INDUCTIVE METHODS FOR BALANCED INCOMPLETE
BLOCK DESIGNS

By R. G. StantoN AnxD R. C. MUuLLIN

Unaversity of Waterloo

1. Introduction. When working with balanced incomplete block designs, one
notes with disappointment that inductive methods are usually unavailable, and
in those instances where induction is available it is complicated by the fact that
the parameter of induction usually increases by some integral constant greater
than unity. It is our purpose here to embed such designs in larger systems where
inductive techniques are possible. These larger systems permit block sizes to vary
but retain the other axioms of block designs. In this paper we examine two such
general systems which are closely related; one is more suitable as a generalization
of finite geometries and the other more convenient for use with block designs.
The idea of using variable block size is not new. For example it has been used in
references [1] and [2]. However it does not seem to have been exploited fully as an
inductive technique. We shall introduce a notational system which is favourable
to inductive constructions.

2. Balanced incomplete block designs. A balanced incomplete block design is a
system consisting of a set ¥ of » objects called varieties, and a collection of b
subsets of V called blocks satisfying the following conditions:

B; : every block contains precisely £ < v (distinet) varieties,

B, : every variety occurs in precisely r blocks,

B; : every pair of varieties occurs in precisely A > 0 blocks.

We shall see directly that B, is a redundant axiom. To do so let us introduce the
notion of a A-system.

3. \-systems. Let us define a A-system as consisting of a set V of v varieties
and a collection of b subsets (called blocks) of V which satisfies the following
axioms:

L; : every pair of varieties occurs in precisely N blocks.

L, : every block contains at least 2 varieties.

Note that, for A = 1, we have the fact that every pair of varieties (points)
determines a unique block (line); thus the connection with geometries. We have
adopted the terminology of block design$ to make the extension of A-systems to
(r, \)-systems (to be discussed later) more natural.

Associated with every A-system L there is a sequence of non-negative integers
B = (b1, ba2, b3, ---) where b; is the number of blocks containing exactly ¢
varieties. Although B is formally an infinite vector, all but a finite number of
entries are zero. We shall call such a vector the B-vector of L. Let us note that
by = 0, and that counting occurrences of pairs of varieties gives
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(1) e bi(2) = \(3),

where v is the number of varieties.

Let = be a fixed variety of V. Using z we can find another vector,
R,=R = (ro,71,72, -+ ), associated with L; in this vector r; is the number of
blocks of size ¢ 4 1 which contain . Thus r; < b,y (2 = 0, 1, - -+ ); since every

variety appears with x exactly A times, we obtain
(2) Doiiri = Mo — 1).

Let us delete « from L and omit any blocks of single elements that this operation
creates. This yields a A\-system with » — 1 varieties and B-vector (b;*), in which
b =0,b.* =b;+r,—riy (i = 2,3, ---). The inverse operation may be called
the induction principle for A-systems and is contained in the following:

TueoreM 1. A \-system with B-vector (by, bs, ---) exists if and only if there
exists a sequence of integers (0, ry, ry, -+-) and a N-system L' with B-vector
(0,by + 7y — 11, b3 + 75— 13, -+ ) and a collection of blocks C of L', containing
7s blocks of size 1 (¢ = 2,3, -+ ) such that every variety v of L' occurs N, < \ times
in C.

Proor. The necessity of the conditions was established above. Let us assume
that we have a system L’ with collection C as defined above. Let us adjoin a new
variety z to every block in C. Further, for every variety » of L', adjoin A — X,
blocks (z, v). Thus we have the required system. It is easily verified that r; new
pairs (z, v) are adjoined. As a corollary we have immediately

THEOREM 2. Let L be a \-system in which every block has constant size k < v.
Then L 1is a balanced incomplete block design.

Proor. The B-vector of L has one non-zero component b; only. Let R = (r;)
be an R-vector relative to any variety « of L. Since 0 =< r; =< b1, there is only
one non-zero component r,_; = r of R. Thus, by (2), (k — 1)r = A(v — 1);ris
independent of the choice of x; and the theorem follows.

Thus axiom B, for balanced incomplete block designs is redundant.

4. (r, \)-systems. It is of interest to investigate systems similar to A-systems
in which every variety occurs in precisely r blocks. Let us define an (r, \)-system
as a set V of v varieties and a collection of b subsets of V called blocks, satisfying
the following axioms:

R, : every pair of varieties occurs in precisely A blocks,

R, : every variety occurs in precisely r blocks,

Rs:r>XN2Z0.

In a BIBD, k < v is equivalent to » > \; thus block designs are special cases
of (r, \)-systems. However, A-systems do not include (7, \)-systems, since blocks
consisting of a single element are permitted in the latter. (r, \)-systems can be
used to investigate embedding, isomorphism, and other properties of BIBD’s.
B-vectors and R-vectors relative to some variety are defined as for A-systems, but,
in this case, b; and r, are not necessarily zero. The conditions (1) and (2) still
hold; however, we now have
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(3) D it = 7.
The total number of blocks b is given by

(4) b= 2 bi.
Also

(5) o = D e ibs,

since each side represents the total number of occurrences of all varieties in the
blocks. The following inductive principle for BIBD’s is analogous to Theorem 1.

TaroreEM 3. An (r, \)-system S with B-vector (b;), where 1 = 1, 2, --- , exists
if and only if there exists a sequence of non-negative integers ro , r1, * -+ , satisfying

2ori = r and an (r, \)-system S’ with B-vector (b;*), b;* = b; + r; — ris
(1= 1,2, ), which contains a set C of blocks, with r; blocks of size 7, such that
every variety of S occurs in precisely \ blocks of C. )

Proor. Clearly the condition is necessary. The converse is obtained by adjoin-
ing a new variety z to every block of C, then adding r, blocks consisting of x itself
to 8’ to get the required system.

6. Applications. So far we have discussed B-vectors and R-vectors only as
they arise from A-systems and (7, \)-systems. For given positive integers r and
\, let us refer to any vector of non-negative integers as a B-vector if itsatisfies
(1) and (5) for some integer v, and to any such vector which satisfies (2) and
(3) for the same value of » as an associated R-vector.

Let us also say that a B-vector 8* is derived from a B-vector 8 if there is an
associated R-vector (r;) of 8 = (b;) such that

B* = (bs+ ri — i), where i =1,2,3, ---.

Define a partial ordering on B-vectors 8; (for given r and )\) as follows: 8, < 8.
if Bm = B , or if there exists a sequence of B-vectors Bm , 8,86, -+ , Ba such that
each B-vector is derived from its successor. Now we determine when there is an
(r, \)-system corresponding to a given B-vector (\-systems can be dealt with
similarly).

Let P = (B £ B < Bp < -+ = B,) be a maximal chain between 3,, and 8, .
We say a system L with B-vector 8, can be ¢ntegrated along the chain P to a
system with B-vector 8, if to each member of the sequence (except the first)
there corresponds a system which can be obtained from the system corresponding
to its predecessor by means of Theorem 3 ‘and which can be extended to a cor-
respondent of its successor (except for the last) also by Theorem 3. Clearly a
system L, with B-vector 8, can be embedded in a system L, with B-vector 8, if
and only if L., can be integrated along some chain from 8, to 8, . As a special
case, a design exists with B-vector 8 if and only if the design L;(r) consisting of
one variety replicated r times can be integrated from (r) to 8, where (r) is the
B-vector (7,0,0,0, ---). (We adopt the usual convention of omitting the zeros
to the right of the last non-zero entry). Clearly a necessary condition for the
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existence of a system corresponding to 8 is that () = 8. It can be shown that this
rules out the existence of (20, 6)-systems for the following B-vector with v = 3:
(27, 15, 1).

For small systems, one can check uniqueness by performing all integrations
along all paths (i.e., maximal chains) from (r) to 8, and identifying isomorphic
members. For the convenience of the reader, the uniqueness of the Fano geometry
is proved by way of example in Section 7. For slightly larger systems it is more
reasonable to look for existence, since the number of paths may increase greatly
as the size vr of the system increases.

When it is known that a certain system must have a given subconfiguration,
it is only necessary to check the paths through the B-vector of the subconfigura-
tion. In some instances, such as projective planes, one chain may be necessary
and sufficient. However, since the integration time increases rapidly with », the
plane of order 10 (with » = 11) is probably beyond reach by this method.

To test the method, a Fortran programme was written which constructed all
BIBD’s with parameters (8, 14, 7, 4, 3) (the parameters are in standard order
(v brkN)),since this was the first member of the family H,(z), discussed in [5],
which admitted the possibility of more than one design for the given parameters.
The answer was checked by theoretical methods in that case. Four solutions were
found, and it was shown in [6] that this is indeed the correct number.

6. Properties of (r, \)-systems. Let S* be a subset of the variety set V of an
(r, \)-system L. Restriction of L to §* is obtained by expunging all elements of
V — 8* Clearly a restriction of an (7, \)-system is an (7, \)-system. If a system
L* is isomorphic to a restriction of a system L, we say that L* is embedded in L.

Trarorem 4. A BIBD with given k, r, and N can be embedded in another (r, \)-
system only if k diwvides r — \.

Proor. In order to be embeddable, D must be embeddable in a one-element
extension of D. The B-vector of D has only one non-zero element b, = b. By the
condition for extensibility, any R-vector for the extension has only two non-
negative components x = 7, and 7y = r — z. Also

xk = N,
r(k — 1) = v — 1).

Thusz = k™' (rk — 7 + \) and k |[(r — \). Let r — A = nk. Thenz = r — n and
o =N > 0.

A remarkable theorem by Ryser [3] proves that if in an (r, \)-system v = b,
then N\(v — 1) = r(r — 1), and the system is a BIBD with &k = r. We may use
this theorem to give an inductive proof of the Fisher inequality.

TuEOREM 5. In any (r, \)-system, b = v.

Proor. The theorem is trivial for » = 1, and any r and A. Let us assume there
is an (r, \)-system with v = 2, such that » > b. Let us choose a system L with the
least value of » for which the theorem fails. Then, in L, » = b + 1;for otherwise
removal of a variety would produce a system with a smaller value forvin which
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v > b, which is contrary to the choice of L. Similarly removing a variety from L
must produce a system in which » = b. But such a system is a BIBD with & =7
Thus k£ does not divide » — A, and the BIBD cannot be extended to produce L.
This contradiction establishes the theorem.

Let us call (r, \)-systems elliptic, parabolic, or hyperbolic accordingly as the
expression N(v — 1) — r(r — 1) is negative, zero, or positive. All BIBD’s are
either elliptic or parabolic, and are parabolic only if they are symmetric, that is,
if b = o.

Let us note that from relations (1), (4) and (5), we obtain

(6) 0= > (i—r)b=oNv —1) —r(2r — 1)] + .
Thus for elliptic designs we have the stronger inequality
b= {[r(2r — 1) — Nv — 1)]/7}o.

If we ask whether the condition A\(v — 1) = r(r — 1) is enough to guarantee
that v = b; we find that such is not the case, as shown by the following example:
1234567, 124, 235, 346, 457, 561, 672, 713, in which A = 2,r = 4, and v = 7.

However this system contains a complete block, which, when removed, pro-
duces the Fano geometry.

Henceforth, for convenience, the term design refers to an (r, \)-system unless
otherwise stated. Let us call a design irreducible if it contains neither a complete
block nor a set of » single element blocks whose union is V. Otherwise it is re-
ducible. By removing complete blocks and/or units of single blocks from a re-
ducible design, one obtains either a proper irreducible design or the null design;
if the latter occurs, the original design is called trivial. We make the following
conjectures:

CoNJECTURE 1. For N < 2(and perhaps all \), N(v — 1) = r(r — 1) tmplies
v = b if the corresponding design s irreducible.

CONJECTURE 2. For X < 2 (and perhaps all \), all hyperbolic systems are re-
ducible.

We prove the conjectures for N = 1.

LeEmMA 1. Let 1 be the longest block in a design with X = 1 which contains no com-
plete block. Then r = 1.

Proor. Let B; be a block of length I, and « be a variety not in B; . Then every
variety of B; must occur with x, and since no pair of varieties from B; can appear
together outside B; , there must be an occurrence of « for each member of B; .
Thusr = I. '

TueorEM 6. If in a (r, 1)-system, N(v — 1) = r(r — 1), the design is trivial or
symmetric.

Proor. If the design contains a complete block and N = 1, it is trivial. Let us
assume that there is no complete block. Let R, = (ro, r1, - - -) be the r-vector
associated with the variety w. By the above lemma, r; = 0 for ¢ > r — 1. Thus

YT =Nv—1) =r(r—1),

—
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which together with ) _i=pr; = r, implies 7; = r, and all blocks containing any
variety w contain r varieties. But every non-empty block contains at least one
variety. Thus all blocks have r varieties, and the system is a BIBD with & = r.
Thusv = b.

CoRroLLARY. Any hyperbolic (r, 1)-system is reducible. Select any (r, 1)-system
L with v > ©* — r + 1 varieties.

Proor. If r = 1, the result is trivial. Let us assume r > 1. Select a set S of
r* — r + 1 varieties. The restriction 8* of L to S must be trivial since, by Theorem
4, it cannot be symmetric. Thus S* contains a complete block B*. Let w be a
variety of V — S. If w is not adjoined to B* in the restriction of L to S u w, it
must occur in ¥ — r + 1 single blocks of 8*, and since w only occurs 7 times,
r=7r —r-+1.Butforr = 1, 7 — 7+ 1 > r. Therefore we have a contradiction.
Hence every element w of V — S belongs to the extension of B* in L, that is, all
hyperbolic designs with A = 1 are trivial, and thus reducible.

This establishes the validity of the conjectures for A = 1.

The following example shows that Lemma 1 is not valid for A = 2. Consider
theset Vof v = 22 + 1 varieties (»,1,2, - -- 2, 1% 2% ...  2*). Form the follow-
ing blocks:

V — =,

(00,1,2,--- ’g)’

(oo, 1*’ 2*’ ,z*)’
(w,4,4%), i=1,2---,2;

G5%), i
In such a system A = 2 and r = 2z + 2, whereas [, the length of the longest block
is 2z. Thus, if z > 2,1 > r. None of the above systems is embeddable in a BIBD,

although all are elliptic. Indeed the above example serves as counterexample for
various conjectures.

7. Uniqueness of the Fano geometry. This section is included merely to illus-
trate the methods of this paper by proving the well-known and somewhat trivial
result that the Fano geometry or symmetric BIBD (7, 3, 1) is unique up to iso-
morphism. Since the design contains 7 blocks of 3 varieties, it has B-vector
b1, bz, bs) = (0,0, 7), which seems appropriate in the year 1966. Any associated
R-vector (ry, r1, r2) must satisfy

(a) re+ 1+ 1 =3,
(b) r1 + 2r; = 6,
() 0=r=<=00=n=<00=nrn=s"T

Hence the only such R-vector is (0, 0, 3). The derived B-vector is (0, 3, 4), and
corresponds to » = 6.
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Continuing in this way, one obtains the following graph.

0,0,7) o7

J(o,o, 3)
(0,3,4) V=26

j(o, 1,2)
(1,4,2) v=>5

021/ \@02
(3,3,1) (0,6) v=4
©3/ \@1n

(6,0,1) 3,3) v=3

Instead of continuing the graph down to (3), we stop with B-vectors (0, 6),
(6,0, 1), and (3, 3), for which the corresponding designs exist and are clearly
unique.

Indeed, (0, 6) must correspond to all possible pairs of four elements, whereas
(6,0, 1) corresponds to 123, 1, 2, 3, 1, 2, 3, and (3, 3) corresponds to 12, 23, 31,
1,2, 3.

Extending these designs in accordance with Theorem 3, we obtain 123, 14, 24,
34,1, 2, 3 and 124, 13, 23, 43, 1, 2, 4 respectively; these are isomorphic under the
interchange (3, 4).

The above design extends in essentially only one way to 123, 145, 24, 34 1, 25,
35, with B-vector (1, 4, 2). Removal of the element 1 gives a representation of
the design corresponding to (0, 6). However, this design is completely sym-
metric and can be extended in only one way; thus the design corresponding to
(1, 4, 2) is essentially unique.

The R-vector for extension of (1, 4, 2) to (0, 3, 4) demands that variety 6 be
paired with variety 1 to yield a block of length 2. Because of the symmetry be-
tween varieties 2 and 3, and varieties 4 and 5, we may, without loss of uniqueness,
also assume that we form blocks 246 and 356. The final stage of extension is now
completely determined and produces the final result 123, 145, 246, 347, 167, 257,
356. This example, although trivial, serves to illustrate the general method.
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