ESTIMATING AND TESTING TREND IN A STOCHASTIC PROCESS OF
POISSON TYPE!

By M. T. BoswEgLL?
University of Missours

1. Introduction and summary. Let {T:: ¢ = 1,2, - - -} be a stochastic process
of Poisson type, with A(t), the rate of occurrence of the events, depending on
time. We may interpret T'; as the time of occurrence of the ¢th event. In Section
2, starting with the joint density function of Ty, -+, T, the maximum likeli-
hood estimate of A(t) subject to 0 = A () < M being a non-decreasing function
of time (M some positive number) is found.

In Section 3, starting with the conditional joint density of T, - - -, T, given
there are n events in (0, t*], the conditional maximum likelihood estimate of
A(t) subject to 0 < A(t) being a non-decreasing function of time is found. In
Section 4, the conditional likelihood ratio test of the hypothesis that A() is
constant against the alternate hypothesis that A(¢) is not constant but is non-
decreasing is found, and a limiting distribution is found which may be used to
approximate the probability of a type I error for large sample size.

Theorem 2.1 (Brunk-van Eeden), I believe is important in its own right. It
is contained in the works of Brunk and van Eeden, although it is not explicitly
stated. This theorem can be used as a basis for tests of hypotheses for constant
parameters against increasing parameters or for increasing parameters against
all other alternatives.

2. The maximum likelihood estimate of \(¢). Let T, Ts, - - - be the times of
occurrence of a stochastic process of Poisson type. It is known for such a process
that the joint density function of the first n times is

(2.1) Froceza(tey <5 ta) = [exp {— AN L=A(8),

where A(t) = [¢\(u) du and where A(¢) is the rate of occurrence of the Poisson
events. The problem is to find a function A(¢) which maximizes (2.1) for fixed
tr, -, l, subject to

(2.2) 0 < A(t) is non-decreasing.

However this problem as stated has no solution since (2.1) can be made arbi-
trarily large by setting A(t) = 0 for ¢ < ¢, and setting A(¢,) arbitrarily large.
We assume A(¢) < M for some fixed positive number M. The product ) § [
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A(t) is unaffected by values A(¢) for ¢ # &,k = 1, ---, n. Thus if we know
M), k= 1,2, .-+, n, we need find the rest of the values A(¢) which minimize
the area, A(%,), under A(¢) between 0 and ¢, , subject of course, to the restric-
tions (2.2). This occurs if

M) =0 if0<t<t,
=)\(tk) ift,cét<tk+1, k=1’2’...’n_]_
Atn) ift, =t

Furthermore A(#,) = M. Therefore the problem reduces to finding
(21, -+, Tn—1) which maximizes

(2.3) lexp (— D ittae)]l [Tisias] = JiSion exp (— )
subject to
(24) 0 M,

where a;y = tq1 — o and 2 = AN&), bk = 1,2, .-+, n — 1. We will need the
following theorem of Brunk-van Eeden.

TaeoreMm 2.1. Let f,(0) be a function unimodal in 6 with a unique maximum at
0.5, n = 1,2, --- . If the product [ [£;(8) of any finite number of these functions is
unimodal with a unique maximum, then (by, - - -, 6,) maximizes | [1=1 f1(6x) sub-
jectto 0 £ 6= -+ = 0, if

IIA
IIA
IIA
IIA

21 Tn-1

(2.5) b = MaX) <axk Mg <p<n M (e, B)

where M (a, B) is the mazimizing value of |[fmafi(6).

Proor. This theorem is not stated explicitly in the works of Brunk and van
Eeden, but may be extracted in the following manner. In [6] van Eeden makes the
assumptions of the above theorem but allows a partial ordering of the pa-
armeters 0y, ---, 6, . She finds a procedure for maximizing [ J7~ f:(6:). In [3]
Brunk assumes an “‘exponential family’’ of functions f;(6). His result is the form
(2.5). Then in [7] van Eeden proves that her result is under the conditions of the
above theorem equivalent to Brunk’s result (i.e. the same as (2.5)).

CoROLLARY 2.1. Under the hypoiheses and definitions of Theorem 2.1, (6, - - -,
6,) maximizes | [ i=1fx(8) subject to 0 < 6, < -+ < 0, if 6, = min {6, M}.

Proor. This theorem is easy to see from the fact that the product of any finite
number of the {fx} is unimodal with a unique maximum.

TaroREM 2.2. The marimum-liklihood estimate of N(t) over (O, t.] where \(t)
satisfies (2.2) 1s

A(t) =0 fost<t
(25) = min {M, j\(tk)}, iftk é t < tk+1, k= 1, ce,n — 1,
=M ift =t

vhere ,}\(tk) = MaX;<a<k Ininkéﬁén(ﬁ —a+ 1)/(aa 4+ .- 4 ap).
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Proor. From Corollary 2.1, setting fi(z) = exp (), one can show that
At) = MaX1cacr MiNE <p<n(B — a + 1)/ (@0 + -+ +ag) for k = 1,2, -+,
n — 1. The functions {fi} satisfy the hypotheses of Corollary 2.1; for example
H,L.,,fk(x) = 2" exp[—(aa + -+ + ag)z] is unimodal with a unique
maximum atz = (8 — @ + 1)/(a« + - -+ + ag). The result then follows from
the fact that the product of any number of the f;’s is unimodal.

3. The conditional maximum likelihood estimate of A(f). Let Ty, Ty, ---
be as before. It is known that the conditional joint density of the first n time
points given there are n occurrences in time (0, t*] is

(31) fT1."~.Tn(t1 y Tt tn I n) = n![le;l)‘(tk)]/An(t*);
ifO<t <th < - - = to = . Once again the problem is to find a function
A1), 0 £ ¢t £ t* which maximizes (3.1) subject to A(¢) being non-negative and
non-decreasing for fixed {;, - - -, t, . Reasoning similar to that used in Section
2 tells us that we need only find valuesof A at &,k = 1,2, -+ -, n. Then
A =0 fost<t

=At) ift=t<ten, k=1,2---,n.
The value of A at t* is immaterial. Thus the problem reduces to finding values of
2y, -+ T, which maximize

(3-2) f (37) = [Hl?=lxk]/ [Zf=1akxk]n
subject t0 0 < 23 < 2, < -+ < 2,, where 2, = A(&) and @ = fy1 — b,
k=1,2 ---,n We observe that if (a1, - - -, £,) maximizes (3.2), then so does

(cxy, -+, cx,) for any ¢ > 0.

LemMa 3.1 If & = MaXicar Milk<pcn [(B + 1 — @)/(aa + +-+ + ap)]-
(¢/n), k = 1,2, -+, n. Then (1, ---,x,) maximizes | | =i subject to 0 <
S 2SS apandto D gy = C.

Proor. Grenander in [5] pp. 138-140, by the use of Lagrange multipliers,
solves this problem with the sense of the inequalities reversed and with ¢ = 1.
The lemma follows by a change of scale and a change in the labeling of the
variables.

TueorReM 3.1. A mazximizing point for (3.2) is (%1, - - -, T) where

T = MAXi<agk Milg<p<n (B — a + 1)/ (tp11 — ta)] + (¢/n),

for any ¢ > 0. Furthermore ) i@ = c.

Proor. The proof of this theorem is a direct application of Lemma 3.1, by
maximizing (3.2) restricted to the hyperplane Y iz = c. The value of (3.2)
turns out to be independent of the value c.

4, The conditional likelihood-ratio test against trend. Let H, be the composite
hypothesis that A(f) = N > 0, in which case the density function (3.1) becomes

ley R Tn(tly ""tﬂln) = n‘/(t*)n
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ifO<th <th<--- <t = t* Let Hy be the hypothesis that A(¢) is not con-
stant, is non-negative, and is non-decreasing. Then the likelihood-ratio test of
H, against H, tells us to reject Hy if

[suprr, 71/ (£)")/fsupar, RINEON () - - - N(ta)/A"(E)] < or,

where k; is made as small as possible consistent with the level of significance.
Here is a test of Neyman structure. For the question of monotonicity of A, a
constant of proportionality is a nuisance parameter which is eliminated by the
use of the sufficient statistic n (i.e. we will take ¢ equal to n). Theorem 3.1 gives
us

(41) X&) = & = MaXigack Midygpen (B — a + 1)/(tg11 — ta),
and A(f*) = n. Therefore we reject H, if
(4.2) T < ko

We wish to find, at least approximately, P[]]ii(Z") < kol for various k.
In order to do this we will introduce notation most of which comes from [3].

DEeriNiTIoNs AND NOTATION. It is known that the &, , k = 1, - - -, n, may be
calculated by the following iterative procedure:

T = minigpcn B/ (tp11 — ) = a1/ (tay 1 — t)
for some integer a;, and then & = Z; fork = 2,3, --+, a1 ;
Tayt1 = Miley 1220 (B — 1)/ (fs41 — tay+1)
= Otz/(ta1+az+1 - ta1+1)

for some integer @z, and then &, = &oyq1 fork = oy + 2, -+, 1 + a2, ete.
Let X, be the random variable formed by replacing (¢, -« -, t,) by (Ty, - -,
T,) in (4.1), the formula for &, . Let £ = (&, - -+, Z,) be an observation of the
random vector X = (X, ---, X,). For this Z let ay, oz, * - -, atm , m be the
numbers found in the iterative procedure given above. Here m is an observation
on the random variable M, the number of distinct values which the components
of X assume. Let A; be the number of components of X which are equal to the
kth distinct value, and let @, be the set of all possible outcomes of 4 = (4,

--,A,) when M = m. Let K = (K, ---, K,) be the random vector where
K; is the number of components of A which are equal to ¢, 7 = 1,2, ---, n.
Let X, be the set of all possible outcomes of K for which D j—; k; = m; that is
K. 1s the set of all ordered n-triples (ki , - - -, k,) of non-negative integers such
that D s k; = m and 2 s=1jk; = n. Finally let (ay, - -+, o) be an outcome
of A,andletay =y + s+ -+ +op,k=1,2, -+, m.

Intuitively the outcome of X consists of groups of equal values; the outcome
of K is a specification of the number of elements which are in the various groups
without regard to the order of the groups. The outcome of A is a specification of
the number of elements in each of the groups as well as the order of the groups.
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Further &, is the collection of all possible outcomes of K with m the number of
groups (M = m).

From the iterative procedure for computing X, we see that X,, = ar/(Taps1
—Ta_,41). We will denote the reciprocal of this by Uy . Let Vi = Typ1 — Ts.
Then U, is the average of the {Y;} forj = ar_1+1, ar_s +2, - - -, a; . Given an

outcome « for 4 and an outcome y of ¥ = (¥Yy, ---, ¥,) we define u(a, y)
= (ul, "'7um) by
(4.3) U = (Yapo1 41 TYa_r42 + - +Ya) /(0 — Gj—1).

If the components of u(«, y) are increasing, we may think of u(e, y) as an out-
come of U = (Uy, -+, Uy). Let @ be the collection of all possible outcomes of
A when K = k. Then Gn = Ui, @". Let C(a) be the set of all y for which
u(a, y) has increasing components. Let Bi(a) be the set of all y for which u;
is less than the average of {y;} for j = ay_1+1, az_1+2, - -+, ar_1+r for any r
such that 1 < r < a;—1. Let B(a) = i=1Bi(a), let D(a) = B(a) n C(a),
16t D" = U.e:D(a), and let

(4.4) H(a) = {y: ITima(u) ™ < k).

We observe that an outcome of ¥ completely determines an outcome of X.
Furthermore, using the iterative procedure for computing %, we see that D(«)
is the collection of all possible outcomes of ¥ which determine outcomes of X
with a corresponding a.

Lemma 4.1. Let H* = UH(a) n D(a). Then

(4.5) P[Rej. Hol = D mey1 Dorex, PIY € HY).

Proor. Now P[Rej. Ho] = P[[[i=(Xx) ™ = ko) = P[Up—i Uea, {I0=a(Xi) ™
S ko, A= o]l = 2t DoaeanPUi<1(X)™ £ ko, A = a]. Recall the Xi’s
are groups of constant values (equal to (Uj)™"s). Therefore if 4 = a,
TIr= ()™ = IIu(UL)*™. Then in the notation defined above P Tr(U) =
< ko, A = a] = P{[[Li<:(Un)® = ko n D(a)} = P[H(a) n D(a)]. The con-
clusion follows from the definition of H*.

It is known that Yy, ---, Y, are exchangeable; that is for every Borel set
J € R” and every permutation operator p we have P[Y ¢ J] = P[pY ¢ J]. We
need the following definitions, which come directly from [3].

DerintTioN 4.1. Form = 1, - - -, n, we denote by I, the set of all permuta-
tions m: (1, ---,m) — (41, ---,%m). We denote also by = the permutation
operator carrying an ordered m-tuple

w= (W, -, Wn) 0 7w = (Ws , Wiy, *+,Wi,)

and by II,, the class of such permutation operators.

DeriniTiON 4.2. For m £ n, a € @, m €1, , let 4 = u(e, y) and think of
the coordinates of y appearing in the definition of u;(e, ¥) as being written in
the order of increasing index j,7 = 1,2, ---, m. Let 71, j2, - -+ j» be the indices
of the coordinates of y in the order in which they appear when the u; are re-
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arranged to form wu = (u., , s, , - - -, s, ) Without rearranging the coordinates
of y within ui;, (j = 1,2, --+,m). Let p = p(a, 7) carry y = (41, -+, Yn)
into py = (y;,, Yiz s~ " Yin)-

DeriniTiOoN 4.3. The class {H ()}, @ ¢ @ will be called w-invariant if @ &€ G ,
T ellm, p = p(a, ) imply pH(a) = H(ra).

Lemma 42. If Yy, - -+, Y, are exchangeable, if {H(a)}, a & @ is w-invariant, if
m =, keRm,aed,andif H(a) is cyclically symmetric in each of

Yl,"'yYM;Ya1+17"'7Y02;"';Yam-1+17"'7Yam)

then P(H*) = P[H(a)] []t=1(k: 1)
Proor. This lemma is proved in [3], p. 319, by Brunk.
Lemma 4.3. For a an arbitrary but fived element of GF,

P[Y e H*] = P[Y ¢ H(a)] [ [t<a(k: 1 &)

Proor. It is obvious that H(a) is cyclically symmetric. Since Y, ---, Y,
are exchangeable all that we need show is that {H(a)}, a € @ is w-invariant. This
too is fairly obvious and can be seen by looking closely at the definition of
p(e, w) in Definition 4.2 and at (4.4), the definition of H(a).

Combining Lemma 4.1 and Lemma 4.3, we have:

THaEOREM 4.1. For an arbitrary but fized element o of @°

(4.6) P[Rej. Ho) = > met D okesenPIY € H(a)|[[rea(hos 1 )7

Recall H(a) = {y: [[#~:(Us)® < ko}. The above theorem results in a large
saving in the work necessary to calculate the probability of a type I error, but
the work left often is large.

DeriNiTION 4.4. Let U(a) = J[i~1(Ux)*, and let U(A) be the random
variable whose observation is the observed value of U(a) when 4 = o (U(a) is
a random variable).

We will reject Ho if U(A) = ko ; we would like to approximate P[U(4) <
ko). In order to do this we will find the limiting moment sequence of U(4). Let
Zy = U, . Starting from the conditional joint density function of 7, ---,
T, (or Yy,:--,Y,) given n, one can show by the usual change of variable
techniques that the conditional joint density function of Z;, -- -, Z, given n is

Jou, v 2z, ooz m) = 0 L () T o [(2) 7/ (o —1) 1],

if0<2,k=1,2 ---,mand if D i Z; < t*. Using the above joint density
function one finds

(4.8) E[U ()] = {n! (t")"/I(F + 1)n] 1} ITi=
AlG + Do — 111 /(o — 1) 1 (o)™,

In the notation of [3], for a e @n,weE™,let v = ((an, @), (02, w), -+,
(0tm , wm)). We define fu(v, y) = fu(v) = [[i=1(w)’® where j is a fixed positive
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integer. For an observation y of ¥ we define v(e, y) = ((a1,u1), (@2, u2), - -,
(&m , Um)). We also define the vector a(Y) to be the value of A if Y = y and
define m(y) to be the value of M if Y = y. Let G = {y: fuw (vla(y), y]) < ¢},
and for a G, let G(a) = {y: fu(rle, y]) < gq}. We observe that U'(a) =
fu(v(a, y)) and that fr(v, y) = fn(v) is symmetric in the components of » and,
vacuously, in the components of y.

Lemma 4.3. Let Yy, - -+, Y, be exchangeable, and let f.(v, y) be symmetric in
the components of v and the components of y for m = 1,2, ---, n. If the com-
mon distribution function of {Y:1 = 1,2, ---, n} is continuous, then for m <
n, k &€ Xp,and a chosen arbitrarily from GF, the conditional distribution of
fu(v(A4, Y), Y)given D, is the distribution of fm(v(a, ¥), ¥).

Proor. Brunk in [3] pp. 321, 322 (Theorem 2.1) proves this lemma. However,
instead of exchangeable, Brunk assumes Y, -+ -, Y, are independent and iden-
tically distributed. However, he uses this assumption only to prove that Y3,
-+, Y, are exchangeable.

TureoreM 4.2. For an arbitrary o in @F,

(4.9) E[U’(A) | D] = B[U(a)].

Proor. The proof is a simple application of Lemma, 4.3.

This result will be used in obtaining the limiting distribution of the likelihood
statistic, U(A). To this end we require some observations on the asymptotic
properties of randomly chosen permutations. Also, we will need the following
lemma.

Lemma 4.4. For K € Ky , P(D*) = [i=a(k: 1470

Proor. If in Lemma 4.2 we let H(a) be the whole space for each «, then it
can easily be shown that {H(a)}, a € @ is w-invariant. The conclusion follows.

E. Sparre Andersen in [1] found that the distribution of M coincides with that
of the number of cycles in a random permutation of the first n positive integers.
For any y in the space of all n-tuples of distinct positive integers less than or
equal to n, let a; be the index of the smallest coordinate, 1; let as be the index of
the smallest coordinate with index greater than a; ; etc. The process ends when
forsomem < n, 0, = n. Letay = 0,and let oy = a — ar1, bk =1,2, -+, m.
Since y is a random permutation of the first n positive integers, we may think of
a = (a1, -+, an) as the specification of the lengths of the cycles, in the order
that they appear, of the permutation which carries (1, 2, - - -, n) into y, where
the first cycle contains 1; the second cycle contains the smallest integer not con-
tained in the first; etc.

This example was also considered by Brunk in [3]; it comes about by defining
u(a, y) by u; = ya; instead of (4.3). All the theory developed so far still holds
with this new definition of u(«, y).

Let W; be the indicator function of the event that a cycle ends on the jth
term, and let X; = W,_ju1,7 = 1,2, ---, n. Then as Feller points out (cf. [4]
pp. 205,206) P[X; = 1] =5, P[X; =0l =1 —j,j=1,2, ---,and {X}
are independent. Let 1 < k1 < k2 < --- < k, = n be r positive integers and let
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Sn = D #1X) . It is easy to show since the X.’s are independent that

(4.10) PXy, = = Xp, = 1,8, =7+ 1] = n [ [jm(k;—1)""
We observe that
(4.11) PIS, =l = n" 2o [IF5(k; — )7,

where Q is the set of all (k1, -+, k1) such that 1 < &y < +++ < kyy = 1.
Levmma 4.5. Let

Qr = J‘:’ f:r_l e f‘l’z(xlx2 N xr)_l dxl dxz N dxr X

where r < n are fixed positive integers. Then

(i) Q. < (logn)", and |

(i) @, = (logn)7/r ! — 2 iaci(log n)",
where c; = (logj)’/7!.

Proor. The proof of (i) depends only on replacing all of the lower limits on
the integral defining @, by 1’s. The proof of (ii) depends on the following two

facts: first
[+ (log 22)* ™"/ (k — 1)! 2] dr = [(log z241)"/k!] — [(log k)*/k)
and second
fr [oma oo [R5 (Tagn -+ @) dwpyn - doe £ Qe

TureoreM 4.3. For fized m < n, P[S, = m — 1]/P[S» = m] - 0asn — o-
Proor. Replacing the upper limits by » and the lower limits by 1 in (4.11) one
finds that

nP[S, =11 < (1 4+ 2rok™)™ = (14 [f27'de)™" = (1 + logn)™.

Furthermore nP[S, = 7] = @, . Using these inequalities and Lemma 4.5 we get
the result if m = 2. However S, = 1, which gives us the result when m = 1.
For K ¢ K., let d(k) be the index of the first nonzero k; , and let d(K) be the
corresponding random variable (i.e. d(K) is the length of the shortest cycle).
Let Kpmr = {keKn: d(K) = 1}.
TurorEM 4.4. The limit as n goes to infinity of

Zke{}{lm,, ZaeakP[A = l M = m] = stxm,rP[Dk l M = m]

is zero, where r is an arbitrary but fized positive integer.

Proor. The above is equivalent to showing that P[d(K) < r|M = m] con-
verges to zero as 7 goes to infinity, which is itself equivalent to showing that the
probability that there exist r adjacent X’s whose sum is greater than or equal to
2 given S, = m goes to zero as n goes to infinity. Let R. be the event that there
exist r adjacent X’s whose sum is equal to c¢. It is sufficient to show
that P[R. | S, = m] converges to zero as n goes to infinity. Recall P[X; = 1]
= 1. Therefore we may write P[R.,S, = m] = L1 + L. where

Ly = P[Z;=2 Xz 1, Sy = m]
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and Ly = D 0oit PO Xy = ¢, DpeXz = 0, S, = m]. One can show
that Ly < (5)P[S, = m — j] and that Ly < £(c)P[S, = m — c], where ¢ =
D721 (1/7)%. The conclusion follows from Theorem 4.3 and the definition of con-
ditional probability (for the rest of this paper we will make the change of scale,
*=1).

LEMMA 4.6. Let V(A) = n"U(A). Then forj = 1,2, ---

limgc-oB[Vi(a)] = (j + 1)~

Proor. We observe that the components of a go to « as d(a) — «. The
conclusion then follows from formula (4.8) by using Stirling’s approximation
for factorials and the fact that (1 — ™')™ converges to ¢ ' as z goes to infinity.

THEOREM 4.5. For j = 1,2, - -+, limeuB[VI(A) | M = m] = (§ + 1)~ ™"

Proor. Now

E[V(A) M = m] = Xiegn 2acar B[V () |A = o]P[A = a| M = m]
= Y’ DoweatBlU () | A = a]P[A = o]/PIM = m]
= D ex.n"E[U’(A) | D'|P[D*]/PIM = m).

Using (4.9) oneobtains E[VI(A) | M =m] = D ek, BV (a)|PID* | M = m]
where « is an arbitrary element of @*. This sum can be broken up into a sum
over X, and a sum over X, — Xn,, . One can show that 0 = (n/t)"E[U ()]
= (*)"™E[V’(«)] £ 1. Using this bound and Theorem 4.4 one can show that
the sum over X, . converges to 0 as n goes to infinity. The conclusion follows
from Lemma 4.6 by using an e-type argument with r chosen sufficiently large.

It is known for a sequence of random variables { X,} that if the limit moment
sequence uniquely determines a distribution function, then it is the limit as n
— o of the distribution functions of {X;} (cf. [8] p. 128). Also if for the limit
moment sequence {m;}, 2 m;c’/j! is absolutely convergent for some ¢ > 0, then
there is at most one distribution function with these moments (cf. [8] p. 125).
The moment sequence { (7 + 1)_(m+l)/2} satisfies the latter condition with ¢ = 1.
Therefore we have the following.

TueoreM 4.6. The limiting distribution given M = m of V, = V(A) as
n — o 18 gien by

F(z) =0, if 20
=1—Fnou(—2-Inz), if 0<z<1
=1, otherwzse,

where F 11 18 the x>-distribution Sfunction with m + 1 degrees of freedom.

Recall that V,(4) = n"U(A) and that we reject H, in favor of H1 if U(4) =
ko or equivalently if V,(A4) =< c(c = n "k¢). We may approximate the proba-
bility of a type one error for large n by D mea [I — Fpnya(—2-In 2)]P[M = m],
where it is known that P[M = m] = |S,™|/n!, |S,™| is a Stirling’s number of the

first kind (ecf. [2] p. 129).
Professor H. D. Brunk pointed out that the limiting distribution found in
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Theorem 4.6 is exact if m = 1. This can be seen as follows. From Theorem 4.5
we have E[V'(A) | M = 1] = E[V’(«)IP[D* | M = 1] fora = (n), where the
only kin Xyisk = (0, - - ,0,1) and for this k the only @ in @*is @ = (n). Also
for thisk, P[D* | M = 1] = 1. From (4.8), recall t* = 1, we see that for « = (n),
ElV(e)] = nE[U%a)] = (j + 1)"*™"” That is the limit obtained in
Theorem 4.5 is exact when m = 1, and therefore Theorem 4.6 gives the exact
conditional distribution given M = 1.
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