D such that myqr = 0. For any yo with (2o, ) ¢ B, we
have I(w)(x , %) = 0, hence there does not exist a Markov = such that I (7*) <
I(r) + efor any ¢ < 1. The same example shows that there need not exist an
e-optimal policy, since for any = & D there exists a = such that I(w)(z) = 1, but
there does not exist a 7’ such that I(#')(z) = 1 for all z & D.

We do not, however, need to remember the entire past, but only the initial
state. According to the next theorem, given any policy =, there is a random
semi-Markov policy =" such that I(x*) = I(x) for any return function r, so
that we can replace the given policy = with =" without knowing the return func-
tion, and be sure of the same expected return. If the initial state s is not arbitrary,
but is chosen according to some p e P(S), we can replace = with a random
Markov =** with no loss in expected return.

TaeoreM 4.1. D, P, N. Let w be any policy, p € P(8S). Then there exists a random
semi-Markov policy = and a random Markov policy =** such that I(x) = I(z*)
and pI(n) = pI(x™™*) for any return function r.

Proor. Let m," be the conditional distribution of a, given s, and s; under e, ,
and let m," be the conditional distribution of a, given s, under pe, . We need
the following lemma.

Lemma 4.1. D, P, N.

(a) For any n, and any r ¢ M(SSAS),

exr(81, Sny Qny Sng1) = €nm7(S1, Suy Qn 5 Sny1)
(b) For any n, and any r ¢ M(SAS),
Dext(Sn y o y Sn41) = Pexsst(8n , G, Spt1).

Proor or THE LEmMMA. We shall prove (a), the proof of (b) is similar. The
lemma is true for n = 1, since mt=m , hence

er(s1, a1, S2) = mQr = mrqr = emr(s1, a1, $).

Now assume the lemma true for n < N. All expectations are under the condi-
tional probability e, .

exr(S1, S, Qn, Svy1) = Elr(st, sv, aw, svy1) | 81l
= E{E(r(s1, Sy, ay, Sx41) | 81, sv) | s1}
= E{u(s, sx) | s1}
= e,u(s1, sy)

where u(s1, sy) = E[r(si, v, ax, Sy41) | 81, 8v] = 75 qr(s1, Sy, Gy, Sy1) by
the properties of conditional distributions. But u(s;, sy) = v(s1, Sv—1, Ox—1, Sv)
e M(8SAS), and so by the induction hypothesis, e,u(s1, sy) = emu(s;, sy).
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Thus
err(81, Sy, ay , Svy1) = enu(S1, Sy)
*
= epmy Qr{s1, Sw, Gy , Sx41)

e,,*r(sl , SN, QN , 81v+1)- D

[

We now return to the proof of the theorem. From Lemma 4.1 it follows that,
for any return function r, In(x) = I.(x"), and pI.(x) = pI.(z**) for all n.
From Lemma 3.1 it follows that I(x) = I(«*) and pI(x) = pI(z™).[]

Theorem 4.1 is the only theorem which applies independently of the return
function r. Throughout the remainder of the paper we will assume the return
function r is fixed.

Suppose we have two policies, = and o, with the property that for any n, or
at least for n sufficiently large, it is better to use w for n stages and then switch
to ¢ than it is to use o from the beginning. Then, in the discounted and nega-
tive case, it is better to use 7 forever than to use o forever.

TaEOREM 4.2. D, N. If = and o are policies for which there exists an no such
that for n = no, I(w"s) = I(c) then I(w) = I(7).

Proor. N. I,(r) = I(x"¢) = I(s) for n = no, and I,(x) | I(w) hence
I(r) 2 I(0). D. |I(x) — I(x"0)|| = 28"||7|l/(1 — B), hence I(7) = I(s).[]

We show by example that Theorem 4.2 may fail in the positive case.

ExampLE 4.2. Let S = {1,2,---} and A4 = {0, 1}. Let r(s, 0) = 1 — 1/s,
7(87 1) = 07 Q( ]8) 0) = 6<1) for all $ Q( I17 1) = 6(1) and Q( IS, 1) =
d(s 4+ 1) if s > 1. State 1 is a terminal state. From any other state s we can
either move to 1 and receive 1 — 1/s or move to s + 1 and receive nothing.
Let # = {fi, f2, ---} and ¢ = {g1, g2, - - - } be Markov policies such that
fa(s) = 1 and g.(s) = 0 for all » and all s. Then I(c)(s) = 1 — 1/,
I(r"¢) (1) =0, I(x"s)(s) =1 — 1/(s + n) for s > 1, hence I(x"s) = I(s)
for all n, but I(x) = 0.

We can use Theorem 4.2 to obtain

TueoreMm 4.3. D, N. For any policy m and any p € P(8) there exists a semi-
Markov policy v and a Markov policy o such that I(7) = I(w) and pI (o) = pl(=).

Proor. We shall give the construction for 7. The construction for ¢ is similar.
Because of Theorem 4.1, we may assume = is random semi-Markov. For each n,
using Lemma 2.1, we can find f, mapping SS into 4 such that

2B T < magr Z T D i B g e g
When &k = n, grp1q - - - mqr = r by convention.
Let 7 = {f1,f2, +++ }. Then
I(r) = mp i1 B qms + - mqr
S h 2B gy e mgr = I(7'T)
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and for n = 1,

I(r"r) = (3= B7hq -« fagr) + (g -+ faqmsr 2 ins1 B qmnsog « -+ miar)
S (X-B7g - Fiar) + (g - Fatfasr D5ensr B g < magr)
= I(+""'r).

Hence I(7) < I(7'r) £ I(+'x) £ ---, so by Theorem 4.2, I(7) Z I(x). The
construction of ¢ is similar except that we start with the assumption that = is
Markov and find f, mapping S into 4 satisfying the same inequality. []

Even without Theorem 4.2, we are able to obtain a slightly weaker result in
the positive case.

TuEOREM 4.4. P. For any policy =, any € > 0 and any p € P(8S), there exisis
a semi-Markov policy T and a Markov policy o such that I(r) = I(7) — e and
pl(o) 2 pI(7) — e

Proo¥. Again because of Theorem 4.1, we may assume that = is random semi-
Markov. Using Lemma 2.1, we can find, for m > 0, n < m an fn, mapping SS
into A such that fmm ) jen @ng1 + -+ Tiq7 = T penTnsa -+ wqr. Let 7" =
{(fmi s fm2, -+ fmm, 30, -+ } where f is an arbitrary measurable function from
S8 to A. Then

In(w) = D feimq - -+ miqr
S fra D jmrgqma - TiQT

é .

S (Xt fmq - Frigr) + (Frag -+ fn 2 Fentt @nga =+ - Tigr)
<.

= Z;";lfmlq <o fmiqr

= I (") £ I(+7).
So that I.(w) < I(+™) for all m, hence I(x) = lim inf, I(7™). Let
Sp = {I(+) <I(x) —e for j<mI(") 2z I(r)— ¢

and let + = 7™ on S,». Then 7 is semi-Markov, and for s ¢ Sm, I(7)(s) =
I(7™)(s) = I(w) — ¢ hence I(7) Z I(r) — e In the same manner, we can
assume = is random Markov, and construct a sequence ¢” of Markov policies
such that I.(r) < I(c™). We then let ¢ = ¢™, where mq is any m such that
pl(¢™0) = pI(w) — e

We do not know if the e can be eliminated in Theorem 4.4.

5. The operators T' and U. With any measurable f from S to 4 we associate
the operator T from M (S) to M (S) defined by

Tu(s) = [r(s, f(s), ) + Bu(t) dg(t]s, £(s)).
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We may interpret Tu(s) as the expected return if we are in state s, take action
f(s), and receive a terminal return of u(¢) at the resulting state ¢. The following
properties of T, which we state as a theorem, are immediate from the definition
and from well known properties of the integral.

TrarorREM 5.1. D, P, N unless otherwise indicated.

(a) T is monotone, u < v implies Tu < To.

(b) T(u + ¢) = Tu + Bc for any constant c.

(e¢) T(sup;u;) = sup; Tu; .

(d) Ifu; | wthen Tu; | Tuandifu; T uthen Tu; T Tuon {sup; Tu; > — «}.

(e) D. T s a contraction, | Tu — Tv| £ Bllu — o||;

P. T s positive, u = 0 tmplies Tu = 0;
N. T is negative, u < 0 implies Tu = 0.

(f) For any m, TI(w) = I(f, ), where (f, m) = (f, m, 2, -+ ) s the policy
which uses f followed by =. In particular, TI(f®) = I(f*) = limpse T70.

(&) If # = {f1, f2, - -+ } 2s a Markov policy, and T, is the operator associated
with fn , then I,(w, v) = Ty -+ Tw.

For any Markov = = (fi, f2, - - ), we say that the function f from S into A
is w-generated if there exists a partition of S into Borel sets Sy, Sz, - - - such that
f = fa on S, . We say that the Markov policy ' = {g1, g2, - - - } is m-generated
if each g, is w-generated. We associate with = the operator U from M (S) into
M(S) defined by Uu = sup, T,u, where T, is the operator associated with f, .

We may interpret Uu(s) as the optimal expected return over w-generated f
if we are in state s, take action f(s) and receive a terminal return u(¢) at the
resulting state t. We list as a theorem some properties of U.

TuroreM 5.2. D, P, N. unless otherwise indicated.

(a) U is monotone, u < v implies Uu < U.

(b) U(u + ¢) = Uu + Bc for any constant c.

(¢) U(sup;u;) Z sup; Uu;.

(d) If u; | wthen inf; Uu; = Uu and if u; T w then sup; Uu; < Uu with
equality on {sup; Tyu; > — o for all n}.

(e) D. U1sacontraction, ||Uu — Uv|| < Bllu — v||;

P. U is positive, u = 0 smplies Uu = 0;
N. U is negative, u = 0 implies Uu = 0.

(f) For any w-generated f with associated T, and any w e M(8S), Tu < Uu.

(g) For any uw e M(8), and any ¢ > 0, there exists a w-generated f whose associ-
ated T satisfies Tu = Uu — e.

Proor. (a), (b), and (e) follow from the corresponding properties of the
T.’s; (¢) follows from (d), by considering the functions u; = max u;,1 < k < j;
(f) is clear from the definition, since Tu(s) = T,u(s) < Uu(s) for se S, . For
(d), if u; | u, then using (d) of Theorem 5.1,

inf; Uu; = inf; sup, Thtt; = sup, inf; Thu; = Uu,

while if u; T u, we have

sup; Uu; = sup; sup, Thts; = sup, sup; Tath; .
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But for each n, sup; Tou; < T.u, with equality on {sup; T,u; > — «}, hence

sup; Uu; < sup, Tou = Uu with equality on {sup; Twu; > — « for all n}. For

(g),welet S, = {s|Tau < Uu — efors < n, Tou = Uu — ¢, and set f = fa
on S, . Then for se S, , Tu(s) = Tywu(s) = Uu(s) — e []

6. Markov policies. If # is any Markov policy, i.e. any countable collection of
measurable functions from S to 4, let G(#) = {r | = is #-generated}, and let U
be the operator associated with # by Theorem 5.2. Associated with G(#) are
three functions which are of interest:

(1) limu-e, U0,

(2) suprea) I(m),

(3) sups=ream I(f ).

U™0 is the best we can do using #-generated policies if we terminate at the nth
stage with no terminal return; hence (1) is the limit of the optimal return from
finite stage play among #-generated policies. (2) represents the optimal return
from infinite stage play among #-generated policies, while (3) is the optimal
return among #-generated stationary policies.

Lemma 6.1. (D) (P) N.

liMpse U0 = Supreary 1(7) = suppereas ().

Proor. Lim U"0 exists by Theorem 5.2 (e), and for any =, and any = ¢ G(#),
U"0 = I,.(r), hence lim U"0 = I(w) and the first inequality follows. The second
inequality is obvious. (]

Blackwell has shown in [2] and [3] that in the discounted and positive bounded
cases equality holds throughout. In fact, in the discounted case even more is
true. For any e¢ > 0, there exists a #-generated f such that I Fy +
e = sup {I(x) | m e G(#)}. It is not known if this is true in the positive bounded
case. In the negative case however, all three may be different, as the following
example shows:

ExampLE 6.1. 8 = {0, 1,2, ---}, 4 = {3,4, ---},7(3,a,2) = 7(2,4q,0) =
—1, r = 0 otherwise. The transition function is given by ¢(- |0, a) = §(0),
a(- |1, @) = 8(a), ¢(- |2, @) = a78(0) + (1 — a™)5(2), and ¢(- |5, @) =
8(s — 1) for s > 2. From state 1 we can move to any state s > 2, and from s we
move to s — 1 until we reach state 2. If we are in state 2 and take action a we
move to state 0 with probability ¢, and remain in state 2 with the remaining
probability. State 0 is a terminal state, and once we reach it we remain forever.
The only movements with non-zero return are transitions from state 3 into state 2
and from state 2 into state 0. Let #,= f, = n + 2, so that all Markov = are
#-generated.

If we are going to terminate at the end of n stages with no terminal return,
then in state 1 we can pick an a so large that we shall not reach state 2 before
termination, and in state 2 we can pick on a so large that we shall remain there
until termination with probability arbitrarily close to one. Thus

limg.e U"0(s) = 0 if s=0,1,2,

—1 otherwise.
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In infinite play, starting in state 1 we shall eventually move into state 2 regardless
of what we do, but from state 2 we can pick a sequence of actions a, such that
II7-: (1 — a.™), the probability we remain in state 2 forever, is arbitrarily close
to one. Thus

SUpreary I(w)(s) = 0 if s=0o0r2

= —1 otherwise.

Using any stationary policy however, we shall eventually move from state 2 to
state 0 with probability one. Thus

sups=reea I(f)(s) = 0 if s=0
= —1 if s=2
= -2 otherwise.

In the negative case, the functions (2) and (3) need not even be measurable,
as the following example shows. (This fact was discovered by David Blackwell.)

ExampLe 6.2. Let S = {(2,7) |0 = 2, » < 1, r rational} u {f} and let A be
the positive integers. Let 71, 75, - - - be an enumeration of the rationals between
0 and 1, and let W1, W, - - - be a sequence of Borel subsets of the unit interval.

The transition law is given by

q(- | (z, 1), @) = 8(z, 1) ifro <randzeW,

= §(t) otherwise,
Q( | ¢ a) = B(t)
and the return function is given by 7(s, a, ) = —1if s # ¢ and r = 0 otherwise.

Let #, = n for all n, so that all Markov policies are #-generated, and let
D = {(.’IZ, 1) |Sup1r80(7?') I(W)(l‘, 1) = 0}

Then D is a set sifted through the sieve { W}, and the sets { W,} may be chosen
so that D is not Borel ([11], chapter 7). For any (z, 1) ¢ D, we may choose f
such that I(f°)(x, 1) = 0, hence neither of the functions (2) or (3) is Borel
measurable.

Much of this section is devoted to obtaining bounds for (2) in the negative
case. The results are known in the discounted and positive bounded cases, and
much of the section is closely related to the work of Dubins and Savage on
gambling [6].

Using the terminology of [6], we say that U conserves v € M (s) if Uy = v. From
Theorem 5.2 (¢) and (d) it is clear that if U conserves v;,7 = 1,2, --- | then
U conserves supy;, and if U conserves v, then U conserves lim,.., U™. In fact,
if v is bounded below, then lim U™ is a fixed point of U.

TeEOREM 6.1. (D), N. If U conserves v, and ¢ > 0 then there exists a = ¢ G(#)
such that I(w) = v — e

PrOOF. Pick €,,n = 1,2, -+, such that ) me €, < e Then, from Theorem
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5.2 (g), we can find a #-generated f, such that the associated operator T, sat-
isfiess Tav 2 v — & . Let # = {1, f2, - -+}. Then

Limo) =Ty T =0 — Y pei =0 — ¢

so that lim inf I,(w, v) = v — e In the discounted case, I,(w, v) — I(7x) =

v — ¢ while in the negative case,
I(7) = liMy.e (7)) = iminf, .o L.(m, v) 2 v — e 0

The theorem is clearly false in the positive bounded case, since if U conserves
v and 8 = 1 then U conserves v + ¢ for any constant ¢. Hence for any v, and ¢
sufficiently large, the theorem will fail.

Let u* = lim,.. U"0. In the negative case, we see from Theorem 5.2 (d) that
Uu* < u*. If however, 4™ is a fixed point of U, we can combine Lemma 6.1 and
Theorem 6.1 to obtain

CoroLLARY 6.1. (D), (P), N. If w* = Uu*, then u* = sup {I(x) | = e G(#)}.

We thus wish to find function » such that the resulting policy = will be an im-
provement on #. For any = ¢ G(#), we define

v = Supnzo I("n);
Vp = limye U™y .

(Recall that if 7 = (fi, fa, -+-), then "1 = (fag1, fag2, -+ ).)
Lemma 6.2. (D), N. U conserves v, and v, .
Proor.

7
Uv,

U(supnzo I("1))
Sup,zo UI("m)
Supns1 UI("r)
SUpnz1 Tl (")

v v

Y

SUpns1 I (" 'r)

’
U .

Hence U conserves v, , and by Theorem 5.2 (a) and (d), U conserves U™, for
all n, and U conserves v, . []

In the discounted case, U is a contraction operator, and sup {I(r) | ¢ G(#)}
is its unique fixed point ([3]), so that v, = sup {I(7) | 7 ¢ G(#)} for all = ¢ G(#).
In the negative case this is not true. In either case however, we can prove the
following:

THEOREM 6.2. (D), N. Let v°,j = 1,2, - - - , be any sequence of Markov policies.
Then for any e > O there exists a Markov ™ such that I(x*) > sup; I(r;) — e

Proor. Find # such that each =’ ¢ G(#). We can do this, for example, by letting
# be a reordering of the f,”’s. Let v; = v.i, and let v = sup;v;. Then
v = sup; I(«’) and U conserves v, so we can find = with I(z*) = v — ¢ =

sup; I(7) — e.[]
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We remark that in the negative case if U conserves v and sup {v(s) | se S} =
¢ < 0, then U also conservesv — ¢ ¢ M (S), so that in the preceding constructions
we can always choose v so that the resulting policy = satisfies sup {I(7)(s) | s & S}
= 0.

Example 6.1 shows that in the negative case, every Markov policy is not domi-
nated by a stationary policy. We say a Markov policy =* = (fi, fo, --) is
N-stationary if f, = f for some f and n = N.

TureoreM 6.3. (D), N. If m € G(#), then for any N and any ¢ > 0 there exists a
7 & G(#) such that = is N-stationary and I(z*) = I(r) — e

Proor. Find ©’ = {f1, fo, -} € G(#) such that I(x') = v, — ¢/2, and find a
#-generated f such that the associated T satisfies Tv. = v. — ¢/2N. Let ™ =
{g1, 92, -} whereg, = fforn < N and g, = fa_y for n > N. Then

I(x*) = T I("x*) = TVI(x') = T, — ¢/2 Z v, — 0

TuEoREM 6.4. (D), N. If there exists = e G(#) such that I(z*) =
sup {I(w) | w e Q(#)}, then I(f™) = I(x™), where f is the first element of ="
Proor. Let T be the operator associated with f, then

I(x*) = TICx™) < TI(«*) = I(f, 7*) < I(«*)

so that TI(z*) = I(«"), and T"I(z*) = I(z* ) In the discounted case
T*I(#*) — I(f*), while in the negative case, T"I(z*) < T"0 | I(f*?).[]

We say that v is excesswe for U if Uu < u. Blackwell has shown that in the
discounted case if uw e M (S) and u is excessive for U then w = I(x) for all
x e G(#) ([3]), while in the positive bounded case, if w = 0 and u is excessive
for U, then u = I(w) for all = ¢ G(#) ([2]). We have been unable to obtain
similar simple conditions in the negative case. The following theorem is a straight-
forward generalization of the theorem given in [1].

TaEOREM 6.5. (D), (P), N. Suppose u is excessive for U. Then v = I(x) for all
m & G(#) if and only if SUppzo L.(m, w) = I(w) for all m e G(#).

Proor. Iy(w, u) = u, hence the necessity of the condition is trivial. Conversely,

Li(myu) = Ia(m, Tou) < Lia(w, Uu) £ Ina(m, u)

where T, is the operator associated with the nth element of x. Therefore
I,(m,u) £ ufor all n and the result follows. []

7. Absolute measurability of the optimal return. Throughout this and the
next section we let v* = sup, I(x). Blackwell has shown in [3] that if for every
¢ > 0 there exists an e-optional policy, then »* is measurable and satisfies the
optimality equation v = supam Tw* where T, is the operator associated with
f = a. In general however, »* is not measurable and there does not exist an

e-optimal policy for every ¢ > 0. In Example 4. 1 there does not exist an e-opti-
mal policy for any ¢ < 1, becauseif g = 1 say, v (s) =1ifseBuD,v*(s) =0
otherwise. Since D is not measurable, neither is »*.

In this section we will show that v* is absolutely measurable, i.e. measurable
with respect to the completion of every p ¢ P(S), and in the next section we will
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show that there always exists a (p, €)-optimal policy and that v* satisfies the
optimality equation.

Let X = ASAS --- be the set of futures of the system, and let =* be the
smallest ¢-field in P(X) such that vB is a =*_measurable function of » ¢ P(X)
for every Borel subset B of X. Then P(X) is a Borel set, and =* the o-field of its
Borel subsets ([5]).

LemmMa 7.1. If u is any Baire function on SX such that u is bounded or u is of
constant sign then vu is measurable on SP(X).

Proor. If u is bounded, the lemma is immediate from 2.2 of [5]. If  is of
constant sign then u is the monotone limit of bounded Baire functions. []

Let T' = {(s, ») | » = ex(s) for some policy =}, i.e. T is the set of pairs (s, ») &
SP(X) such that » is the probability on X induced by some policy = at s.

LemMma 7.2. T 7s a Borel subset of SP(X).

Proor. Every » ¢ P(X) has a factorization as » = ww, - -+ where

neP(4),
neQ(S|A4),
v € Q(A | AS -+ - AS) (2n factors),
v eQ(S|AS -+ ASA) (2n — 1 factors).

We shall index the coordinates of (s, z) e SX by s = &1, = (a1, 2, a2, - **).
Then v = e.(s;) for some = if and only if »(- | a1) = ¢q(- | 81, 1) for almost all
ay with respect to » and ve.(- | a1, 2, +-* @n) = ¢(- | 8n, @) for almost all
(a1, 82, +++, an) with respect to v and all » = 2.

Let wam, m = 1 be a countable subset of M (X,) which separates points of
P(X,), where X, = AS --- AS (2n factors) forn = 1. Let

Tim = {(81, ¥) | [ wim(a1, ) dv( s, 83) = [Jwim(ar, s2) dg(s2 | 81, @1) dv(ar)}

and for n = 21et Tum = {(81, ) | "Wam = ¥qWpm}. Then so T =) 7zt M m=t Trm is
Borel. []

TurEorREM 7.1. D, P, N. v* is absolutely measurable.

Proor. By Lemma 7.1, (s, ») = v( D et 7(Sn , @n, $a41)B" ") is a measurable
function of (s, »). But v*(s) = supe,mer v(s, »). Let By = T'n{(s, ») | v(s, ») >
M. Then B, is Borel, and C\ = {s|»*(s) > M}, which is the projection of By,
is analytic, hence absolutely measurable. []

8. Optimality.

TuroreM 8.1. For any p € P(S), ¢ > 0,

D. there exists a (p, €)-optimal stationary policy £,

P. there exists a (p, €)-optimal semi-Markov policy #,

N. there exists a (p, €)-optimal Markov policy =*.

The statement of Theorem 8.1 in the discounted case is the same as that of
Theorem 6(b) of [3]. Our definition of (p, €)-optimality is, however, stronger
than that given in [3]. Recall that = is (p, €)-optimal if p{I(r) = v — ¢ = 1.
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Proor. We shall first show the existence of a (p, €)-optimal . Since v™ is
absolutely measurable, we can find a Borel N C 8§ such that pN = 0 and a
measurable function v such that for s g N, v(s) = v™(s). Let

Te=Tnl[{(s,v)|sgN,v(s, v) > vo(s) — ¢ u{(s,v)|seN}].

For each s, T'c has a non-empty s-section, so by Theorem 6.3 of [10], we can find
a Borel N'c S with pN' = 0, and a measurable function v from S into P(X)
such that for s #z N', v(s) € T'c. For any Borel subset B of X, the map (s, ») —
»(B) is measurable in (s, »). Hence the map s — ¥(s)(B) is measurable in s.
Clearly for each s ¢ S, v(s) is a probability on X, so that if u(B | s) = v(s)(B),
then u e Q(X | 8). We can then factor p as u = ppe - -+, where
M1 € Q(A [ S ))
um €Q(S|SA --- SA) (2n factors),
ums1 €Q(A |84 --- 8) (2n + 1 factors).

For s 2 N', pen(+ | 1) = q(+ | 8a, @n) since y(s1) € I'. We can now define = by

T = o if 52N

Tw = Tn if seN,
where © = (m, m’, --+) is an arbitrary policy. For sgNuN', I(x)(s) =
(s, v(s)) = v*(s) — ¢ and p(N u N') = 0, hence = is (p, €)-optimal.

Blackwell’s definition ([3]) of (p, €)-optimality is that o is (p, €)-optimal if
for all w, p{I(s) = I(r) — ¢ = 1, so that the theorem in the discounted case
now follows from Theorem 6(b) of [3]. To complete the proof in the positive case,
we find 7 such that = is (p, ¢/2)-optimal, then from Theorem 4.4, we can find a

semi-Markov policy # such that I(#) = I(r) — /2.

To complete the proof in the negative case, let us assume that pp* > — oo,
We may do this without loss of genera,hty since if pp* = — o, we can replace p
with p’ € P(8) such that p'{s | v *(s) > —o} =1,p is equlvalent to (has the
same null sets as) p restricted to {s | v*(s) > — o}, and p 'v* > — o, Then any
policy is (p, €)-optimal if and only if it is (p’, €)-optimal. From Theorem 4.3
and the result ]ust proved, for each m = 1 we can find a Markov policy = such
that pI(7x™) 2 w* — 1/m. Let v; = sup, I(7™). Then v, < v* and pv; = pv¥,
hence p{v1 = »*} = 1. From Theorem 6.2 it follows that there exists a Markov
policy =" such that I (1r )=z — el

We next show that »* satisfies the optimality equation. Let T, be the operator

defined in Section 5 for f = a.
TueoreMm 8.2. D, P, N.

v*(s) = supe Tw*(s) for all se 8.

In fact, in the discounted case v* is the unique bounded solution and in the positive
bounded case v* is the smallest non-negative solution.
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Proor. For any seS, ¢ > 0, we can find a Markov policy = such
that I(w)(s) = v*(s) — ¢, by letting p = 8(s) and applying Theorem 8.1. Then,
if a is the action which m; chooses at s,

v*(s) — e = I(m)(s) = TI('r)(s) < Tw*(s).

We can do this for each s and each e > 0; hence v* < sup, T0*. For any s, any a,
and ¢ > 0, we can find a = (not necessarily Markov in the positive case) such
that I(w) = v* — e almost surely with respect to ¢( - | s, @). Then

v*(s) 2 I(a, 7)(s) = Tl (7)(s) Z Ta*(s) — e

where (a, 7) is the policy which uses a, then uses 7 from the resulting state. Thus
v* = sup, Tw¥, since s, a, and e were arbitrary, and »* satisfies the optimality
equation, v* = sup, T™.

In the discounted case, let w be any other bounded solution. We do not assume
that w is absolutely measurable, but only that T,w is defined for each a ¢ A.
If T.w is defined, so is T,(w + ¢) = T.w + Be. In particular, v* < w + |p* — w|,
so that

To* < Taw + 8 |v* — w)| forall aq,

v* = sup, Tw™ < sup, Taw + B |p* — w|| = w + 8 |p* — w].

Reversing the roles of »* and w we obtain ||p* — w|| < 8 [v* — w|), which implies
*
v o= w.

In the positive case, let w = 0 be any other solution, and suppose w(s) <

v*(s) for some s. It follows from Theorem 8.1 that we can find a Markov policy
= (fi,fe, ) withw(s) < I(w)(s). If T, is the operator associated with f, ,

then
w(s) < I(m)(s) = limpse T1 - T0(8) = limpooe T1 -+ Thw(s) = w(s)

which is a contradiction. []
We close this section with the following analogs of Theorems 6.4 and 6.5:
TurorEM 8.3. (D), N. If there exists an optimal policy =" then there exists an

optimal stationary policy .
Proor. According to Theorem 4.3, we may assume =" is semi-Markov. Let f
be the first element of #*, and 7' be the associated operator. Then

v*(s) = I(x*)(s) = [r(s,f(s), ) + I(m")(t) dg(t|s, a)
[ (s, £(s), 1) + v*(t) dg(t]s, a)
To*(s) = I(f, 7*) < v*(s)

where =,* is the policy which =* determines starting at the second stage when
the initial state is s. Thus Tv* = v*. In the negative case v* = T™%* < T"0 |
I(f*) £ v* while in the discounted case v* = T™* — I(f*”) so that I(f*”) =

v . [

lIA
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TueOREM 8.4. (D) (P) N. Suppose Tou < w for all a. Then I(x) < u for all
7 4f and only if Supnze I.(#, u) = I(#) for all Markov policies #.

Proor. From Theorem 8.1 it follows that sup, I (7) = sup {I(#) | # Markov}.
The result then follows from Theorem 6.5. []

As in the case of Theorem 6.5, this is much weaker than Blackwell’s results
([2] and [3]) in the discounted and positive cases, but- we have been unable to
obtain anything stronger in the negative case.

9. Additional Results and Comments. We say that actions a and b are equiva-
lent at state sif r(s, a, -) = (s, b, -) and ¢(- |s,a) = q(- | s, b). We say that 4
is essentially finite by ©* = {fs, fo, -+ -} if there is a partition of S into Borel
sets S1, Sz, -+, such that for every (s, a) with s S, , at least one of the ac-
tions fi(s), - - -, fa(s) is equivalent to a at s.

TueoreMm 9.1. (D), N. If A is essentially finite by #* = (f1, fa, --) and U
is the operator associated with *, then

(a) U"0 — v* = sup, I(r);

(b) there exists a stationary optimal policy f.

Proor. (N) Let v, = U"0, and let v* = lim v, , which exists since v, = vn1 .
For any =*-generated m, In(r) < U"0 = v, ; hence I(r) < v*. By the assump-
tion of essential finiteness, all Markov policies are =*-generated, and we have
shown that

SUpx I(ﬂ') = SUPr» Markov I(ﬂ');

hence I(7) < v* for all .

For any s & 8, v,(8) = Tnmtn-(s), for some m(n) such that Tpmamyva_i(s) =
Uvn(s). Such an m(n) exists by the assumption of essential finiteness. More-
over, we can always choose m(n) < k for s ¢S, , and then the sequence m(1),
m(2), - - - contains only finitely many distinct elements, so contains one, say m,
infinitely often. Since v, decreases in n, it follows from Theorem 5.1 (a) and (d)
that

v*(8) = liMpse va(s)
= limp.w TmmyVn-1(8)
= limye Ttlns(s)
= T.0%(s) £ Uv*(s).

But s was arbitrary, hence Uv* = v*. We can find a measurable partition B,
B,, -+ - of s such that Uv* = T,»* on B,,. Let f = f on B, , and let T be the
operator associated with f. Then Tv* = Uv* = v* and I,(f*) = T"0 = T™* =
v*. It follows that I(f*”) = »* and f* is optimal. []

The Howard improvement routine, proved for finite S, 4 in [8], and in the
general discounted case in [3], is valid in the negative case.

TarorEM 9.2. (D), N. For any =, if I(f, ) = I(x) then I(f*) = I(x).
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Proor. (N) Let T be the operator associated with f, then I,(f?) = T"I(x) =
I(7).[]

Example 4.2 shows that Theorem 9.2 may fail in the positive case.

Our final result is an improvement routine valid in the discounted and negative
cases. Given any policies ¢ and 7, the policy =, obtained from them by choosing
at each stage the one which would be better if we were going to use it for the
infinite future, is better than either ¢ or 7.

TuroreM 9.3. D, N. Let o and T be policies, and define = by

Tn = On if (s1,a1, ) @, ) By
= 7, if (81,1, *++ 5 Guo1, Sn) € B,
where B, = {(s1, a1, **+ , Qu_1, Su) | Un > 04}, and
Un(S1, A1y =y Que1y Sn) = Z?“n :Bj—lo'nq s 0Ty
Ua(S1, @1y oy Quo1, Sn) = Z:Ln Bj_lan cct TqT.

Then I(w) = max (I(a), I(7)).
Proor. We extend the notation I,(r, w) defined in Section 3 in the following
way: For w, 16 M(SA --- AS)(2n + 1 factors), we define

Iﬂ(ﬂ-, wn+1) = eﬂ[z;;‘l ﬁj—lr(sj y Gj, 8i+1) + ,ann+1(81 y A1, * 8n+l)]'

With this definition, I,,(w, w,41) is our expected return if we use m, terminate
after the nth stage, and receive a terminal return w,4; which depends upon the
history we have experienced rather than on the terminal state. If we let w, =
max (un , vn), we see that Io(w, w1) = win = max (I(s), I(7)), and in general,
I,_i(w, w,) is our expected return if we follow 7 for » — 1 stages, then switch
to the better of ¢ or 7 at the nth stage. On B, , 7, = 0, and w, = u., and on
B,’, m, = 7, and w, = v, , hence

Wn = Tal? 4 Bny1) = ma(r + Bwnyr) on B,
= ma(r + Bvt1) = ma(r + fwan) on By
so that
Lia(m, wa) £ Ina(m, [ma(r + Bwas)]) = In(m, Woya),

and I,_;(m, w,) = max (I(¢), I(r)) for all n. In the discounted case, I,—1(m, w.)
— I(w), and in the negative case, I_i(m, wn) < Lna(w, 0) | I(x).[]
Stated in terms of Markov or stationary policies, the theorem becomes
CoroLLARY 9.1. (D), N. Let ¢ = (fi, fo, --+) and 7 = (g1, 92, --) be
Markov policies, and define # = (hy, he, - --) by

bo = fu G I(") > I1(" )
= gn otherwise.

Then I(7) = max (I(c), I(7)).
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CoROLLARY 9.2. (D), N. (Eaton-Zadeh). Let 7 and g be stationary policies,
and define h by

h=f  HIF?) 2 1)
=g otherwise.

Then I(h*7) 2 max (I(f), I(¢)).

Corollary 9.2 was proved in the negative case for finite S and A4 in [7] and in
the discounted case in [3]. The following example shows that Corollary 9.2,
hence Theorem 9.3, may fail in the positive case.

ExamriE 9.1. Let S, 4, ¢, and r be as in Example 4.2. Define f by f(s) = 0
for s even, and f(s) = 1 for s odd. Let ¢ = 1 — f. Then

I(f*) (1) = I(g*)(1) = 0;
I(f(w))(s) 1—1/s and [(g(”)) =1—1/(s+ 1) for seven;
I(f*)(s) =1—1/(s+ 1) and I(g(“)) =1-—1/s for s> 1 odd.

Hence h = 1 and I(h“”) = 0. This example shows that no routine can be devised
to produce a stationary policy better than two given policies in the positive case,
since any stationary policy would have to have h(s) = 0 for some s in order to
have a non-zero return, and would be less than max (I(f*?), I(¢*”)) at that s.

We do not know if there are any theorems similar to Theorems 6.2 or 9.2
which hold in the positive case, and as a result do not know if semi-Markov can
be replaced by Markov or stationary in Theorem 8.1. We do not know if Theoreme
6.3 or 8.3 are valid in the positive case. Theorems 4.2 and 6.4 are false as stated
in the positive case, and we do not know if any similar theorems are true.

In conclusion we wish to express our gratitude to Professor David Blackwell
whose guidance and advice throughout the preparation of the thesis were in-
valuable.
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