ESTIMATION OF THE PARAMETERS OF THE EXPONENTIAL
DISTRIBUTION BASED ON OPTIMUM ORDER STATISTICS
IN CENSORED SAMPLES

By A. K. Mp. Eusanes Saved

University of Western Ontario

1. Introduction and summary. In the theory of estimation it is well known
that when all the observations in a sample are available, it is sometimes possible
to find estimators that are the most efficient linear combinations of a given
number of order statistics. In many practical situations, we encounter censored
samples, that is, samples where values of some of the observations are not avail-
able, and it is desired to obtain linear estimators based on a few optimal order
statistics from such a sample.

The present study concerns the determination of the optimal set of order sta-
tistics for a given integer k& (where k is much less than the number of observa-
tions in the censored sample), in estimating the parameters of the exponential
distribution when the sample is censored. The study is based on the asymptotic
theory and under Type II censoring scheme.

The problem of estimation of the parameters of the exponential distribution
in censored samples has been considered by Sarhan and Greenberg (1957). The
choice of optimal set of order statistics for the scale parameter alone in a left
censored sample has been studied numerically by Sarhan, Greenberg and
Ogawa (1963).

For the estimation of the parameters of exponential distribution based on
optimal set of order statistics, we present in Section 2 the asymptotically best
linear unbiased estimates (BLUE’s) of the parameters based on k sample quan-
tiles of given orders when all the sample values are available and define the
censored samples considered. In Sections 3-5, the detailed treatment for the
determination of the k& optimum order statistics in singly and doubly censored
sample is presented. In Section 6 some extremal properties of a related function
are given. The results are always referred to in the text of Sections 2 to 5 to
establish uniqueness of the optimal order statistics so determined.

Further, for ¥ = 2(1)4 and proportion of censoring the right 1 — 8 =
.05(.05).40, Table I has been prepared for the estimation of the scale parameter
(assuming the location parameter known) furnishing the coefficients of the
BLUE and the spacings corresponding to the optimum order statistics. For
k = 2(1)4 and equal proportions of censoring on both sides from .05 to .25
at steps of .05, Table II has been prepared for the simultaneous estimation of the
location and the scale parameters.
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2a. Asymptotically best linear unbiased estimates (BLUE’s) of the param-
eters based on % sample quantiles. Consider the one and two-parameter expo-
nential distributions given by

(2.1) f(z) = o e, 0
(2:2) f(z) = a7 ", u

where u and o are, respectively, the location and the scale parameters of the
distribution. Assume that the sample size n is large and k < n. Let the ordered
observations in a random sample of size n be z@ < -+ < %) and consider
the &k sample quantiles ), *** , Ty Where ny, -+, n are the respective
ranks which satisfy the inequality 1 < m; <--- < m = n. The integers
ny, -+, g are determined by & fixed real numbers p1, --*, Pk which satisfy
the order relation 0 < p; < +++ < pr < Lyand n; = [np] + 1L, ¢ =1,---, k.
[np4 is the Euler notation denoting the largest integer not exceeding np; . Define
po = 0 and pry1 = 1. Ogawa (1960) and Kulldorff (1963a) have shown that
the asymptotically best linear unbiased estimates (BLUE) of u and ¢ based on
k sample quantiles ey, = * , Ty are

IIA
IIA

z w;0 > 0;

A

xS w30 > 0;

(2.3) & = Din1cmy ;
(2.4) b= @y — 6w,
where

(2.52) ¢ = —{(us — w)/(” — e")L};
(2.5b) ¢ = LM (ui — wia)/(€% — €71) — (wipn — we)/(¢"+ — €")},
i=2"":(k_1);

I
o
I

(2.5¢) ¢ = LH{(ur — we—r)/ (€ — €“71)};
(2.6) L= D ims (us — uia)?/ (" — %71,

where u; = In (1 — p:)™", ¢ = 1, - - - , k, are quantiles of the standard exponential

distribution corresponding to p1, -+, Px -
The variances, and the covariance of the estimates of 4 and ¢ are
(2.7a) V(i) = {w'/L + (& — 1)}e"/n;
(2.7b) V(s) = L7'¢*/n;
(2.7¢) cov (4, 6) = (w/L)(d*/n);
and the generalized variance of i and ¢ defined by V(@) V() — Cov® (4, 6) is
(2.8) A = [(e" — 1)/Ll*/n’.

If w = 0, then the corresponding estimate of o based on the k quantiles is

(2.9) & = D i ba(n.)
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with variance

(2.10) V(6) = Q'"/n

where

(2018)  bi = Q7 (ws — wis)/(€% — @1) — (uin — ws)/(e"+ — &)},
i=1,,(k —1);

(2.11b) b = Qi {(we — wen)/(€ — €*71)};

(212) Q= 2% (ui — uin)?/(€" — €"7).

The subscript of @ denotes its dimension. It may be noted that the above results
are based on the asymptotic distribution of the k-quantiles [Mosteller (1946);
Ogawa (1951)] and on the application of the Gauss-Markoff theorem [Kull-
dorff (1963b)].

2b. Censored samples considered. Consider 2, 22, « -, Z» to be a random
sample of size n from the one-parameter distribution (2.1) or the two-parameter
distribution (2.2). Let 2¢) < Z¢ryyp < *++ < T be the uncensored portion of
the sample of size (n — 7, + 1) in which z(,) is the smallest observation. The
integer 7 is the rank of the observation z(,) in the complete sample and is
determined by a prefixed real number « such that 0 < o < 1, using the relation
r1 = [na] + 1. Then, « is the proportion of censoring on the left. Alternatively,
let zay < 2@ < ++- < X, be the uncensored portion of the sample of size 7.
in which x,,, be the largest available observation. The integer r; is determined as
above by a real number 8 such that 0 < 8 < 1, using the relation r; = [n8] + 1.
Then, 1 — B is the proportion of censoring on the right. Finally, let z¢,) <
Tian < -+ < T, be the uncensored portion of the sample of size (r; — 1 + 1)
in which x,y is the smallest and () is the largest available observations in
the censored sample. The integers 7, and 7, are determined by two real numbers
« and B such that 0 < a < 8 < 1, using the above mentioned relations. Then, the
quantities « and 1 — B are respectively the proportions of censoring on the left
and on the right and we have a doubly censored sample. The next subsequent
sections deal with the determination of optimum order statistics when we have
singly and doubly censored samples as discussed above.

3. Determination of the optimum order statistics for the estimation of the
parameters from a left censored sample. For a given k(<n — r1 + 1), consider
the order statistics T,y , * -+ * , T(ay Where ny, - -+, ny are the respective ranks of
the order statistics determined by % fixed real numbers p:, --- , pr having the
order relationsa £ p1 < -+ <pr < landn; = [np] + 1,2 =1, .-+, k. Set
po = 0 and pry1 = 1. Define u; = In (1 — pi)™, i =1, -+, k, corresponding
topr, -+ ,pe- Thenuy, - - - , u satisfy the inequality In (1 — )T Ewm < <
wp < . Subject to these restrictions on u’s, the BLUE’s of u and o based on k
order statistics and their variances, covariance and the generalized variance
are given by (2.3) through (2.8) respectively.
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3.1. Two-parameter problem. In order to determine the optimum order statistics
for this problem, we obtain the k optimum spacings p’, - - - , p«’ by maximizing
L(e"* — 1)™" with respect to u, , - - - , u over the domainIn (1 — &)™ £ u <

-+ < wp < . It is known [Saleh and Ali, (1966)] that L(e"* — 1)7'is a
monotonically decreasing function of u; and attains its maximum when u,
assumes its smallest value 4" = In (1 — )~ in the domain. Therefore, the
optimum spacing is p,° = « and the corresponding optimum rank of the order
statistics is 7 = [na] + 1. The remaining k& — 1 optimum spacings are deter-

mined by maximizing ¢ '(¢"’ — 1)7Qu1(t1, -, tx1) with respect to
ti, -+, wheret;y = u; — u’, 4 =2, ---, k, and t, = 0. By Theorem 6.1
(Section 6), this function Qx_1(t1, -+, fx—1) has a unique maximum over the

domain0 < f; < +++ <ty < . Let (¢, -+ - , {9_1) be the point at which this

. . . 0 . 0
maximum occurs with maximum value Qi_;. Then setting A’ = 1 — ¢,

i=1,---,k— 1, and using the relation ;- = u; — w’, % = 2, - -+ , k the op-
timum spacings are
prn=a+ (l—a)N, =1+, (k—1),
and the optimum ranks of the order statistics are
nl = [np] + 1, i=2 -,k
The BLUE’s of p and o based on @) , £y , = ** 5 T(m,0) are:
h=aep—éln(l—a)
¢ = boox(rl) + > beom(n2+l) ,
where b = — > 21 b and b1°, cee bi_y are given in Table 3 [Sarhan, Green-
berg, and Ogawa (1963)]. The joint asymptotic efficiency (JAE) and asymptotic
relative efficiency (ARE) of the BLUE’s compared to the BLUE’s using all
the observations in the censored sample are:
JAE (4,4) = Qi ;
ARE (¢) = Qi ;
ARE () = Qiafa 4+ In* (1 — ) }/aQiy + In* (1 — )™
Fork = 5,n = 70 and « = .41, it is easily verified that the optimum order
statistics are Z(s) , Tun , Zeon , Les and Tae and the BLUE’s are

i= e — ¢1ln(.59)7,

= '—7871.’11(29) -+ .390711(47) + .23612?(60) + -11951;(66) + .040911(70) .

The coefficients are taken from “Table 3, (1963)’” for k = 4. The efficiencies

are JAE (g, ¢) = 92.69%, ARE (¢) = 92.69% and ARE (&) = 97.03%.
3.2. One-parameter problem. In order to determine the optimum order statistics.

for the single parameter ¢, we determine the & optimum spacings by maximizing
the expression Q; in (2.12) over thedomainIn (1 —a) " Swu < -+ < 1w < .

QD

2 Table 3 (1963) refers to Sarhan, Greenberg, and Ogawa (1963).
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Such a function has been studied in Section 6. By Theorem 6.1, @, has aunique maxi-
mum inside the domain0 < u; < -+ < u, < . Let this maximum be attained at
(u, -+, w). Now, for the maximum of Q) over the domainIn (1 — &)™ £ uy <

- < up, < o, two situations arise according to the proportion of censoring:
(i) a is such that In (1 — a)™" = %" and (ii) a is such that In (1 — &)™" > ..
In the first case, we take the maximum of @, corresponding to (u, -+ - , )
and the optimum order statistics are the same as those in the uncensored sample.
In the second case, by Corollary 6.2.1, @, as a function of u; alone is decreas-
ing and attains its maximum when w; attains its smallest value In (1 — )7
Therefore, the optimum value of p; is @ and the rank of the corresponding order
statistics is 1 = [na] + 1. The remaining (k¥ — 1) are determined as outlined
in Section 3.1 with the optimum spacings piy1 = a + (1 — o)X\, ¢ =1, -+,
(k — 1), where \’, - - - , \o_1 are the optimum spacings for the BLUE of ¢ when
u = 0 when selecting & — 1 order statistics in an uncensored sample. The BLUE
of ¢ is thus given by

a 0 k—1
¢ = bo'Tey + D251 bikal,

where b’ = (Q2_1) H{In(1 — &) Vo — t.%/(¢"’ — 1)} with &’ = In 1 — M)
The asymptotic relative efficiency (ARE) of this BLUE compared to the BLUE
using all the observations in the censored sample is

ARE (6) = [aQb1 + In (1 — &) /[ + In® (1 — «)7].

The quantity Qi is the efficiency of the BLUE of ¢ based on (k — 1) order
statistics in uncensored sample. For £k = 6, n = 70 and a = .41, it is easily
verified that the optimum order statistics are zws) , Tus) , Ten , Ty, Les) , and
Zao) - The BLUE of ¢ is ¢ = .4082:11(29) + .3463x s + .23203:(57) + .14023:(34) —+
0709z + .0243z¢0) , and ARE () = 96.20 %. The coeflicients of zus, en ,
X(64) 5 L(68) and L0y, are taken from “Table 3 (1963)”

4. Determination of the optimum order statistics for the estimation of the
parameters from a right censored sample. For a given k (<r;), consider the
order statistics Z(y) , * -, Ty With ranks ny, - -, n; determined by k fixed
real numbers pi, - - - , P satisfying the order relation 0 < p; < -+ < px = B,
andn; = [np)] + 1,2 =1, - -+ , k. Define po = 0 and pe+1 = 1.

4.1. One-parameter problem. In order to estimate the scale parameter o, we
define t; = In (1 — p;)™, 4 =1, ---, k, corresponding to p1, - -, px. Then
t, -+, U satisfy the inequality 0 < ; < -+ < & = In (1 — 8)™". Based on the
k order statistics Z(g), -+, Ty , the asymptotic BLUE of o and its variance
are given by (2.9) and (2.10) respectively replacing u’s by #’s with the above
restriction on the ¢’s.

For the determination of the optimum order statistics, we have to minimize
the variance of the estimate, or equivalently, we maximize @x(t1 , - - - , &) given by

Qk(t17 ) tk) = ]Z=l (ti - ti—l)z/(eti - eti—l)) b = 0
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with respect to t;, - - - , & over the domain0 < t; < --- < # < In (1 — g)".
By Theorem 6.1, the above function @ has a unique maximum inside the domain
0=t < -+ £t £ . Let this maximum correspond to the point (#’, - - - , &’).
For the maximum of Q; over the domain 0 < t; < -+ <t < In (1 — 8)7,
we have to consider the following two cases: (i) the proportion of censoring
1 — Bissuchthat#’ < 1In (1 — B)7™";(ii) 1 — Bissuch that &’ > In (1 — B)™

In the first case, we take the maximum of Qy corresponding to (&, - -, &),
and the k& optimum order statistics are the same as those in the uncensored
sample.

In the second case, by Theorem 6.3, the maximum of @ occurs on the boundary
te = In (1 — B)". It follows that the optimum value of p; is 8 and the rank of the
corresponding optimum order statistic is 7, = [nf8] 4+ 1. Thus, we include the
largest available observation z,,y in the relevant sample.

To determine the remaining (k — 1) optimum order statistics, we maximize
Qu(ty, -+, ) keeping # = In (1 — )" fixed. By Theorem 6.3, this maximum
is unique and corresponds to the solution of the system of equations

Tiy1 + 7 — 2t = 0, 1=1.--,k,

with ¢, = In (1 — B)™". The equation above is discussed in Section 6.
Suppose the quantities ,, - - - , to—1 correspond to the solution of the above

system. Then the optimum values of py, - - - , ps_1 are obtained by setting
pt=1—¢", i=1--,(k—1).

Thus the ranks of the remaining (k¥ — 1) optimum order statistics are given by
n* = [nps*] + 1, i=1,---,(k—1).

Therefore, the relevant sample consists of the order statistics zw,» , -+, Tai_p,

T+ and are uniquely determined. The estimate of ¢ based on (%, «*+, Tl ),

Ty and the coefficients depending on t*, -+, & are given by

¢ = 200 T + 0Ty
where
b = (@)Y — ) /(¢4 — it — (tha — %) fe i — ),
i=1,---,(k—1);
bt = (@)L — B){(In (1 — B~ — 62)/(1 — (1 — B)e™ M)},

where Q" is the maximum value of Q) over the domain 0 < # < -+ < & <
In (1 — B8)~". The asymptotic relative efficiency (ARE) of the estimate compared
to the best linear estimate using all the observations in the censored sample is
givenby ARE (¢) = Q.*/8. Thevaluesof t:*, - -+ , 6%, p*, -+ , 0, by -+, bi™
and Q. have been computed for k = 2(1)4 and 1 — 8 = .05(.05).40 and are
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presented in Table I. Using this table, we illustrate the estimation procedure by
the following example:

ExaMpLE. Assume k = 4,n = 72,1 — 8 = .20 and r, = 58. From ‘“Table 3
(1963)” it is easily checked that this situation belongs to case (ii). First we
choose z () . For the remaining three optimum order statistics, we use Table I,
for & = 4 and obtain

pt = 2800, p.* = .5022, ps* = .6733.
The optimum order statistics are thus zer , @ , Twy) , and Tes . The BLUE is
¢ = 3157xerny + 2469z + 1864xws) + 32047 (s ;
ARE (6) = 98.74%.

4.2. Two-parameter problem. In order to estimate the location and scale param-
eters p and o consider the order statistics Zum) , Tmy , =+, Ty With ranks
m,ny, -+ ,npsuchthatl <m <mg < -+ <my =r..Theranksny, ---,n,are
determined by (k — 1) fixed real numbers p. , - - - , pr satisfying the order rela-
tion0 < p; < --+ < pi < B and the rank m is such that 1 < m < [np,] + 1. De-
fine pp = 0 and prts = 1. Let w; = In (1 — p:)”" corresponding to pg, ‘-, Dk
and obtain u; = In (1 — m/(n + %))~ by using the Euler-Maclaurin summation
formula as is done in Section 3 [Saleh and Ali (1966)].

Then

h(l—(n+3HH 7 'Sw<n(l—p)”
and w1, Uz, - -+ , ux satisfy the inequality
h(l—(r+dH N '=w< -~ <wm=h(l-87

Based on the k order statistics, Zum) , Zmg) 5 - * » Ly , the asymptotic BLUE’s
of p and ¢ and their variances, covariance and generalized variance have the same
functional form as obtained in (2.3) through (2.8) but now with the above re-
strictions on the w’s.

For the determination of the optimum order statistics we maximize
L(e* — 1) with respect to us, - - - , u over the domainIn (1 — (n + 3™ ™" =
w < -+ <up < In(1— B)7" Treating L(e** — 1) as a continuous function
of u; , we note that the maximum of the function is attained when u; assumes its
smallest value In (1 — (n + %)) . Setting p1 = (n + 3)™, the order statistic
& corresponds to p; and must be included as one of the k optimum order statistics.

To determine the remaining (k — 1) optimum order statistics, we maximize

(e — 1) Qualty, o+, tia)

where 4" = In (1 — (n + 3)™) 7" and Qua(ts, ---, t1) is defined over
0<th <+ <t =TandTisgiven by

T =In{2n—1)/(1—8)(2n+ D}

Thus, our problem reduces to maximizing Qi_i(t1, t2, - - - , t—1) With respect
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tot, -+, li1 over the given domain. By Theorem 6.1, the above function Q;_;
has a unique maximum inside the domain 0 < #; < -+ < #_; < . Let this
maximum correspond to the point (¢, - - - , #i_;). For the maximum of Q,_; over
the domain 0 < #; < -+ <y < T, we have to consider the following two cases:
(oi) The proportion of censoring 1 — Bis such that ty_; < T'; (ii) 1 — B is such that
1> T.

In the first case, we take the maximum corresponding to (%', - - - , {—,), and
the (K — 1) optimum order statistics are the same as those in the uncensored
sample. Thus, the results of Saleh and Ali (1966) should be used.

In the second case, by Theorem 6.3, the function Qs_i(t;, - - , &_1) has its
maximum on the boundary ¢,; = 7. The remaining (¥ — 2) coordinates are
uniquely determined by the solution of the system of equations

Tin + i — 24 = 0, i=1-,(k—1),

with t,1 = T.Let %, - - - , tis be the solution of the above system of equations:
Then setting

Mo = 1— ¢, i=1,, (k- 2),
and i1 = 1 — ¢, we obtain the optimum values of D2, -+ , Px by the relations
pin = (2 + (20 — DN)/(2n + 1), i=1,--, (k- 2),

and p,* = B. The ranks of the optimum order statistics are uniquely determined
by using the relations

ni*=[npt'*]+1) i=27"')(k_1))
and
mt = Bl +1=m,.

Thus, the relevant sample for the estimation of u and o consists of the optimum
order statistics

Tw, Tmg? 5 ** 5 Taaj_p  and Ty .

The estimates of 4 and ¢ based on the optimum order statistics and the coefficients
based on t,*, - - - , t— and T are given by

f=zxzm—é¢ln[(2n +1)/(2n — 1)];
= bl*x(l) + ZI:;; bi*x(ng‘) + bk*x(rz) ’

Q

where
b = —(QE) (Y (" — 1));
b = (@) (h — £ /(e — i)
= (6 = /(@ = )}, i= e, (k= 1)
be* = (QE0) (T — d)/(e" — ef*1));
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and Qi is the maximum value of Qis(ty,---,f) over the domain
O<th< - <H{Ha =T

The asymptotic joint efficiency (JAE) and the asymptotic relative efficiencies
compared to the best linear estimate using all the observations in the censored
sample are given by

JAE (4, 6) = [(2n — 1)*/2(2n + 1)(n — 1)]-Qi~y/8;
ARE (¢) = [(2n — 1)/(2n + 1)]-Qie/8;
ARE (%) = (@&/8){[(2n + 1)In* ((2n + 1)/(2n — 1)) + 2]
[(2n + 1) In’ ((2n + 1)/(2n — 1)) + 2Qi] '}

The following example illustrates the above estimation procedure:

ExaMPLE. Assume k = 4,n = 72,1 — B = .1479 and r, = 62. First we choose
&q .- To choose the remaining three order statistics, we compute 7' = In (1 — 8)™
—In(2n+1)/(2n — 1) = 1.8971. From “Table 3 (1963)” we observe that this
situation belongs to case (ii) and we determine #* and £ by solving the system
of equations discussed above with #* = 7. The solutions are (using Table I)

4% = 5084 and &* = 1.1219

whence
M = 4217 and \* = .7334,

and we obtain p.* = .4292, ps* = .7302 and p,* = .8521. The corresponding
ranks of the optimum order statistics are ns* = 31, ns* = 53 and n,* = 62. Thus,
the relevant sample for the estimation of u and ¢ consists of the optimum order
statistics zqy , @y , Tes , and T . The BLUE’s are given by

i = zg — ¢In(145/143),
G = —.9287.’13(1) + .402123(31) + .36692}(53) + .26142}(62) .

The asymptotic efficiencies are JAE ({4, ¢) = 97.6%, ARE (¢) = 98.0% and
ARE (%) = 99.3%.

b. Determination of the optimum order statistics for the estimation of the
parameters from doubly censored samples. For a given k(<rs — r 4+ 1) con-
sider the order statistics T,y , * ** , Zmy With ranks ny , « - -, n;, determined by &
fixed real numbers p1, - - - , pi satisfying the order relation o = p1 < +-- <
pr = B,and n; = [np] + 1,7 = 1, --- , k. Define py = 0 and ppq1 = 1.

5.1. Two-parameter problem. For the estimation of the location and scale pa-
rameters p and ¢, we define u; = In (1 — p;)™', ¢ = 1 ---, k, corresponding to
p1, -+, k. Thenuy, - -, u satisfy the inequalityIn (1 — @) ' Suy < -+ <
w, < In (1 — B)™". The asymptotic BLUE’s of x and o based on the & order
statistics £mp , ++* , Twy and their variances, covariance and the generalized
variance are given by (2.3) through (2.8) with the above restriction on the u’s.

In order to determine the optimum order statistics, we have to minimize the
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generalized variance given in (2.8), or equivalently, maximize L(e** — 1)~ with
respect to ui, ---, u; over the domain In(1 — @) S u < -+ < w <
In(1—g8)"" It is known (Section 3) that the maximum of the function
L(e"* — 1)7" is attained when u; assumes its smallest value In (1 — o).
Therefore, the optimum value of p; is « and the corresponding optimum order
statistic is x¢,) since r1 = [na] + 1. Thus, z(,) is one of the optimum order
statistics in the relevant sample.

To determine the remaining (k¥ — 1) optimum order statistics, we use the
transformation

0 .
li1 = U; — U 1=2,---k,

where 4" = In(1 — a)™'. Then the function L(¢“ — 1)~ becomes
e_ulo(eulo - 1)—1Qk_1(t1 ce tk_l), where Qk_l(tl y tk_l) is deﬁned, over the
domain 0 <t < ++- < {1 S Tand T isgiven by T = In [(1 — «)/(1 — B)].
Thus, our problem reduces to maximizing Qp_1(t1, - -+, &-1) Wwith respect to
t1, - -+, tx_1 over the given domain. By Theorem 6.1, the above function Q;_; has
a unique maximum inside the domain 0 < 4 < «++ < f—1 < . Let this maxi-
mum correspond to the point (¢, - - - , ti_y). For the maximum of Q,_; over the
domain 0 < # < -+ < f—y = T, we have to consider the following two cases:
(i) The quantity 7 is such that &§_; < T’; (ii) T is such that tx_; > 7. In the first
case, we take the maximum corresponding to (#°, --- , #i), and the (k — 1)
optimum order statistics are the same as those obtained in the left-censored
sample with fixed «. We may thus use the results of Section 3.

In the second case, by Theorem 6.3, the function Qx—1(t1, «-- , &-1) has its
maximum on the boundary #_; = T. The remaining (k¥ — 2) coordinates are
uniquely determined by the solution of the system of equations

i+ 17— 26 =0, t1=1---,(k—1),

with s = T. Let (%, - - - ,‘tlf—z) be the solution of the above system of equations.
Then setting\;* =1 — ¢ %", i =1, -, (k— 2),and My = 1 — ¢ 7, we obtain
the optimum values for ps , - - - , px by the relations

p;'k+1=0£+(1—a))\;*, i=1--,(k—2);
*
P =B

The ranks of the optimum order statistics are obtained by using the relations
et =[np*1+1,5=2---,(k —1),and m,* = [n8] + 1 = r,. Thus rele-
vant sample for the estimation of y and o consists of the order statistics
T(rp) » T(ng*) 5 *** 5 Ty aNd Z(ryy . The estimates of u and o based on the optimum

order statistics and the coefficients based on #,*, - - -, tiey and T are given by
fi=aep—o¢ln(l—a)
d = bl*x(n) + Zlf;é bi*x(n.") + bk*x(rz) ’

where
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b* = —(Qi) WY/ (" - 1));
bi* = (QE0) (B — ) /(e — o)
— (= )/ =), i= 2, (k- 1);

bt = (Q) (T — i)/ (" — €' 1)};

and Qi is the maximum value of Qu(t;, ---, &) over the domain
0 <t < -+ <t = T. The joint asymptotic efficiency (JAE) and the asymp-
totic relative efficiencies (ARE) compared to the best linear estimate using all
the observations in the censored sample are given by

JAE (4,6) = [(1 — a)/(8 — @)]-Qis ;
ARE (6) = [1 — @)/(B — 2)]Qi;
ARE (%) = {[a(B — a) + (1 — &) In* (1 — )7/
(B — a)[eQis + In* (1 — &) Qi
The values of &%, -+, oy, M, -+, M, b, -+, by and Q7 have been com-
puted fork = 2(1)4and « = 1 — 8 = .05(.05).25, and are presented in Table II.

Using this table, we illustrate the above estimation procedure by the following
example:

ExaMPLE. Assume k = 5,n =62, =1 — 8 = .10, 7, = 7 and r, = 56. First
we choose z¢7) . To determine the remaining four optimum order statistics, we
first compute 7 = In [(1 — «)/(1 — 8)] = 1.7746. From Table I, we obtain for
k=4,

4 = .6003, &) = 1.3544, t = 2.3721, 1 = 3.9657

and observe T = 1.7746 < t’ = 3.9657. Hence, we are concerned with case (ii)
discussed above. We take x5 and determine the remaining three order statistics
by consulting Table IT whence \,* = .2987, \.* = .5307, \s* = .7056 and we ob-
tain po™ = .3488, ps* = .5779, ps* = .7350. The corresponding ranks of the order
statistics are ne* = 22, ng* = 36, ™ = 46. Thus the optimum order statistics are
ZTay , Tz 5 Ty , Tasy and Tesy . The BLUE’s are

i=2m— 6 (90)7,
G = —1.0185113(7) + .3221113(22) + .24:623/‘(33) + .1805{1}(43) + .2697113(53) .

The asymptotic efficiencies are: JAE (i, ¢) = 91.88%, ARE (¢) = 91.88% and
ARE (4) = 91.11%.

5.2. One-parameter problem. For the estimation of the scale parameter o, we
define

ui = In (1 — ps)7, i=1---,k,

corresponding to p1,---, px. Then wi, ---, up satisfy the inequality
h(l—a)"'Swm< - <up=In(-— 8)"". The asymptotic BLUE of ¢ based
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on the k order statistics €w,) , - -+ , @y and its variance are given by (2.9) and
(2.10), respectively with the above restrictions on the u’s.

In order to determine the optimum order statistics, we have to minimize
the variance of the estimate given in (2.10), or equivalently, maximize
Qx(uy, - -+ , ux) with respect to u1, - - - , ux where

Qu(ur,y -+ ywe) = D (wi — ui)™/ (" — €4°)

withwy =0andes =In(l — ) ' Swm < - - <wu <h(1l—-8)"=c.

By Theorem 6.1, the above function @, has a unique maximum inside the
domain 0 < u; < -+ < ux < . Let this maximum correspond to the point
(u), -+ ,u). If ¢; and ¢, are such that ¢; < u,° and ¢z = w;” hold simultaneously,
then we take the point (u,’, -- -, ) to which corresponds the maximum Q;
over the domain ¢; £ w; < - -+ < ux = ¢z, and the optimum order statistics are
the same as those in the uncensored sample.

If ¢1 and c; are such that ¢; < u,” and ¢; = w are not satisfied simultaneously,
then the maximum of @, occurs on the boundary of the domain ¢; = w1 < --- <

ur = ¢ in the following three possible combinations:
(i) mm=oca and u = co;
(i) w1 = ¢ and w < ¢
(iii) w1 > ¢1 and ux = ¢s.

In the first case, in order to determine the remaining (kK — 2) coordinates, we
proceed as follows: We make the transformation

(5.2.1) tia = us — U1, t=1 .-,k
with 41 = ¢ whence Qr(u1, - -+ , ux) becomes

012/(601 - 1) + e_lek—l(tl y T tk—1)7

where

(522) Qk_l(tl y ', tk_l) = I:;i (li — t,~_1)2/(et" ol 6“_1)

withtp =0and0 <t < +-+ <1 = 2 — ¢1 = T (say). Now taking ¢, = T,
we maximize Qx—1(t1, - -+ , tr—1). By Theorem 6.3, the maximum corresponds to

the solution of the system of equations
Tipn + 7 — 26 = 0, t=1,---,(k—=1),

with £, = T, and is unique. The determination of the optimum order statistics
is the same as in case (ii) of Section 5.1. The optimum order statistics are
T(ry) > Tny® 5 *** 5 Th_p) » Ty - The estimate of o is given by

. * k=1, * *
¢ = bi*Tey + 2130 Ty + b Ty

where
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b = (@) MIn (1 — @)/ — 6%/(e" — 1}

bi* = (QE)TH(Hh — /(e — o) — (1F — d)/(e — &),
i=2 -, (k= 1);

be* = (QE) (T — 6a)/(e" — o)) |

and Qi is the maximum value of Qui(ti, -+, t) With T = . =
In ((1 — &)/(1 — B)). The asymptotic relative efficiency (ARE) of the estimate
is

ARE (6) = (1 — a){aQiq + In (1 — &)™}
{(B—a)a+ (1 —a)l’(1—a)}™"
In case (ii), by applying the transformation (5.2.1), the problem reduces to

maximizing Qx_; given in (5.2.2) over the domain 0 £ 4 = -+ = 4 = T.
By Theorem 6.1, @_; has a unique maximum inside the domain0 £ 4 < --- =
o1 < . Let this maximum correspond to the point (¢, -, th—1). Now if
&y < T, we take the maximum corresponding to the point (#°, - -+, i) and

the desired solution is obtained. The determination of the optimum order sta-
tistics is the same as in the case of left censored sample dealt with in Section 3.2.

If &, = T, again we take the maximum corresponding to (#°, - -+, ta_1) and
proceed as in Section 3.2. If #4_; < T, the problem reduces to case (ii) in Section
(5.1).

In case (iii), one possible way is to proceed as follows: We maximize
Qi(ua, -+, ug) for fixed ux = c» over the domain 0 < u; < +++ < ux = ¢z by
solving the system of equations

1';.;.1+1'.'—2u.'=0, i=1,"‘,k,

with u; = c». Let this solution be (w*, --- , ui). Now if, w* > ¢, the
desired solution is obtained. The determination of the optimum order statistics
is the same as in the right censored problem dealt with in Section 4.1. If u,* = ¢,
again we proceed as in Section 4.1. If w;* < ¢*, we reduce the problem to case (i)
above, i.e., we preassign u1 = ¢ and u; = ¢; . It is expected that in doing so, the
loss of efficiency will be negligible.

6. Some extremal problems. In the previous sections, we have observed that
for a given k, the determination of the unique set of optimum order statistics for
the estimation of the parameters of the exponential distribution depends on the
uniqueness of the maximum of the function Q:—; which has been studied by
Saleh and Ali (1966). Here we present an alternative proof for the uniqueness of
the maximum of @Q_; given by

(6.1) Qi1 = Doy (8675 — tige )2/ (e7h — %)

with £, = 0 and &e * = 0. In order to obtain the maximum of Q;_; we have to
show that the following system of equations
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(6.2) Tipt + 7 — 2t = 0, i=1-,(k—1),
where
(6.3) 1 — 7 = (t;e_” _ ti_le—ti_l)/(e—ti _ e—ti_l)

has a unique solution. That (6.2) corresponds to the maximum of Q._; has been
shown in Saleh and Ali (1966). To establish the uniqueness of the solution we need

the following lemma.

Lemma 6.1. Equal probability spacings, i.e., tia, t:; and t;+1 are such that
F(t:) — F(tia) = F(tia) — F(t),5 =1, -+, (k — 1), where F(t) = 1 — ¢
do mot satisfy the equations in (6.2).

This implies for fixed ¢;_1 and ¢; the value computed according to (6.2) must be
less than t§+1 . For proof the readers are referred to Saleh (1964).

TureoreM 6.1. The system of equations

T€+1+T'i_2tt'=0; 7:=1,""(k_1),

has one and only one solution and this solution corresponds to the maximum of

Q1.

ProoF. In order to prove the theorem, we study the effect of displacement in
any ¢ on the succeeding ones satisfying the given equations:

Consider a fixed value of ¢, > 0. This determines ¥ — 2 succeeding #’s, ¢, ,
ts, -++, k1 computed in accordance with 2t; = 7; 4+ 741 Taking differentials
on both sides, we obtain

(6.4) [€ " (tin — mp) /(€ — € )] d(bia — &)

= [ (1 — tia) /(€7 — €] d(t — ti),
where d is the differential operator. From this differential equation it follows
that if d(¢; — 1) > 0, then d(¢:q — &) > O since all other terms are positive.

Now, if we can prove that for a positive increment in ¢ , d(t; — #) > 0, then by
induction, we can prove that an infinitesimal increment in ¢; increases the values

of all the succeeding ¢’s.
First, we show that dét; > 0 implies d(¢, — ;) > 0. Consider 2t = 7, + 72.

Taking differentials, we obtain
[k — m)/(¢e " — e ™)]dltr — &) = [1/(1 — ") dty
or
dty/dty = 1 + ri(e™ — 7)) /(1 — e )e

Since the second term on the right is positive, it follows that ¢, increases with ¢, .
Now we show that an increase in ¢, increases all the succeeding #’s and at the
same time satisfies the equation 2¢; = 7; 4+ 7:41. From the differential equation
(6.4), we obtain
d(ti+1 - ti)/d(ti - ti_l) = e_”“l(n- - ti_l)(e_t‘ — e_““)
[e_ti+1(ti+l - T'H—l)(e_ti_l - e_ti)]_l > 0, T = L. ’ (k - 1)7
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which implies
At — t:)/d(te — &) = A; (say) > 0
so that d(ti1 — t;) = A:d(t, — t) and we obtain
dtiy1/dty > 0, i=1,-,(k—1).

This proves the statement.

Therefore, assigning a small positive value to & and assuming that &t — 2
points ¢, - -+, t—1 can be found satisfying 2¢t; = 7; + 7,11, we increase # con-
tinuously until £, satisfies the condition 7, = 1 + #-1 . By monotonicity of the
#’s, the solution will be unique.

Now, we prove the existence of the solution in the following manner:

We divide the interval [0, 1] into k¥ equal parts each that

1 — e_tlo = e_tlo — e_tzo = eee = e—‘l(c)—I{ —_ e_tg—2 = e_tl(c)—l'

First choose #," as a trial value of #; and generate &* from the relation 2¢ =
71 + 72 . Similarly generate ¥, - -+, iy . By Lemma 6.1 £,* < &°; -+ ; tiy <
t2_1 . Therefore, increasing #," continuously whereby &%, - -, tix increase, we
finally obtain 7,* = 1 4 #i— and the solution is unique. This proves that the
given system of equations has one and only one solution. By Lemma 4.6 [Saleh
and Ali, (1966)], this solution corresponds to the maximum of Qx_; . Hence Q;_;
has a unique maximum inside the domain0 < ¢ < --- =< f1 < . This com-
pletes the proof of the theorem. For a geometrical interpretation of the nature of
solution we refer the readers to Saleh (1964).

The following theorem helps in finding the set of solutions (&, - - - , ) for
which the k-dimensional function Qi(%41, - - - , &) is maximum from a knowledge
of the set of solution (&%, - -+, tiey) for which the (k¥ — 1)-dimensional function
Qea(ti, -+, tp—1) is maximum.

THEOREM 6.2. If the (k — 1)-dimensional function Qes(t’, -+, te1) defined by

Qk—l(tl,, cee, tl,c—l) = > (ti, - t;-1)2/(6“' — ¢'i71)

withty = 0and 0 < & < -+ < try < ® attains its unique maximum of
(t*, -+, tie), then the k-dimensional function Qi(t1, - - - , &) defined by

Qetr, ~++ y te) = Yiaa (i — tia)?/(e" — €71)

withty = 0and 0 < t; < -+ < & < ® has its unique maximum at (4°, -+ - , &)
where

o = "+t i=1,--+,(k—1),
and t," is given by the root of the equation
(6.5) /(1= ¢") =14 (1~ Qi)
Qb_y denoting the maximum value of Qr(t', - - -, te) at (4%, - - ) b)),

For proof see Saleh (1964 ).
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CoroLLARY 6.2.1. If t," < T = t;, then Qiu(t1) is a monotonically decreasing
function of t and attains its marimum at t; = T.
Proor. Consider the derivative

dQu(t)/dh = (1 — Qi) — /(1 — ™)™ = 1T},

Now, the derivative is zero at & = &’ by (6.5). But since #/(1 — ¢ ") is an
increasing function of ¢ , the derivative is negative when ¢’ for ; = T'. This proves
the corollary.

TueoreMm 6.3. (i) The function Qi defined over the domain 0 < 4 < --- =
e < T <t attains its maximum on the boundary &, = T.

(ii) The mazimum of Qi is unique and corresponds to the solution of the system
of equations

(6.6) Tim+ 71— 2t =0, i=1--,(k—1),

with &, = T where 7; is defined by (6.3).

Proor. By Theorem 6.1, the function @ defined over the domain0 = # < --
< # = « has unique maximum inside the domain, and let this maximum be
attained at the point (#°, - - - , &) which satisfies the inequality 0 < <<
42 < o. If T is such that T < t, then Q; cannot have a maximum inside the
domain 0 £ £ -+ £ < T. Therefore, the maximum of @, occurs on the
boundary. Proceeding as in Lemma 4.3 [Saleh and Ali, (1966)], we see that if
t, — 0 or £; — tiy1 , the maximum does not occur. Therefore the maximum of @
occurs when &, = T.

Now, for the maximum of @x(t1, -+, tk—1, &), We solve the following system
of equations:

(a/ati)Qk(tl)"')tk—l7tk)=O’ i=1)"'7(k_1)7

with &, = T. Proceeding along similar lines as in the proof of Lemma 4.6 [Saleh
and Ali (1966)], we see that the maximum corresponds to the solution of the
system of equations

o1 + 17— 26 = 0, 1=1,.--,k,
with & = T. We show now that this system of equations has unique solution.

Consider a small fixed value of ¢; > 0. This determines the £ — 1 succeeding
s, ty < -+ < tr1 < & < T, according to the relation

2t = 1 + Tin, t=1,---,k

Proceeding along similar lines as in the proof of Theorem 6.1, we obtain the
same relation as in (6.4) and dt;.1/dt; > 0, that is to say, if 4 is increased, all
the succeeding #’s increase, satisfying the relation

2ti=’r,-+*r,-+1, i=l,"',k.

Therefore, increasing ¢; continuously, we can find (¢ — 1) points &, -, &
satisfying the above relation until ¢ = 7'. By monotonicity, this will be true, and
the solution of the system of equations (6.6) is unique.
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We prove the existence of the solution as follows: We divide the interval
[0, 1 — ¢ ] into k equal parts such that

l—e" =¢" —¢® = ... = ¢ %1 — ¢,
Keeping T fixed and choosing ;" as a trial value, generate &* from the relation
24 = 71 + 7, . Similarly, generate #*, - - - , #*. By Lemma (6.1) £,* < &, ---
&* < T. Therefore, increasing ¢’ continuously whereby %, - -, #* increase,
we finally obtain #* = T and the solution is unique. Hence, the system of equa-
tions (6.6) has one and only one solution, and the solution corresponds to the
unique maximum of Q; over the domain 0 < t; < -+ < t = T < t.. This
completes the proof. For a geometrical interpretation we refer the readers to
Saleh (1964).

It is interesting to note that Kulldorff (1958) obtained the system of equa-
tions (6.6) in connection with grouping problem in truncated exponential distri-
bution and conjectured that the system has one and only one solution.
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