GAME VALUE DISTRIBUTIONS II'

By Davip R. THOMAS
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1. Summary and introduction. An earlier paper [4] has been concerned with
the distribution of the value of perfect information games with random payoffs of
a certain very special type: two alternatives were assumed available to each
player at every move, and the terminal payoffs were assumed to be iid and uni-
form. This paper considers a more general class of games, with p and q alterna-
tives available, respectively, for players I and II at every move, and with the
terminal payoffs arbitrarily distributed, though still iid. Specifically, consider a
two-person zero-sum perfect information game, with player I and player II
alternately choosing one of several alternative moves, with n choices to be made
in all by each. It is assumed that there are always p and ¢ alternatives available
respectively to players I and II. Corresponding to each of the (pg)” possible
sequences of moves, there are (pg)” payoffs (to player I) x(%1, %2, -+, %),
where the indices 4y , %5, * - - , 221, €ach with range (1, 2, - <+, p) indicate the
successive alternatives chosen by player I, and the indices (%2, %, - - , %), each
with range (1, 2, -+, ¢), indicate the successive alternatives chosen by player
II. The value v({z(41, ---, %n)}) of such a game is

max;, min;, max; min;, -+ MaX,, , Ming,, £(41, *** , 2a)-

Now replace the (pg)™ numbers z(71, - - , %2a) by independent random variables
X (4, -+-, %), each with cdf F. This paper is concerned with the limiting
behavior of the random values V.(F) = v({X(4%, -+, %2)}). The limiting
behavior of V,(F) is investigated in Section 2 for uniform F' (F = U). Analogous
to the results for p = ¢ = 2 obtained in [4], the limiting distribution for the
sequence {V.(U)} is everywhere continuous and monotone increasing, and
satisfies a certain functional equation. Limiting distributions arising from arbi-
trary F are considered in Section 3. Section 4 is devoted to some results concern-
ing norming sequences and domains of attraction. The final corollary of Section
4 establishes that all of the common cdf’s lead to the same limiting distribution.
This study bears a strong resemblance to Gnedenko’s [1] study of extremes.
Since, in Gnedenko’s case, the limiting distributions for Z ) = max (Z1, - -, Zy),
where Z,, are independent identically distributed random variables, must in effect
be limiting distributions for Z s for every positive integer k, Gnedenko’s argu-
ment involves an infinite sequence of functional equations [1], p. 431, namely,
one functional equation for every k. In the present treatment the limiting dis-
tributions for V,.(F) must satisfy only the single functional equation (6). It
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may thus be worth noting that even a stronger resemblance would exist between
this paper and a study of the limiting distributions for Zu»y , k fixed.

I would like to acknowledge Professor H. T. David for his many helpful dis-
cussions concerning this research.

2. The limit distribution for uniform payoffs. Define, for 0 < 2z < 1, ¢(z) =
(1 — (1 — 2)%)". Then the cdf for the random value V,(F) is ¢ [F(z)] where
6™ (2) is the nth iterate of ¢(z). Also, let a be the interior fixed-point of ¢(z)
in [0, 1] (property (A) below), and let b = ¢’(a) > 1 be the slope of ¢ at a. Note
that ¢, and therefore a, b, and L, defined below, are functions of p and g, the
number of choices available respectively to players I and II at each move; how-
ever, in order to simplify the notation, this functional dependence on p and ¢ will
not be made explicit.

For uniform random payoffs (F = U) we have the following result concerning
the asymptotic behavior of the game value V,(U).

THEOREM 1. The sequence b"[V,.(U) — a] converges in distribution to an every-
where continuous and monotone increasing cdf L, , where L, satisfies the functional
equation

(1) olLu(y/b)] = Lu(y) for —o <y < .

In Section 3 of [4], Theorem 1 was proven for the special case when p = ¢ = 2.
Essentially the proof consisted of establishing the following: (i) for each y the
sequence ¢™(a + y/b") is eventually non-decreasing which implies that
limp.. ¢™(a + y/b") = L.(y) exists. (ii) The function L.(y), being the limit
of a sequence of functions convex in a neighborhood of ¥ = 0, is convex and there-
fore continuous in a neighborhood of ¥ = 0. (iii) The function L,(y) satisfies
L,(—¢) < a < Ly(¢) for all ¢ > 0. This relation was established by the use of
functions X and p which bound ¢, are easily iterated, and tend to simple limit
functions under the norming 1/b". With the use of the functional equation (1),
results (ii) and (iii) led to the result that L,(y) is a continuous monotone in-
creasing cdf.

For arbitrary integers p = 2, ¢ = 2 some modification of the proof given in [4]
is required. The modifications are necessary as a result of the following two facts:
(I) For arbitrary p and g, the sequence ¢™(a + y/b") is either eventually non-
decreasing in n, as it is for p = ¢ = 2, or eventually non-increasing; (II) it has
only been possible, for arbitrary p and g, to show that the functions u and A, de-
fined in (F') of [4], bound ¢ in some neighborhood of a fixed-point a.

The remainder of this section is devoted to the necessary modifications of the
argument in [4] required in view of I and II. Recall that capital letters ,i.e.,
(A), (B), - -, denoted successive steps in the argument of [4]. A starred letter
will refer to such a step; this device also is used for equation numbers.

(A) Define, foralln 2 1and 0 < v < 1,6 () = ¢(6™(v)) = 6™(4(v));
then

(i) 0 = ¢™(») < 1on 0, 1],
(ii) ¢™(v) is monotone increasing on [0, 1], and
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(iii) ¢™(v) is continuous on [0, 1].

(B) There is a unique number a, 0 < a < 1, such that, for alln = 1,
(i) 0 < ¢™(v) <vfor0 <v< a,

(i) v < ¢™(v) < 1fora <v < 1,and

(ili) 0, a, and 1 are the only fixed points of ™ on [0, 1].

(C) By using (B)(i) and (B)(ii) <t is easily shown that

(2) aSmiff[1 — ((g(p — 1))/(pg — 1))"1* £ 1 — (g(p — 1))/(pg — 1)

where m is defined as in (C)*. However, equality cannot hold in (2) for integers
P = 2,9 = 2since the polynomial (1 — 2”)? = 1 — z has no rational roots in the
open interval (0, 1).

For the case when a < m in (2), the only modifications required are given below
in (F) and (G). The other case, a > m, requires, in addition, the further modifi-
tions below.

(D) In(D)* note thatb = ¢’(a) no longer necessarily equals 4a; also, reverse
the inequalities in (10*), (12*), and (13*) and replace the range [—a, m — a] in
(11%) and (12*) by the range [m — a, 1 — a]. ,

(E) As in (E)*, except for the third sentence, which is modified to: then,
according to (D), there exists no such that, for n > no, ¢"*(a + y,b"™) =
o™ (a + y/b"), i.e., $™(a + y/b") is eventually monotone non-increasing.

(F) Change (F)(i*) to read N(v) < ¢(v) < u(v) in some neighborhood (, #)
of v = a. This relation follows by a simple application of the mean value theorem
and the following relations:

Aa) = ¢(a) = u(a) = a,
N(a) = ¢'(a) = W(a) = b,
N'(a) < ¢"(a) < 4"(a).

The first two of the above relations follow directly from the definitions, while the
third seems to require considerable algebraic manipulations: By direct substitu-
tion of the expressions for \”(a), ¢”(a), and ¥”(a) in the third relation we have
that \"(a) < ¢”"(a) < 4"(a) iff

(3) —=b(b—1)/(1 —a)<blg(p — 1)a™"" — pg +1]/(1 — a) < b(b — 1)/a.

By using the relation b = pga(a™? — 1)/(1 — a) (and the relation 1 — a"/? =
(1 — a)? when simplifying the left inequality) the left and right inequalities in
(3) can be shown to hold iff

(4) a<l1-— (p)_(“_”—1 and (¢) 7"V < q,

respectively. Then, using the property (see (B)) ¢ S z iff x S ¢(z), the in-
equalities in (4) are equivalent to

[1- (p)—(q—l)—lll/p <1-— (p)—q/(q—l) and [l — (q)—(p—l)]llq <1-— (q)—"/(”_l).
Finally, these inequalities can be established for p = 2, ¢ 2 2 by expanding the



254 DAVID R. THOMAS

natural logarithm of each side and noticing the term by term dominance by the
series on the right side of the inequalities.

(G) In (G)* define the neighborhood J = (v, 5" ) n (@@ — a,5 — a) = (y1, y,,)
where 5, y* are defined in (19%). Change the range [0, 1] to (¥:, ) in (16),
(17%), (22%), (25™), and (26™).

(I) In (I)* replace ‘convex’ by ‘concave’; reverse all inequalities, and replace
in the last paragraph the interval [0, m] by the interval [m, 1].

(J) In (J)* replace ‘convex’ by ‘concave’, reverse all inequalities except
n > mo, and replace ‘non-decreasing’ by ‘non-increasing’ in the second sentence.

3. Limit distributions. In this section limit distributions will be considered for
game values V,(F), where, as before, F represents the common distribution of
the random payoffs.

For cdf’s G, {G,} the symbol G, — G will indicate convergence in distribution,
ie. lim,,, G» = @ for all continuity points of G. Also, all cdf’s are taken to be
everywhere continuous from the right.

DeriniTION 1. (Gnedenko). The cdf’s Gi(z) and Gz(x) are said to be of the
same type if, for some constants a and 8 > 0, Gi(z) = Gu(Bz + ) for
—o <z < ©,

DEerFiNITION 2. A cdf F will be said to belong to the domain of attraction of a
non-degenerate cdf L (denoted by F ¢ D(L)) if there exists a sequence of con-
stants {a, , b} (ba > 0),n = 1,2, 3, -- -, such that ™ [F(bay + a.)] — L(y).

DerinrTioN 3. The non-degenerate cdf L will be said to be a limit distribution
if D(L) is not empty.

Let £* be a suitable set of non-degenerate cdf’s that satisfy

(5) L(—e) < a = L(e) forall e> 0,

and contains exactly one member of every possible type. Without loss of gener-
ality, consider the problem of characterizing the class £ of limit distributions con-
tained in £*. The actual members of £* are not specified at this point to allow
the simplest possible description of £ in the subsequent argument.

TeEOREM 2. The cdf L ¢ £ iff there exists a constant 8,0 < B8 =< 1, such that

(6) o[L(By)] = L(y) for —o <y < .

Proor. First, suppose that L ¢ £. Then by definition there exists a cdf F and a
sequence {a, , b,} (b, > 0) for which

(7) $™[F(byy + an)] — L(y).
Define the function G(y) by
(8) G(y) = ¢ '[L(y)].

It is easily seen from property (A) of ¢ that G(y) is a non-degenerate cdf. Then,
using the continuity of ¢, it follows from (7) and (8) that

(9) ¢ [F(bpy1y + @np1)] = G(¥).
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Then from (7), (9) and Theorem 1 [2], p. 40, it follows that G is of the same type
as L, i.e., there are constants 8 > 0, a for which G(y) = L(By + a) for
— o < y < . Therefore (8) yields

(10) ¢[L(By + @)] = L(y) for —o <y < .
Setting y = 0 in (10) gives
o[L(a)] = L(0) 2 a= L(a) 2 a=a =0,

where the first implication follows from property (B) of ¢, and the second from
(5). Similarly, setting y = —a/8 in (10) gives

¢[L(0)] = L(—a/B) Z a=a =0,

where the implication follows from (5) and 8 > 0. Hence, expression (10) re-
duces to expression (6). Now, suppose that 8 > 1 in (6). Then for y < 0,
L(By) = L(y). Property (B) of ¢ then implies that L(y) = a, which is a contra-
diction of (5).

Conversely, suppose that a cdf L satisfies (6) with 0 < 8 = 1. Then n-fold
iteration of (6) gives ¢ [L(8")] = L(y) for —o0 <y < o;n =1,23, --.
Hence, in view of Definition 2, L ¢ D(L); this is seen by letting F = L, b, = 87,
and a, = 0.

A more detailed description of £ is provided by the following two lemmas.

LemuMmA 1. Define

L*(y) =1 for y=1
=a for 0=2y<1
=0 for y<O.

Then L* is the only member of £ which satisfies (6) for 8 = 1.

Proor. The proof follows immediately since the points 0, a, and 1 are the only
fixed-points of ¢(z) for0 < z < 1.

Let £ = £ — {L*}, and define the following three subclasses of £’:

v

e ={Leg' |0<L(y)<a for —o0 <y<O0, a<L(y) <1
for 0 <y < o, L(—0) = a = L(0)};

(11) ep=1{Le£ |0 < Ly) <a for —wo <y<O0,
L(—0) =a, L(0) =1};

em=1{Leg |la<L(y) <1l for 0 <y< o,
L(—0) =0, L(0) = aj.

LEMMA 2. oB, = JZI U £II U 08111 .
ProoF. Let L be any member of £'. Then by Theorem 2 and Lemma 1,
o™ [L(8"y)] = L(y) for —o < y < « and some 8,0 < 8 < 1. The fact that
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(property (B)) ¢™(z) = 0 or 1iff = 0 or 1, respectively, then leads to the
following relations:
(12) L(y) =1 forsome y > 0= L(0) = 1;
L(y) =0 forsome y < 0= L(—0) = 0.
We also have
(13) L(y) > a for y >0,

for, if not the functional equation ¢™[L(y)] = L(y/8") for 0 < 8 < 1;
n =1,2,3, - implies that L(») = a < 1.
From the fact that

limn.. ¢™(z) =0 for 0 <z <a
(14) =a for z=a

1 for a<z=1

)

the functional equations ¢ [L(8")] = L(y), forsome0 < 8 < 1;n = 1,2,3,---
lead to the following relations:

(15) L(y) <1 forsome y > 0= L(+0) = a;
L(y) >0 forsome y < 0= L(—0) = a.

Since £’ contains only non-degenerate cdf’s relations (12), (13), and (15) establish
the lemma.

In the remainder of this section a characterization of £ will be given in terms
of the limiting edf L, . For any cdf L define the function CL(y) as

(16) Cu(y) = L, [L(y)] for —w <y < .

Since L, is everywhere monotone-increasing and continuous (Theorem 1) Cr(y)
is well-defined for all values of y for which 0 < L(y) < 1. For values of y for
which L(y) = 0 or 1 define C(y) = — « or + =, respectively.

TurorEM 3. A non-degenerate cdf L € £ iff there exists a constant 8,0 < 8 = 1, for
which

(17) bCu(By) = Cu(y) Jor —w <y < w.

Proor. First, let L be any non-degenerate cdf and suppose there is a constant
B, 0 < B = 1, for which (17) holds. Then the functional equations for L, and L
" (expressions (1) and (6), respectively) imply that

o[L(By)] = ¢[L.(CL(By))] = ¢[Lu(Cr(y)/b)]
= LJCu(y)] = L(y) for — <y < o,

Hence, from Theorem 2, L ¢ £.
Conversely, suppose that L ¢ £. Then, relation (1) and Theorem 2 give, for



GAME VALUE DISTRIBUTIONS 257

—© <y < o, ¢[L(Cr(y)/b)] = Li[Cr(y)] and ¢[L.(Cr(By))] = Lu.[Cr(y)].
Thus, L.(Cw(y)/b) = L.(Cr(By)) follows from the monotonicity of ¢. Relation
(17) then follows from the monotonicity of L, .

By setting 8 = (1/b)"” in expression (17) of Theorem 3, the following two
parameter family (v > 0, r > 0) of cdf’s is seen to belong to £; :

_ _ry" for y>0
{nr) = LA, )] Gl = 7, Tor v >0

4. Domains of attraction. The results in this section concerning domains of
attraction for limiting distributions of V,(F) are similar to results obtained by
Gnedenko [1] in his study of extremes; Lemma 3 and Theorem 5 given below
being the analogues respectively of Lemma 4 and the sufficiency part of Theorem 5
in [1].

Lemma 3. The cdf F e D(L), for L e £, iff there exists a sequence of constants
{@n, ba}(bn > 0);n =1,2,3, -+, for which
(18) b [F(bay + @n) — a] = Cu(y), as n— =,
at all continwity points of C1(y), where, as before, Cr(y) = L, '[L(y)].

Proor. Let y be any continuity point of C.(y), or equivalently any continuity
point of L(y) since L, is continuous.

Case 1.0 < L(y) < 1. For this case — o < CL(y) < «. Then L,continuous
and monotone-increasing implies that for any e > 0 there exists a 8 > 0 such that

(19)  Lu[Cu(y)] — € < Lu[Cu(y) — 8] < LuCu(y) + 8] < Lu[Cr(y)] + e

Suppose now that (18) holds for some cdf F and some sequence {a., ba}
(bn > 0). Then there exists a number n, such that

a+ (Cu(y) — 8)/b" < F(bay + as) < a + (Cu(y) + 8)/b" for n = ne
which implies that
$™la + (Cu(y) — 8)/b"] < ¢ [F(bay + an)] < 6™la + (Cu(y) + 8)/b"

for n = no, since ¢™ is monotone-increasing. Therefore, from the definition of
L, and (19)

L.Cu(y)] — € < LJ[Cw(y) — 8] = lim inf $™[F(b.y + a,)]
< lim sup ¢™[F(byy + a.)] £ L[C(y) + 8] < LuCu(y)] + e

Hence, ¢™[F(bsy + a.)] — LJ[Ci(y)] = L(y), i.e. F e D(L).

Conversely, suppose that Fe®D(L), i.e., there exists a sequence
{@n , b2} (bn > 0) for which limue ¢ [F(bay + a,)] = L(y) = L,[Ci(y)]. Now
suppose on the contrary that (18) does not hold for the point 3. Then there exists
an e > 0 and an infinite subsequence {n;} of the positive integers for which

b [F(bny + an;) — a] = Cu(y) — ¢
(20) or
bY[F(bay + an;) — a] = Cu(y) + e
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If the first relation of (20) holds, then ¢™ monotone increasing implies that
¢ IF (bny + an)] < 6™ (a + (Cu(y) — €)/b™)

which further implies that L.[C.(y)] £ L.[CL(y) — €] < L,[C.(y)], since L, in
monotone increasing. Similarly, the second relation of (20) leads to the contra-
diction that (18) does not hold when F ¢ D(L).

Casg 2. L(y) = 0or L(y) = 1,ie., Cy(y) = —w or C(y) = + . Then
it must be shown that lim,..d"[F(b,y + a,) — a] = — or + o iff
limyse ™ [F(bay + ax)] = 0 or 1. Since the equivalence of these relations follow
from a straightforward modification of the proof given for Case 1 the details will
not be given.

The following lemma establishes that, after a certain translation, scale norming
alone is sufficient to reach any limit distribution L ¢ £’.

LemMA 4. If F e D(L) for L ¢ &', then there exists a unique x, satisfying

(21) F(zo —¢) <a < F(xa+€) forall ¢e>0
and there exists a positive sequence {b,} for which
(22) ¢PF (bay + 22)] — L(y).

Proor. If F e O(L) for L e £, i.e., there exists a sequence {a, , ba} (b, > 0)
for which

(23) ¢™[F(bay + a.)] — L(y),

then there must exist a point z, which satisfies (21); for if not, there would be
some interval [z; , z.) on which F(z) = a. Then it would follow from (14) that
o™ [F(z)] — L'(z), where L' is a cdf of the same type as L* (defined in Lemma 1).
However, L* # £" which implies that F ¢ D(L) for any L & & since a non-de-
generate limiting type is unique [2], p. 40.

By Theorem 2 [2], p. 42, all that needs to be established to prove that (23)
implies (22) is that

(24) limn»eo Yn = 0,

where y, = (¥, — a,)/b, and the constants {b,} are taken to be the same in (22)
as in (23). From Lemma 2 we have

(25) L(—e) <a < L(¢) forall e>0 andall Leg’
Suppose that for some § > 0
(26) lim inf (y,) = —aé.

Let e be chosen such that 0 < € < § and —e is a continuity point of L. Then from
(21), (23), (25) and (26)

a £ lim inf ¢ [F(z,)] = lim inf ¢ [F(byn + an)]
< lim inf $[F(ba( —¢) + aa)] = L(—¢) < a;
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thus establishing that

(27) lim inf (y») = 0.
Suppose now that for some § > 0

(28) lim sup (y.) = é.

Choose € such that 0 < ¢ < §/2 and e is a continuity point of L. Then from (21),
(23), (25) and (28)

a = lim sup ¢™[F(z. — (8b,)/2)]
= lim sup ¢™ [F(ba(yx — 6/2) + ax)]
> lim sup ¢ ™ [F(bae + a,)] = L(¢) > a;
thus establishing that
(29) lim sup (y».) < 0.

Expressions (27) and (29) imply (24), and therefore (22).
Sufficient conditions for a c¢df F to belong to the domain of attraction of a limit
law are given in the following theorem.
THEOREM 4. The cdf F & D(L), for L & £, if the following conditions are satisfied :
(1) there exists a point x4 for which

Flz, —€) <a < F(x, +¢) forall ¢> 0,

and
(ii) there exists a point yo = 0 for which
(30) Cr(yo) 1s finite,
(31) F(yee + ) > a as z— +0,

(32) [F(yz + za) — al/lF(yoz + za) — a] = Co(y)/Cu(y0), as z — +0,

for all continuity points y of Cr(y).
Proor. Let yo be any point for which conditions (i) and (ii) hold, and define

(33) b = min {z | F(yox + 2a) — @ Z Ci(y0)/b"},
forn = 1,2, 3, :--.Then (31) implies that
(34) b, >0 for n=1,2,3,---,

and condition (i) implies that
(35) b, — +0 as n— .

Let y be any continuity point of C.(y) and e any positive number. Then there
exists a number §, 0 < & < 1, for which

(36) ICu(y/(1 —8)) — Cu(y)] < ¢
and y/(1 — §) is a continuity point of Cy .
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CasE 1. yo > 0, i.e. C(yo) > 0. For this case, (30), (33) and (34) imply that
(37) Flyeba(1 — 8) + ] — a = Co(90)/b" = Flyob, + 7] — a
forn =1, 2,3, ---, which gives
[F(bry + 22) — al/[F(bayo + 2a) — a]
b [F(bay + ) — al/Ci(yo)
= [F(buy + 7a) — al/[F(bayo(1 — 8) + z.) — d]
according to y § 0. Then it follows from (32) and (35) that
(39) |lim sup {b"[F(buy + 2.) — a]} — lim inf {b"[F(b.y + x.) — al}]
S 1Cu(y/(1 = 8)) — Cu(y)] < e

CASE 2. 3 < 0, i.e. C.(%0) < 0. Relation (39) also follows for this case since
only the inequalities in (37) and (38) will be reversed when y, < 0.

Hence, it has been established that the sequence {b, > 0} defined in (33)
satisfies

(38)

IV AV

limuse {"[F(bay + 2.) — a]} = Cwu(y)

for all continuity points of Cr(y). Then by Lemma 3 it follows that F ¢ D(L).
CoRrOLLARY. If the cdf F(x) satisfies condition (i) of Theorem 4 and the density
f(x) exists and is larger than zero in some neighborhood of the point x, (defined by
condition (1)), then F € D(L,).
Proor. Since F(yz + 2,) — a,as 2 — 0, for — o < y < o, and the derivative
of F exists in some neighborhood of x,, L’Hospital’s rule may be used, which
yields

lim,o [F(yz + 22) — al/[F(z + z.) — a] = limae.oyf(yz + 2.)/f(2z + ) = y.
Hence, F ¢ D(L,) by Theorem 4.
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