ADMISSIBILITY AND BAYES ESTIMATION IN SAMPLING
FINITE POPULATIONS—IV

By V. M. JosH1

Institute of Science, Bombay, and University of North Carolina

1. Introduction. This paper, which we call Part IV, is a continuation of the
previous papers on the same subject, Part I by Joshi and Godambe (1965) and
Parts IT and III by Joshi (1965). In the introductory section of Part III a note
was added at the proof stage, that it was realized that the result proved in that
part relating to the admissibility of the Horvitz-Thomson estimate was valid
for the class of all measurable estimates, without any ‘regularity’ restrictions on
the class. We give a clarification of this point here and also add a supplementary,
though minor result, subsequently obtained, that even the measurability restric-
tion is removed for the special cases of sample size m = 1 and 2.

Next we give new results obtained mainly by applying the method developed
in Part III, regarding the admissibility of the well-known ratio estimates, and
the regression estimate for finite populations. While one ratio estimate is found
to be always admissible whatever the sampling design, in the class of all measur-
able estimates, the other ratio estimate is shown to be necessarily admissible
only when the sampling design is of fixed size, and that too subject to a certain
condition. The regression estimate is also shown to be not always admissible.

2. Notation. The same notation is followed as in the previous parts, as speci-
fied in Section 2, Part I and Section 2, Part II. The definitions and preliminaries
in Section 2 of Part I also all apply.

3. Superfluity of regularity conditions. The question relates to (15) in Part
IIT where the Cramér-Rao lower bound for the variance of an estimate is as-
sumed to apply. By (14) in Part III, the probability density is that of m in-
dependently distributed normal variates. The Wolfowitz conditions (1947)
which are sufficient for the Cramér-Rao inequality are considered and shown to
be all satisfied for a normal density function in Problem 1 of Hodges and Leh-
mann (1951). Our case is slightly different in that the variances of the variates
may be unequal. But it is easily seen that this makes no difference in regard to
conditions (i) to (iv) stated in Problem 1 of Hodges and Lehmann (1951). It
will therefore suffice to verify that the remaining condition (v) is also satisfied.
For the density function L(y/8) in (12) of Part III, this condition becomes:

(v) The expression | g(s,y)L(y/8) dy may be differentiated under the integral
sign.

But this follows readily from the fact that by definition of ¢(s, ) in (5) and
(10) Part III, [g(s, )]* is bounded for all %, by a quadratic expression in y, say

u(y), i.e.
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(3.1) (9(s, 9))* = u(y).

Now writing L for short for L(y/8), and denoting corresponding increments of
9 and L(3L/90) by A8 and A(L™*(8L/a6)), it is seen from (12) in Part III that

|ACLT'(8L/36))/A8] = |27~ [(y» — 6) — A6)/[1 — (br)7]|
(3.2) < 2 %ly — o0/ — (br)7]
+ a0 — ()T = o(y, 6, AG) say.
Then by (3.1) and (3.2)
(3.3) [ lg(s, y)A(L™(L/38)) /M| L dy < [ [u(y)]'u(y, 0, A0) L dy < .

(v) then follows from (3.3) by the dominated convergence theorem, see for
example Logve (1960). Thus no other regularity conditions are required.

4. Special cases m = 1 and m = 2. In these cases the strict admissibility of
the estimate &(s, z) in Theorem 3.1 of Part III, can be proved directly by an
algebraic method, so that no measurability restriction applies. Putting e’(s, z) =
é(s, ) + h(s, z) (2) in Part III, reduces to

(4'1) Zst@ p(s)h2(8’ x) + 22383 p(s)h(sy x)[g(s’ x) - T(CU)] =0

Here S is the set of all samples s for which p(s) > 0.

Case m = 1. Let hy(t) denote the value of h(s, ) for the sample s; which
consists of unit u;,¢ = 1,2, ---, N. Consider (4.1) at the point P; ¢ By with
co-ordinates z, = t/b,,r = 1,2, -+, N. Then by condition (ii) of Theorem
3.1 in Part ITI, at the point P, , T(z) = ¢ = &(s;, x) for all s; ¢ S and hence from
(4.1), D ases P(8:)hi*() = 050 that hi(t) = 0foralls; = §, and since ¢ is arbitrary
it follows that hi(t) = h(s:,z) = 0 for all z ¢ R, and all s ¢ S. The admissibility
of &(s, z) follows from this.

Case m = 2. Denote by s;;, with ¢ < j, the sample consisting of units u; ,
u; and let hij(¢1, &) denote the value of h(si;, x) when x; = #/b; and z; =
to/bj, 4 = 1,2, ---, N. Then again by considering (4.1) at the point P; with
co-ordinates x, = ¢/b,,r = 1,2, --- | N, it is seen as in the Case m = 1, that
hij(t,t) = 0 for all s;je S. Next let ¢, ¢, and consider the set of 2N points P, ,
Qr, (r=1,2, .-+, N) such that for P,, only the co-ordinate . = #/b, and
all other co-ordinates z, = f/bs, S # r, and similarly for @, only z, = &/b,
and all other co-ordinates = #/b,. Then at P, and @., h(s, z) = 0 for every
s which does not contain the unit %, . For a sample s containing units «, and ,
say, at the point P,

(4.2) ds,2) —T(x) =t + to — t/by — to D j=1,jper b7
= (t — ) (1 — b;Y).

Since by condition (ii) of Theorem 3.1, Part III, SV bt = 2 form = 2,
Similarly at @, ,
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(4.3) &(s, ) — T(z) = (& — t)(1 = b).

Note that by condition (i) of Theorem 3.1 of Part III, the factor 1 — b, > 0
forallr = 1, 2, --+, N. Now multiply the relation (4.1) at points P, and Q.
by (1 — b,) ™" and sum over all the 2N points Py, -+, Py, @1, -+, Qn. In the
sum of the 2nd term in the left hand side of (4.1), the term h.;(% , &) occurs with
coefficient (& — #;) at P; and with coefficient (£, — #) at @; and hence all such
terms cancel out, giving Y jeB p(si;)hii(t, t2) < 0 which implies h;(t , ;) = 0
for all s;; € S. Since t , t; are arbitrary, and since hi;(f, £) also vanishes, it follows
that h(si;, ) = 0 for all s;; ¢ S, and all 2 ¢ Ry, from which the admissibility
of &(s, x) for m = 2 follows.

For m = 3, the measurability restriction remains, which however seems im-
material as no non-measurable functions can be used as estimates in practice.
An example of a non-measurable set due to Vitali is given by Rogosinski (1952),
p. 73. The set V is formed by taking from each set V; of all numbers £ 4 r where
£ is an irrational number, and r runs through the set of all rationals, some number
say the 1st according to a given enumeration of the rationals which falls in
[0, £]. A non-measurable function based on the set may be defined by putting
¢(z) = lifzx e Vand ¢(x) = 0 forz £ V. Through the function ¢ is thus formally
defined, we cannot state its value for any given point say = = 37} as whether
37 ¢ V or not, depends on which of the numbers 3™ + £ was taken as the 1sf
number in forming V. It is stated by Rogosinski that all known examples ot
non-measurable sets are based on the axiom of choice. It therefore seems that
though non-measurable sets and non-measurable functions may for theoretical
purposes be defined by using the axiom of choice, the non-measurable functions
cannot be used as estimates in practice.

6. Admissibility of a ratio estimate. y; > 0,7 = 1,2, --+ , N, are known posi-
tive constants and ¥ = Z',Ll y: . We shall show that the ratio estimate

(5.1) er(s, ) = ( ers xr/zres Yr) Y

is admissible in the class of all measurable estimates. Suppose it is not, then there
exists an estimate ¢(s, z) satisfying

(52) Zasp(9)le(s,2) = T(@)" £ 2ues P(3)lea(s, 2) — T(2)]

with the strict inequality holding for some x & Ry . Take the expectations of
both sides of (5.2), with respect to a prior distribution, such that the variates i
are all distributed independently with E(z;) = 6-y;. Put

A(s) = 2 ¥r;
(5.3) g(s, @) = [AS]E (s, &) — 2reo s
j(s) = (Zres xr/Zres yr)'
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In the left hand side of (5.2),
El¢'(s, z) — T(2)" = Ele'(s,@) = 2res @ — 0-A(8) — 2orpe (& — 0-3,)]
= A2(3)E[g(s’ r) — 0]2 + ers E(z, — 0‘97)2’

the cross terms vanishing due to independence of the variates. In the right hand
side of (5.2), substituting for ez(s, ) by (5.1),

E[( Zres xr/zres Y)Y — T(x)]z
= E[Zn‘s xr(Y/Zres Yr — 1) - G'A(S) - Zﬂ‘s (xr - o'yf)]2
= AZ(S)E(CZ(S) - 0)2 + Zus E(xr - 9'y7)2'

Hence on taking expectations of both sides of (5.2) and cancelling out common
terms, we get

(54) 2 esp(s)AX(8)Elg(s, ) — 6] £ D w3 p(s)A(s)ElE(s) — 6]

We now make the further assumption that each variate z,,r = 1,2, --- | N,
is distributed normally with variance proportional to y. so that
(5.5) o = k-y,
where £ is a constant >0. Then
(5.6) E[#(s) — 60F = k/2 vesyr = k/B(s)
where
(5.7) B(s) = 2res s

The frequency function for the variates z, for which r ¢ s, is
L = (20) " [Treaor " expl—3 2ovee (0 — 8y2)°/0r").
Hence
(5.8) E(3 log L/36)* = B[ res (9/0.2) (s — 0-y,)]
= B(s)/k (by (5.5) and (5.7)).

Next putting E(g(s, x)) = 6 + b(s, 6) and using the Cramér-Rao inequality
as in (15) of Part I1I, we get from (5.4)

2ees () AX(8)V'(s, 0) + k2 p(s)[A*(s)/B(s)I(1 + b'(s, 0))°
) < k2 aa p(s)A(s)/B(s).
We now define the weighted mean bias 6(8) by
B(8) = D ees p(8)[A°(8)/B(8)]-b(s, 0)/ 2 ees p(s)A’(5)/B(s)

and proceeding as from (17) to (19) of Part III we get in place of (19) in Part
111,



1662 V. M. JOSHI

(5.9) [0z p()[A*(8)/B()I ™k Xees p(s) - A*(5) -b(s, 6)
+ (1 +0'(s,0)) £ 1.

By a subsequent argument, exactly the same as that following (19) in Part III,
we get b(s, 8) = 0 for all s ¢ S, so that g(s, z) and &(s) being efficient unbiassed
estimates of 6, are equal a.e. in Ry, from which follows using (5.3) and (5.1)
that ¢'(s, ) = ex(s, ) a.e. in Ry . Thus Theorem 3.1 of Part III, (with the
necessary obvious verbal modifications) holds good for the estimate ez(s, ).
We next show that Theorem 4.1 of Part III also holds good for ex(s, x). Let
the hyperplanes Q5_x , @v— and the set of samples S, be defined as in Theorem
4.1 of Part III. We establish a 1-1 correspondence between the points of Qy_
and Qn_; by putting 2" = z, + h-y, . We shall show that the constant % can be

so fixed that for all s Sy,
(5.10) er(s, ') — T(z") = ex(s, z) — T(x).
Since every s € Si contains each of the last & units,
en(s, @) — T(2) = [ v o + Eres,r_s_N—k z + tha,rgN—k yrl
(rey) Y — Denkna — Doz,

— b 20y
= Zy—N—k+1 a,’( Y/ Em yr— 1)
(5.11) + [Ercs,réN—k xr/ Zrm yr) Y — Zy;lk xr]

A+ (D s Yr — Do itr Yr)/ Do Uil ¥
— WY — D> v k1 ¥r)

= Z§=N—k+l ar/( Y/ Zm y» — 1) — h
w1 Y Y/ Dieayi — 1)
+ U s rsvr @/ oo yr) ¥ — D20 @]

and
(5.12) T(z) + ex(s, @) = 2w al¥/ iy — 1)
A+ [(Diesight T/ Dies Yi) Y — Dt @il
Comparing (5.11) and (5.12), (5.10) is seen to be satisfied if
ho= Doy ip1 @ — D ornkt1 O/ D omy—ty1 Yr -

Hence as in (25) of Part ITI, the estimate €'(s, ) is extended to every hyper-
plane Qx—; , by putting

e(s, ) — T(a") =€(s,z) — T(z).

The whole of the remaining argument in Theorem 4.1 in Part III, now applies
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without modification and thus Theorem 4.1 in Part IIT also holds good (with
necessary verbal modifications) for ez(s, ).

Hence Theorem 5.1 in Part ITI also applies and (s, z) = €/(s, ) — ez(s, )
cannot be 5 0 for any point x € Ry . The strict inequality in (5.2) thus cannot
hold at any point. This completes the proof.

It may be noted that in Part III, all the samples s ¢ S, were of fixed size m,
while here the size varies. It is however seen that the argument in Theorem 5.1
of Part III is not dependent on the sample size being fixed.

The estimate e*(s, 2) defined in Part II of this paper, is obtained as a par-
ticular case of ez(s, ) by taking all y. equal.

The result of Part II, is however valid without the restriction of measurability
and also holds good for certain subsets of Ry , and hence is not contained as a
particular case of the present result.

6. Another ratio estimate. Another common ratio estimate is
(6‘1) ex(s, z) = [Y/n(s)]zres T/ Yr -

If the sampling design is of fixed size m,i.e.n(s) = m foralls ¢ S, then e.(s, x)
becomes the same as the estimate é(s, z) defined in (1), of Part III, with b, =
Y/my, . Hence the result of that part applies. Condition (ii) of Theorem 3.1
of Part III, viz. ) 2= b, ' = m is always satisfied. Condition (i) is b, > 1, r =
1,2, ---, N, which requires that [max,-y,] < Y/m. Hence provided this condi-
tion is satisfied, the estimate e.(s, ) is always admissible for fixed sample size
design. As shown by example (ii) in Section 5 of Part III, when the condition
is not satisfied the estimate may fail to be admissible.

When the sampling design is not of fixed size, the estimate e,(s, #) may not be
admissible as seen from the following example. Population U = {u:, 7 = 1, 2,

-, 9}. The sampling design consists of samples of size 3 and 4 all having the
same probability; y1 = 2, and y; = 1, for¢ = 2,3, -, 9; Si2 denotes the set of
the 28 samples each of which contains units u; and us , and P*® the hyperplane
in which z; and z. have fixed values,  and @ respectively. Then for z ¢ P in
the expression for D sesyy len(s, T) — T(z)T’, the coefficient of each term 2z,
(¢ = 3,4, --+,9) is found after reduction, to be —(11/3)(2¢/3 + 78/3) —
6(o/4 + 38/2) = u say while the constant term, i.e. independent of z: , comes to
7(20/3 + 78/3)* + 21(a/4 + 38/2)" = V say. We now determine constants
1, m satisfying

(6.2) —(11/3)l — 6m = u
and
(6.3) ¢ + 21m’ < v.

This can for example be done by minimizing 71 + 21m’, subject to (6.2). The
minimizing condition is found to be I = (11/6)m and the constants (2¢/3 +
78/3) and (a/4 + 38/2) do not themseleves satisfy this condition except when
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a = 28, i.e. except when the hyperplane P*® contains the st. line z; = ky;,
i=1,2, ---,9, on which the variance of e.(s, ) vanishes. Next by putting for
z e P

e(s, z) = els, ) + | — (2¢/3 + 78/3) if seSw, and n(s) = 3,
e(s, z) = els, ©) + m — (a/4 + 38/2) if seSw, and n(s) = 4,
€(s, z) = els, x) if sz 8Se,

N D sy, [€(s, ) — T(z)]’, the coefficients of all variable terms involving

z; (1 = 3, -- -, 9) remain unchanged and the constant term is reduced whenever
« 28, and remains unchanged for « = 28. The estimate ¢'(s, «) thus defined for
every hyperplane P®, is uniformly superior to e.(s, ) and has lower variance
whenever « # 28, i.e. a.e. in Ry . Thus in the example, the ratio estimate e.(s, )
is not even weakly admissible.

The regression estimate is

(6.4)  ereg(s, &) = & + [ Doies (Ti — &) (ys — Bo)/ Dies (Wi — F2)' WY — 7a)

where &, = [n(s)] ™ Doies i, and §s = [R(8)] D eo ¥ -

It is easily verified that an example for the inadmissibility of the estimate
exes(S, ) can be constructed on similar lines by taking a population U = (u:),
i=1,2,+---,10say,y1 = 3,92 = 2and y; = 1,for¢ = 3, -- - , 10; a sampling
design consisting of samples of size 4 and 5, all with the same probability and
considering the set Sis consisting of the 28 samples each of which contains the
units u: , u2 and us and the hyperplane P*” in which the variates i, @2 , @3 re-
main fixed, and = «, 8 and ~ respectively. It will be found that the variance of
the uniformly superior estimate is actually less whenever @ — 8 # 8 — v i.e.
whenever (a — 8)/(8 — v) # (y1 — y2)/(y2 — ¥s), so that the hyperplane P
does not contain the 2-space generated by the 2 straight lines x; = ky;,< = 1, 2,
...,10,and z; = yi,% = 1, - - -, 10, in which 2-space the variance of e(s, )
everywhere vanishes. Thus ¢'(s, «) has lower variance a.e. in Ry .

In the above examples the values of the constants y; have been suitably ad-
justed to simplify the arithmetic. But a little consideration shows that it may be
possible to construct in more general cases the uniformly superior estimates
¢/ (s, z) by considering the planes P**. We take €(s, 2) = D res Burtr + \r and
determine the coefficients B, , \, so that in the expression D _..3,, p(s)le (s, z) —
T(z)]’ the coefficients of the variable terms z; and z; , (4,7 = 3) are the same as
those in the expression D _ss,, p(s)[e:(s, ) — T(z)T’, while the coefficients for
terms z° and the constant term in the former are < to the corresponding co-
efficients in the latter, the strict inequality holding in at least one case. For the
sampling design considered in the example, the number of constants B, Ar
will be seen to be 133, and they will have to satisfy 28 equalities and 7 inequalities
so that a solution may exist for more general values of y; . These remarks apply
also to the regression coefficient.

The estimates e,(s, ) and e..(s, #) are however always admissible, whatever
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the sampling design in the restricted class of all linear estimates. This limited
admissibility has however little significance and the proof is also very simple and
hence is omitted.

7. Uniform admissibility of the estimate e*(s, ). In Part II of this paper, the
estimate e*(s, z) was proved to be admissible in the entire class of all estimates
whatever be the sampling design. We shall now show that this estimate possesses
a much stronger ‘admissibility’ property. As the terms ‘weak admissibility’ and
‘strict admissibility’ have already been used with another significance in Part
IIT of this paper, we shall denote this stronger property as that of ‘uniform
admissibility’. The motivation for extending the concept of admissibility of es-
timates is as follows:

In this paper so far, admissibility of an estimate has been defined for a par-
ticular sampling design d which is taken as given. Let V (e, d) denote the mean
squared error of an estimate e(s, ) for a given sampling design d, so that

(7.1) Ve, d) = D wsp(s)le(s, z) — T(z)]

S being the subset of S consisting of all those samples for which p(s) > 0.
According to the definition in Part IT of this paper, the estimate e(s, x) is ad-
missible in the entire class of all estimates if there exists no other estimate ei(s, )
such that, for all x ¢ By

(7.2) Vie,d) = V(e d)

the strict inequality in (7.2) holding for at least one z ¢ Ry .

However the experimental procedure which determines the sampling design d
is generally, subject to certain limitations, under the statistician’s control. If
therefore there exists another design d, , such that

(73) V(el N d1) é V(e, d)

for all z ¢ Ry , the strict inequality holding for at least one z ¢ Ry , then we should
use the design d; , in conjunction with the estimate ei(s, ) in preference to the
pair (e(s, z), d). In practice, the class of available alternative designs d; is limited
by the considerations of cost or time. In a case in which no such limitations
existed, obviously the only admissible d is that which assigns probability 1 to the
sample s, consisting of the whole population, so that taking

e(s, x) = Zi’,:lxi = T(x);
Vie,d) =0 forall zeRy.

In practice, through considerations of cost and time, the class of alternative de-
signs d; is limited by one of the following conditions: viz (a) the average (i.e. ex-
pected) sample size does not exceed a certain limit or (b) the average cost of
sampling does not exceed a certain limit. Condition (b) is obviously equivalent to
(a) except when the cost of each observation depends on the unit observed. In
practical situations, condition (a) is perhaps more commonly met with than (b).
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Adopting condition (a) we therefore define ‘uniform admissibility’ as follows:

DeriniTION 7.A. An estimate e(s, ) and a sampling design dp are uniformly
admissible for the population total 7'(z), if there does not exist any other estimate
ei(s, ) and sampling design d; such that

(74) (@4) expected sample size for di = expected sample size for dy ;
(ii) Vier,dr) = V(e , do),

where V denotes the mean squared error as defined in (7.1), and the strict in-
equality holds in (7.4) either in (i) or for at least one x ¢ Ry in (ii). Clearly this
yields a stronger definition of admissibility as the estimate eo(s, z) forms a sub-
class of the class of admissible estimates for the design dy and similarly the design
do forms a sublecass of the class of designs which are admissible for fixed eo(s, )
(with an obvious definition for the admissibility of sampling designs for a fixed
estimate e(s, z)).

We shall now prove the following theorem:

TuEOREM 7.A. The estimate =

(7.5) e*(s, z) = [N/n(s)] Zics T4

where n(s) is the sample size, i.e. the number of distinct units in the sample s, and a
sampling design d* of fixed sample size (i.e. p(s) = 0 unless n(s) = some fized
number m) are uniformly admaissible for the population total T(x) in the sense of

Definition 7.A.
Proor. If the theorem is not true, then there exists a sampling design d; and

an estimate ei(s, z) such that

(7.6) expected sample size for di £ m
and
(7.7) V(e,d) < V(e*, d%),

where the strict inequality holds either in (7.6) or for at least one z ¢ Ry in (7.7).
For the sampling design d; let

pi(s) = probability of sample s,
ni(s) = size of sample s

and S : the subset of S all those sample s for which p;(s) > 0 and let the cor-
responding terms for the sampling design d* be p*(s), n*(s), and 8*, respectively.
Thus since by the theorem, d* is a fixed sample size design

(7.8) n*(s) =m  forall seS*
and from (7.4) and (7.8)
(79) Zsesl pl(s)nl(s) é Zses‘ p*(s)n*(s) =m

and
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(7.10)  2ues, pa()les(s, ) — T(2) £ uese p™(8)[€7(s, 2) — T(2)]

where the strict inequality holds either in (7.9) or for at least one z ¢ Ry in
(7.10).

We now take the expectations of both sides of (7.10) wrt a prior distribution
on R,, under which all the z; (# = 1, 2, --- , N) are distributed independently
and identically with common mean 6 and variance ¢” and get

(7.11)  Dees, pi(s)Eles(s, ) — T(2)]' < D use 0™ (8)Ele*(s, ) — T(z)]™
Now in the left hand side of (7.11), putting

(7.12) gi(s, z) = [N — m(s)[ea(s, 1) — Die w5

(7.13) Ela(s, z) — T(2)]" = E[(N — m(s))(g1(s, ) — 0) + 2iw (i — O)]°
(N — m(s))’Elgu(s, ) — 0" + (N — mu(s))e",

the cross terms vanishing due to the independence of the distribution of the z; .
Similarly in the right hand side of the (7.11) putting for any sample s

(7.14) Fo = ()] Dies @
and using (7.8), we have
(7.15)  Ele*(s,z) — T(2)]" = (N — m)’E(& — 8)" + (N — m)d".
Now substituting (7.13) and (7.15) in (7.11) and using the relation
et a(s) = 2w p(s) = 1
and cancelling out the common term, (7.11) becomes
(7.16) D ues, pi(8)(N — ma(s) ) E(ga(s, ) — 0)° — 0" D ues, Pr(8)ma(s)
< Dues pX()(N — m)’E(&, — 6)° — md”.

Now putting gi(s, ) = & + (s, z), and noting that if the sample size is n(s),
E(&, — 0)" = ¢’/n(s), we have from (7.16), after cancelling out the common

term
D sesy p1(8) (N — ma(s))’E(hi’(s, o))

(7.17) + 2 D ws, m(8) (N — m(s))Ellu(s, z)(Z: — 0)]

+ &N? Z“sl pi(s)/mi(s) = o N*/m.
Now it follows from (7.9) that

(7.18) Dees, P1(8)/ma(s) Z m

where the sign of equality holds if, and only if ni(s) = m for all s ¢ S . Combining
(7.17) and (7.18), we have

(7.19)  Dus, p1(8)(N — ma(s))Elhi’(s, @)]
+ 2 > s, p1i(8)[N — ma(s)Elha(s, 2)(& — 6)] = 0.
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Now it is easily seen that (7.19) is equivalent to the inequality contained in
clause (d), in the Lemma 1 of Part II of this paper and from the result proved
therein, it follows that for all s ¢ S;

(7.20) h(s,z) =0
so that gi(s, ) = %, and by (7.5) and (7.12),
(7.21) a(s, z) = e*(s, x).

Because of (7.20), the first two terms in the left hand side of (7.17) vanish, and
hence the sign of equality must hold in both (7.17) and (7.18) so that d, is also
a sampling design of fixed size m. Thus we must have in (7.7)

(7.21.a) a(s, ©) = e*(s,z) sothat V(e ,d:) = V(e dy)

where d; must be a sampling design of fixed sample size m. We shall next show
that the sign of strict inequality in (7.7) cannot hold.

Let the inclusion probabilities for the units ¢ (¢ = 1, 2, --- , N) and for the
pair of units 4,7 (4,7 = 1,2, --- , N) for d, and d* be given by

O = 2 .ipa(s), 0" = > wip™(s),
M = Deig (),  IL5 = Deis P(s0).
It is then easily found that
(7.22) V(e*, d) = 22l [my(N/m? — 2N/m) + 1]
+ 2 2 i 2N /m’ — (N/m)(Iy; + I;) + 1] £ 0

with a corresponding expression for V(e*, d*). Now (7.7) clearly implies that the
coeft of 2 for each 4,7 = 1,2, - -+ , N, in the right hand side of (7.22) must be
< the coeft of z.” in the corresponding expression for V(e*, d*) as otherwise
V(e* di) will exceed V(e*,d*) if we put z; = 1 and all z; = 0, j = 1,
j=1,2,---, N. Thus we have from (7.22)

(7.23) I, < I i=1,2--,N
But by a well known result
> ¥, I = the expected sample size for diy = m
and similarly
Zﬁ-';l o* = expected sample size for d* = m.
Hence (7.23) implies that
(7.24) oy = 10,7, t=1,2,---,N.

Next consider the expression (7.22) at the point z ¢ By, at which only two
particular co-ordinates z; and z; differ from zero, so that in the expressions for
V(e*, di) and V(e*, d*) all coefficients other than those of the terms =, 2, and
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2x,x; vanish, since by (7.24) the coefficients of the terms z,” and z,” are equal, we
get
(7.25) 2wl < 2waly .

Since (7.25) holds for both positive and negative values of the product z.z; , we
must have

(7.26) My; = 5.

Clearly (7.26) must hold for each pair 7, j. It now follows from (7.21), (7.24),
(7.26) and (7.22) that in (7.7) V(e, di) = V(e*, d*) for all z £ Ry and the strict
inequality in (7.7) does not hold for any x ¢ Ry . As d; has been shown to be
necessarily of fixed sample size m, the strict inequality does not hold in (7.6)
either. The theorem is thus proved.

8. Minimaxity of the estimate e*(s, ). The estimate e*(s, z) has been con-
sidered in Part IT of this paper and proved to be admissible in the entire class of
estimates for the population total. Now it is seen that the proof in Part IT holds
also for any subset of Ry which is symmetrical in all the co-ordinates
z,,r=1,2 ---,N. As observed in 5.3 of Part I, Aggarwal (1959) has already
established, the minimaxity of the estimatee*(s, z) in the subset Doof Ry given by

(8.1) Dy = [x: D 7 (2, —':1‘:)2 < const = Noy® say]

where = N'T(x), when the sampling design is that of simple random sampling
with fixed size m. But a stronger result is seen to follow immediately from our
result in Part I1. For consider the subset D, of Ry given by

(8.2) D, = [x: D (2, — 3)* = No'l.
Now let the sampling design be of simple random sampling, but not necessarily
of fixed size, i.e. for each size m, 1 < m = N, the total probability P, is dis-

tributed equally between all possible samples of size m. Then by the usual
formula, for points z ¢ D in (8.2), the mean squared error of the estimate

e*(s, L) = D oma Pm(Nzaz/m)[l — (m —1)/(N — 1)] = a constant.

Hence the admissibility of ¢*(s, z) for z ¢ D, implies that the mean squared error
of any other estimate is either equal to that of e*(s, z) for all z ¢ D, or exceeds
the latter for at least one point z ¢ D, . The minimaxity of ¢*(s, z) for z ¢ D, and
hence for the set Dy in (9.1) follows.

In fact the result can be further generalized and shown to hold for any set S
which is symmetrical in all the co-ordinates. Let oo” be the supremum of the
MSE (mean squarred error) of e*(s,x) forz e 8, ie.

(8.3) o’ = supzes MSE  of *(s, ).

Then for any arbitrary number ¢, such that 0 < e < gy’ there exist points z ¢ S,
for which

(8.4) MSE of e*(s,z) = 0o’ — e
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Let (¢')® = oo — € be a value attained by the MSE of ¢*(s, ) for z ¢ S. Then the
intersection of the set S and D, , D, being the set as defined in (8.2) on substitut-
ing ¢’ for o, is non-empty. Hence as the set SD,- is symmetrical in all co-ordinates,
¢ (s, ) is admissible on it and hence for any other estimate ei(s, z)

(8.5) maXzep, s MSE of ei(s, z) = (o')°

and hence sup,.s MSE of ex(s, ) = (¢”)* = o0 — e As e can be taken arbitrarily
small it follows that

(8.6) supzs MSE  of ei(s, ) = oo

Our result is thus a generalization of that of Aggerwal (1959). Moreover
Aggerwal’s result was proved subject to the restriction of measurability of the
estimate, while our result holds without this restriction.
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