GAME VALUE DISTRIBUTIONS II1

By DAVID R. THOMAS

Iowa State University

1. Summary and introduction. An earlier paper [4] has been concerned with the distribution of the value of perfect information games with random payoffs of a certain very special type: two alternatives were assumed available to each player at every move, and the terminal payoffs were assumed to be iid and uniform. This paper considers a more general class of games, with p and q alternatives available, respectively, for players I and II at every move, and with the terminal payoffs arbitrarily distributed, though still iid. Specifically, consider a two-person zero-sum perfect information game, with player I and player II alternately choosing one of several alternative moves, with n choices to be made in all by each. It is assumed that there are always p and q alternatives available respectively to players I and II. Corresponding to each of the $(pq)^n$ possible sequences of moves, there are $(pq)^n$ payoffs (to player I) $x(i_1, i_2, \dots, i_{2n})$, where the indices i_1 , i_3 , \cdots , i_{2n-1} , each with range $(1, 2, \cdots, p)$ indicate the successive alternatives chosen by player I, and the indices $(i_2, i_4, \dots, i_{2n})$, each with range $(1, 2, \dots, q)$, indicate the successive alternatives chosen by player II. The value $v(\{x(i_1, \dots, i_{2n})\})$ of such a game is

 $\max_{i_1} \min_{i_2} \max_{i_3} \min_{i_4} \cdots \max_{i_{2n-1}} \min_{i_{2n}} x(i_1, \dots, i_{2n}).$

Now replace the $(pq)^n$ numbers $x(i_1, \dots, i_{2n})$ by independent random variables $X(i_1, \dots, i_{2n})$, each with cdf F. This paper is concerned with the limiting behavior of the random values $V_n(F) \equiv v(\{X(i_1, \dots, i_{2n})\})$. The limiting behavior of $V_n(F)$ is investigated in Section 2 for uniform F(F = U). Analogous to the results for p = q = 2 obtained in [4], the limiting distribution for the sequence $\{V_n(U)\}$ is everywhere continuous and monotone increasing, and satisfies a certain functional equation. Limiting distributions arising from arbitrary F are considered in Section 3. Section 4 is devoted to some results concerning norming sequences and domains of attraction. The final corollary of Section 4 establishes that all of the common cdf's lead to the same limiting distribution.

This study bears a strong resemblance to Gnedenko's [1] study of extremes. Since, in Gnedenko's case, the limiting distributions for $Z_{(n)} = \max (Z_1, \dots, Z_n)$, where Z_n are independent identically distributed random variables, must in effect be limiting distributions for $Z_{(k^n)}$ for every positive integer k, Gnedenko's argument involves an infinite sequence of functional equations [1], p. 431, namely, one functional equation for every k. In the present treatment the limiting distributions for $V_n(F)$ must satisfy only the single functional equation (6). It

Received 18 May 1966; revised 1 August 1966.

¹ This research was supported by a National Aeronautical and Space Administration research traineeship, and also in part by National Science Foundation grant No. GP-1801.

may thus be worth noting that even a stronger resemblance would exist between this paper and a study of the limiting distributions for $Z_{(k^n)}$, k fixed.

I would like to acknowledge Professor H. T. David for his many helpful discussions concerning this research.

2. The limit distribution for uniform payoffs. Define, for $0 \le z \le 1$, $\phi(z) = (1 - (1 - z)^q)^p$. Then the cdf for the random value $V_n(F)$ is $\phi^{(n)}[F(x)]$ where $\phi^{(n)}(z)$ is the *n*th iterate of $\phi(z)$. Also, let a be the interior fixed-point of $\phi(z)$ in [0, 1] (property (A) below), and let $b = \phi'(a) > 1$ be the slope of ϕ at a. Note that ϕ , and therefore a, b, and L_u defined below, are functions of p and q, the number of choices available respectively to players I and II at each move; however, in order to simplify the notation, this functional dependence on p and q will not be made explicit.

For uniform random payoffs (F = U) we have the following result concerning the asymptotic behavior of the game value $V_n(U)$.

Theorem 1. The sequence $b^n[V_n(U) - a]$ converges in distribution to an everywhere continuous and monotone increasing cdf L_u , where L_u satisfies the functional equation

(1)
$$\phi[L_u(y/b)] = L_u(y) \quad \text{for} \quad -\infty < y < \infty.$$

In Section 3 of [4], Theorem 1 was proven for the special case when p=q=2. Essentially the proof consisted of establishing the following: (i) for each y the sequence $\phi^{(n)}(a+y/b^n)$ is eventually non-decreasing which implies that $\lim_{n\to\infty}\phi^{(n)}(a+y/b^n)\equiv L_u(y)$ exists. (ii) The function $L_u(y)$, being the limit of a sequence of functions convex in a neighborhood of y=0, is convex and therefore continuous in a neighborhood of y=0. (iii) The function $L_u(y)$ satisfies $L_u(-\epsilon) < a < L_u(\epsilon)$ for all $\epsilon > 0$. This relation was established by the use of functions λ and μ which bound ϕ , are easily iterated, and tend to simple limit functions under the norming $1/b^n$. With the use of the functional equation (1), results (ii) and (iii) led to the result that $L_u(y)$ is a continuous monotone increasing cdf.

For arbitrary integers $p \geq 2$, $q \geq 2$ some modification of the proof given in [4] is required. The modifications are necessary as a result of the following two facts: (I) For arbitrary p and q, the sequence $\phi^{(n)}(a+y/b^n)$ is either eventually non-decreasing in n, as it is for p=q=2, or eventually non-increasing; (II) it has only been possible, for arbitrary p and q, to show that the functions μ and λ , defined in (F) of [4], bound ϕ in some neighborhood of a fixed-point a.

The remainder of this section is devoted to the necessary modifications of the argument in [4] required in view of I and II. Recall that capital letters ,i.e., $(A), (B), \cdots$, denoted successive steps in the argument of [4]. A starred letter will refer to such a step; this device also is used for equation numbers.

- (A) Define, for all $n \geq 1$ and $0 \leq v \leq 1$, $\phi^{(n+1)}(v) = \phi(\phi^{(n)}(v)) = \phi^{(n)}(\phi(v))$; then
 - (i) $0 \le \phi^{(n)}(v) \le 1$ on [0, 1],
 - (ii) $\phi^{(n)}(v)$ is monotone increasing on [0, 1], and

- (iii) $\phi^{(n)}(v)$ is continuous on [0, 1].
- (B) There is a unique number a, 0 < a < 1, such that, for all $n \ge 1$,
 - (i) $0 < \phi^{(n)}(v) < v \text{ for } 0 < v < a$,
- (ii) $v < \phi^{(n)}(v) < 1$ for a < v < 1, and
- (iii) 0, a, and 1 are the only fixed points of $\phi^{(n)}$ on [0, 1].
- (C) By using (B)(i) and (B)(ii) it is easily shown that

(2)
$$a \leq m \text{ iff } [1 - ((q(p-1))/(pq-1))^p]^q \leq 1 - (q(p-1))/(pq-1)$$

where m is defined as in (C)*. However, equality cannot hold in (2) for integers $p \ge 2$, $q \ge 2$ since the polynomial $(1 - x^p)^q = 1 - x$ has no rational roots in the open interval (0, 1).

For the case when a < m in (2), the only modifications required are given below in (F) and (G). The other case, a > m, requires, in addition, the further modifitions below.

- (D) In (D)*, note that $b \equiv \phi'(a)$ no longer necessarily equals 4a; also, reverse the inequalities in (10^*) , (12^*) , and (13^*) and replace the range [-a, m-a] in (11^*) and (12^*) by the range [m-a, 1-a].
- (E) As in (E)*, except for the third sentence, which is modified to: then, according to (D), there exists n_0 such that, for $n > n_0$, $\phi^{(n+1)}(a + y/b^{n+1}) \le \phi^{(n)}(a + y/b^n)$, i.e., $\phi^{(n)}(a + y/b^n)$ is eventually monotone non-increasing.
- (F) Change (F)(i*) to read $\lambda(v) \leq \phi(v) \leq \mu(v)$ in some neighborhood $(\underline{v}, \overline{v})$ of v = a. This relation follows by a simple application of the mean value theorem and the following relations:

$$\lambda(a) = \phi(a) = \mu(a) = a,$$
 $\lambda'(a) = \phi'(a) = \mu'(a) = b,$
 $\lambda''(a) < \phi''(a) < \mu''(a).$

The first two of the above relations follow directly from the definitions, while the third seems to require considerable algebraic manipulations: By direct substitution of the expressions for $\lambda''(a)$, $\phi''(a)$, and $\psi''(a)$ in the third relation we have that $\lambda''(a) < \phi''(a) < \mu''(a)$ iff

$$(3) \quad -b(b-1)/(1-a) < b[q(p-1)a^{-1/p} - pq + 1]/(1-a) < b(b-1)/a.$$

By using the relation $b = pqa(a^{-1/p} - 1)/(1 - a)$ (and the relation $1 - a^{1/p} = (1 - a)^q$ when simplifying the left inequality) the left and right inequalities in (3) can be shown to hold iff

(4)
$$a < 1 - (p)^{-(q-1)^{-1}}$$
 and $(q)^{-p/(p-1)} < a$,

respectively. Then, using the property (see (B)) $a \le x$ iff $x \le \phi(x)$, the inequalities in (4) are equivalent to

$$[1-(p)^{-(q-1)^{-1}}]^{1/p}<1-(p)^{-q/(q-1)}\quad\text{and}\quad [1-(q)^{-(p-1)}]^{1/q}<1-(q)^{-p/(p-1)}.$$

Finally, these inequalities can be established for $p \ge 2$, $q \ge 2$ by expanding the

natural logarithm of each side and noticing the term by term dominance by the series on the right side of the inequalities.

- (G) In (G)*, define the neighborhood $J=(y^-,y^+)$ n $(\underline{v}-a,\overline{v}-a)=(y_l,y_u)$ where y^-,y^+ are defined in (19*). Change the range [0, 1] to (y_l,y_u) in (16*), (17*), (22*), (25*), and (26*).
- (I) In (I)*, replace 'convex' by 'concave'; reverse all inequalities, and replace in the last paragraph the interval [0, m] by the interval [m, 1].
- (J) In (J)*, replace 'convex' by 'concave', reverse all inequalities except $n > n_0$, and replace 'non-decreasing' by 'non-increasing' in the second sentence.
- **3.** Limit distributions. In this section limit distributions will be considered for game values $V_n(F)$, where, as before, F represents the common distribution of the random payoffs.

For cdf's G, $\{G_n\}$ the symbol $G_n \to G$ will indicate convergence in distribution, i.e. $\lim_{n\to\infty} G_n = G$ for all continuity points of G. Also, all cdf's are taken to be everywhere continuous from the right.

Definition 1. (Gnedenko). The cdf's $G_1(x)$ and $G_2(x)$ are said to be of the same type if, for some constants α and $\beta > 0$, $G_1(x) = G_2(\beta x + \alpha)$ for $-\infty < x < \infty$.

DEFINITION 2. A cdf F will be said to belong to the domain of attraction of a non-degenerate cdf L (denoted by $F \in \mathfrak{D}(L)$) if there exists a sequence of constants $\{a_n, b_n\}(b_n > 0), n = 1, 2, 3, \cdots$, such that $\phi^{(n)}[F(b_n y + a_n)] \to L(y)$.

DEFINITION 3. The non-degenerate cdf L will be said to be a limit distribution if $\mathfrak{D}(L)$ is not empty.

Let £* be a suitable set of non-degenerate cdf's that satisfy

(5)
$$L(-\epsilon) < a \le L(\epsilon) \text{ for all } \epsilon > 0,$$

and contains exactly one member of every possible type. Without loss of generality, consider the problem of characterizing the class \mathcal{L} of limit distributions contained in \mathcal{L}^* . The actual members of \mathcal{L}^* are not specified at this point to allow the simplest possible description of \mathcal{L} in the subsequent argument.

THEOREM 2. The cdf $L \in \mathcal{L}$ iff there exists a constant β , $0 < \beta \leq 1$, such that

(6)
$$\phi[L(\beta y)] = L(y) \quad \text{for} \quad -\infty < y < \infty.$$

PROOF. First, suppose that $L \in \mathcal{L}$. Then by definition there exists a cdf F and a sequence $\{a_n, b_n\}(b_n > 0)$ for which

(7)
$$\phi^{(n)}[F(b_n y + a_n)] \to L(y).$$

Define the function G(y) by

(8)
$$G(y) = \phi^{-1}[L(y)].$$

It is easily seen from property (A) of ϕ that G(y) is a non-degenerate cdf. Then, using the continuity of ϕ , it follows from (7) and (8) that

(9)
$$\phi^{(n)}[F(b_{n+1}y + a_{n+1})] \to G(y).$$

Then from (7), (9) and Theorem 1 [2], p. 40, it follows that G is of the same type as L, i.e., there are constants $\beta > 0$, α for which $G(y) = L(\beta y + \alpha)$ for $-\infty < y < \infty$. Therefore (8) yields

(10)
$$\phi[L(\beta y + \alpha)] = L(y) \text{ for } -\infty < y < \infty.$$

Setting y = 0 in (10) gives

$$\phi[L(\alpha)] = L(0) \ge a \Rightarrow L(\alpha) \ge a \Rightarrow \alpha \ge 0$$

where the first implication follows from property (B) of ϕ , and the second from (5). Similarly, setting $y = -\alpha/\beta$ in (10) gives

$$\phi[L(0)] = L(-\alpha/\beta) \ge a \Rightarrow \alpha \le 0,$$

where the implication follows from (5) and $\beta > 0$. Hence, expression (10) reduces to expression (6). Now, suppose that $\beta > 1$ in (6). Then for y < 0, $L(\beta y) \leq L(y)$. Property (B) of ϕ then implies that $L(y) \geq a$, which is a contradiction of (5).

Conversely, suppose that a cdf L satisfies (6) with $0 < \beta \le 1$. Then n-fold iteration of (6) gives $\phi^{(n)}[L(\beta^n y)] = L(y)$ for $-\infty < y < \infty$; $n = 1, 2, 3, \cdots$. Hence, in view of Definition 2, $L \in \mathfrak{D}(L)$; this is seen by letting $F = L, b_n = \beta^n$, and $a_n = 0$.

A more detailed description of \mathcal{L} is provided by the following two lemmas. Lemma 1. Define

$$L^*(y) = 1$$
 for $y \ge 1$
= a for $0 \le y < 1$
= 0 for $y < 0$.

Then L^* is the only member of $\mathfrak L$ which satisfies (6) for $\beta = 1$.

Proof. The proof follows immediately since the points 0, a, and 1 are the only fixed-points of $\phi(x)$ for $0 \le x \le 1$.

Let $\mathcal{L}' = \mathcal{L} - \{L^*\}$, and define the following three subclasses of \mathcal{L}' :

$$\mathfrak{L}_{\rm I} = \{ L \, \varepsilon \, \mathfrak{L}' \, | \, 0 < L(y) < a \quad {\rm for} \quad -\infty < y < 0, \qquad a < L(y) < 1 \\ {\rm for} \quad 0 < y < \infty, \qquad L(-0) = a = L(0) \};$$

(11)
$$\mathfrak{L}_{II} = \{ L \varepsilon \mathfrak{L}' \mid 0 < L(y) < a \text{ for } -\infty < y < 0,$$

$$L(-0) = a, L(0) = 1$$
;

$$\mathfrak{L}_{\mathrm{III}} = \{L \, \varepsilon \, \mathfrak{L}' \, | \, a < L(y) < 1 \quad \text{for} \quad 0 < y < \, \infty \,,$$

$$L(-0) = 0, L(0) = a$$
.

Lemma 2. $\mathfrak{L}' = \mathfrak{L}_{\mathbf{I}} \cup \mathfrak{L}_{\mathbf{II}} \cup \mathfrak{L}_{\mathbf{III}}$.

Proof. Let L be any member of \mathcal{L}' . Then by Theorem 2 and Lemma 1, $\phi^{(n)}[L(\beta^n y)] = L(y)$ for $-\infty < y < \infty$ and some β , $0 < \beta < 1$. The fact that

(property (B)) $\phi^{(n)}(x) = 0$ or 1 iff x = 0 or 1, respectively, then leads to the following relations:

(12)
$$L(y) = 1 \quad \text{for some} \quad y > 0 \Rightarrow L(0) = 1;$$

$$L(y) = 0 \quad \text{for some} \quad y < 0 \Rightarrow L(-0) = 0.$$

We also have

$$(13) L(y) > a for y > 0,$$

for, if not the functional equation $\phi^{(n)}[L(y)] = L(y/\beta^n)$ for $0 < \beta < 1$; $n = 1, 2, 3, \cdots$ implies that $L(\infty) = a < 1$.

From the fact that

(14)
$$\lim_{n\to\infty} \phi^{(n)}(x) = 0 \quad \text{for} \quad 0 \le x < a$$
$$= a \quad \text{for} \quad x = a$$
$$= 1 \quad \text{for} \quad a < x \le 1,$$

the functional equations $\phi^{(n)}[L(\beta^n y)] = L(y)$, for some $0 < \beta < 1$; $n = 1, 2, 3, \cdots$ lead to the following relations:

(15)
$$L(y) < 1 \quad \text{for some} \quad y > 0 \Rightarrow L(+0) = a;$$

$$L(y) > 0 \quad \text{for some} \quad y < 0 \Rightarrow L(-0) = a.$$

Since \mathfrak{L}' contains only non-degenerate cdf's relations (12), (13), and (15) establish the lemma.

In the remainder of this section a characterization of \mathcal{L} will be given in terms of the limiting cdf L_u . For any cdf L define the function $C_L(y)$ as

(16)
$$C_L(y) = L_u^{-1}[L(y)] \text{ for } -\infty < y < \infty.$$

Since L_u is everywhere monotone-increasing and continuous (Theorem 1) $C_L(y)$ is well-defined for all values of y for which 0 < L(y) < 1. For values of y for which L(y) = 0 or 1 define $C_L(y) = -\infty$ or $+\infty$, respectively.

Theorem 3. A non-degenerate cdf $L \varepsilon \mathcal{L}$ iff there exists a constant β , $0 < \beta \leq 1$, for which

(17)
$$bC_L(\beta y) = C_L(y) \quad \text{for} \quad -\infty < y < \infty.$$

PROOF. First, let L be any non-degenerate cdf and suppose there is a constant β , $0 < \beta \le 1$, for which (17) holds. Then the functional equations for L_u and L (expressions (1) and (6), respectively) imply that

$$\begin{split} \phi[L(\beta y)] &\equiv \phi[L_u(C_L(\beta y))] = \phi[L_u(C_L(y)/b)] \\ &= L_u[C_L(y)] \equiv L(y) \quad \text{for} \quad -\infty < y < \infty. \end{split}$$

Hence, from Theorem 2, $L \varepsilon \mathfrak{L}$.

Conversely, suppose that $L \in \mathcal{L}$. Then, relation (1) and Theorem 2 give, for

 $-\infty < y < \infty$, $\phi[L_u(C_L(y)/b)] = L_u[C_L(y)]$ and $\phi[L_u(C_L(\beta y))] = L_u[C_L(y)]$. Thus, $L_u(C_L(y)/b) = L_u(C_L(\beta y))$ follows from the monotonicity of ϕ . Relation (17) then follows from the monotonicity of L_u .

By setting $\beta = (1/b)^{1/\gamma}$ in expression (17) of Theorem 3, the following two parameter family $(\gamma > 0, \tau > 0)$ of cdf's is seen to belong to \mathcal{L}_{I} :

$$\left\{L_{\gamma,\tau}(y) = L_{u}[C_{\gamma,\tau}(y)] \mid C_{\gamma,\tau}(y) = \frac{\tau y^{\gamma} \text{ for } y > 0}{-|y|^{\gamma} \text{ for } y < 0}\right\}.$$

4. Domains of attraction. The results in this section concerning domains of attraction for limiting distributions of $V_n(F)$ are similar to results obtained by Gnedenko [1] in his study of extremes; Lemma 3 and Theorem 5 given below being the analogues respectively of Lemma 4 and the sufficiency part of Theorem 5 in [1].

LEMMA 3. The cdf $F \in \mathfrak{D}(L)$, for $L \in \mathfrak{L}$, iff there exists a sequence of constants $\{a_n, b_n\}(b_n > 0)$; $n = 1, 2, 3, \dots, for which$

(18)
$$b^{n}[F(b_{n}y + a_{n}) - a] \rightarrow C_{L}(y), \quad as \quad n \rightarrow \infty,$$

at all continuity points of $C_L(y)$, where, as before, $C_L(y) \equiv L_u^{-1}[L(y)]$.

PROOF. Let y be any continuity point of $C_L(y)$, or equivalently any continuity point of L(y) since L_u is continuous.

Case 1. 0 < L(y) < 1. For this case $-\infty < C_L(y) < \infty$. Then L_u continuous and monotone-increasing implies that for any $\epsilon > 0$ there exists a $\delta > 0$ such that

$$(19) \quad L_u[C_L(y)] - \epsilon < L_u[C_L(y) - \delta] < L_u[C_L(y) + \delta] < L_u[C_L(y)] + \epsilon.$$

Suppose now that (18) holds for some cdf F and some sequence $\{a_n, b_n\}$ $(b_n > 0)$. Then there exists a number n_0 such that

$$a+(C_L(y)-\delta)/b^n < F(b_ny+a_n) < a+(C_L(y)+\delta)/b^n$$
 for $n \ge n_0$ which implies that

$$\phi^{(n)}[a+(C_L(y)-\delta)/b^n]<\phi^{(n)}[F(b_ny+a_n)]\leq \phi^{(n)}[a+(C_L(y)+\delta)/b^n]$$
 for $n\geq n_0$, since $\phi^{(n)}$ is monotone-increasing. Therefore, from the definition of L_u and (19)

$$L_{u}[C_{L}(y)] - \epsilon < L_{u}[C_{L}(y) - \delta] \leq \lim \inf \phi^{(n)}[F(b_{n}y + a_{n})]$$

$$\leq \lim \sup \phi^{(n)}[F(b_{n}y + a_{n})] \leq L_{u}[C_{L}(y) + \delta] < L_{u}[C_{L}(y)] + \epsilon.$$

Hence, $\phi^{(n)}[F(b_n y + a_n)] \to L_u[C_L(y)] \equiv L(y)$, i.e. $F \in \mathfrak{D}(L)$.

Conversely, suppose that $F \in \mathfrak{D}(L)$, i.e., there exists a sequence $\{a_n, b_n\}(b_n > 0)$ for which $\lim_{n \to \infty} \phi^{(n)}[F(b_n y + a_n)] = L(y) \equiv L_u[C_L(y)]$. Now suppose on the contrary that (18) does not hold for the point y. Then there exists an $\epsilon > 0$ and an infinite subsequence $\{n_i\}$ of the positive integers for which

$$b^{n_i}[F(b_{n_i}y + a_{n_i}) - a] \leq C_L(y) - \epsilon$$
or
$$b^{n_i}[F(b_{n_i}y + a_{n_i}) - a] \geq C_L(y) + \epsilon.$$

If the first relation of (20) holds, then $\phi^{(n)}$ monotone increasing implies that

$$\phi^{(n_i)}[F(b_{n_i}y + a_{n_i})] \le \phi^{(n_i)}(a + (C_L(y) - \epsilon)/b^{n_i})$$

which further implies that $L_u[C_L(y)] \leq L_u[C_L(y) - \epsilon] < L_u[C_L(y)]$, since L_u in monotone increasing. Similarly, the second relation of (20) leads to the contradiction that (18) does not hold when $F \in \mathfrak{D}(L)$.

Case 2. L(y)=0 or L(y)=1, i.e., $C_L(y)=-\infty$ or $C_L(y)=+\infty$. Then it must be shown that $\lim_{n\to\infty}b^n[F(b_ny+a_n)-a]=-\infty$ or $+\infty$ iff $\lim_{n\to\infty}\phi^{(n)}[F(b_ny+a_n)]=0$ or 1. Since the equivalence of these relations follow from a straightforward modification of the proof given for Case 1 the details will not be given.

The following lemma establishes that, after a certain translation, scale norming alone is sufficient to reach any limit distribution $L \in \mathcal{L}'$.

LEMMA 4. If $F \in \mathfrak{D}(L)$ for $L \in \mathfrak{L}'$, then there exists a unique x_a satisfying

(21)
$$F(x_a - \epsilon) < a < F(x_a + \epsilon) \text{ for all } \epsilon > 0$$

and there exists a positive sequence $\{b_n\}$ for which

(22)
$$\phi^{(n)}[F(b_n y + x_a)] \to L(y).$$

PROOF. If $F \in \mathfrak{D}(L)$ for $L \in \mathfrak{L}'$, i.e., there exists a sequence $\{a_n, b_n\}(b_n > 0)$ for which

(23)
$$\phi^{(n)}[F(b_n y + a_n)] \to L(y),$$

then there must exist a point x_a which satisfies (21); for if not, there would be some interval $[x_l, x_u)$ on which F(x) = a. Then it would follow from (14) that $\phi^{(n)}[F(x)] \to L'(x)$, where L' is a cdf of the same type as L^* (defined in Lemma 1). However, $L^* \not\in \mathcal{L}'$ which implies that $F \not\in \mathfrak{D}(L)$ for any $L \in \mathcal{L}'$ since a non-degenerate limiting type is unique [2], p. 40.

By Theorem 2 [2], p. 42, all that needs to be established to prove that (23) implies (22) is that

$$\lim_{n\to\infty} y_n = 0,$$

where $y_n = (x_a - a_n)/b_n$ and the constants $\{b_n\}$ are taken to be the same in (22) as in (23). From Lemma 2 we have

(25)
$$L(-\epsilon) < a < L(\epsilon)$$
 for all $\epsilon > 0$ and all $L \in \mathcal{L}'$.

Suppose that for some $\delta > 0$

(26)
$$\lim\inf (y_n) = -\delta.$$

Let ϵ be chosen such that $0 < \epsilon < \delta$ and $-\epsilon$ is a continuity point of L. Then from (21), (23), (25) and (26)

$$a \leq \liminf \phi^{(n)}[F(x_a)] \equiv \liminf \phi^{(n)}[F(b_n y_n + a_n)]$$

$$\leq \liminf \phi^{(n)} [F(b_n(-\epsilon) + a_n)] = L(-\epsilon) < a;$$

thus establishing that

(27)
$$\lim\inf (y_n) \ge 0.$$

Suppose now that for some $\delta > 0$

(28)
$$\lim \sup (y_n) = \delta.$$

Choose ϵ such that $0 < \epsilon < \delta/2$ and ϵ is a continuity point of L. Then from (21), (23), (25) and (28)

$$a \ge \limsup \phi^{(n)} [F(x_a - (\delta b_n)/2)]$$

$$\equiv \limsup \phi^{(n)} [F(b_n(y_n - \delta/2) + a_n)]$$

$$\ge \limsup \phi^{(n)} [F(b_n \epsilon + a_n)] = L(\epsilon) > a;$$

thus establishing that

(29)
$$\lim \sup (y_n) \le 0.$$

Expressions (27) and (29) imply (24), and therefore (22).

Sufficient conditions for a cdf F to belong to the domain of attraction of a limit law are given in the following theorem.

THEOREM 4. The cdf $F \in \mathfrak{D}(L)$, for $L \in \mathfrak{L}'$, if the following conditions are satisfied:

(i) there exists a point x_a for which

$$F(x_a - \epsilon) < a < F(x_a + \epsilon)$$
 for all $\epsilon > 0$,

and

(ii) there exists a point $y_0 \neq 0$ for which

(30)
$$C_L(y_0)$$
 is finite,

$$(31) F(y_0z + x_a) \to a as z \to +0,$$

(32)
$$[F(yz + x_a) - a]/[F(y_0z + x_a) - a] \rightarrow C_L(y)/C_L(y_0)$$
, as $z \rightarrow +0$, for all continuity points y of $C_L(y)$.

Proof. Let y_0 be any point for which conditions (i) and (ii) hold, and define

(33)
$$b_n = \min \{ x \mid F(y_0 x + x_a) - a \ge C_L(y_0)/b^n \},$$

for $n = 1, 2, 3, \dots$. Then (31) implies that

(34)
$$b_n > 0 \text{ for } n = 1, 2, 3, \cdots,$$

and condition (i) implies that

$$(35) b_n \to +0 as n \to \infty.$$

Let y be any continuity point of $C_L(y)$ and ϵ any positive number. Then there exists a number δ , $0 < \delta < 1$, for which

$$|C_L(y/(1-\delta)) - C_L(y)| < \epsilon$$

and $y/(1-\delta)$ is a continuity point of C_L .

Case 1. $y_0 > 0$, i.e. $C_L(y_0) > 0$. For this case, (30), (33) and (34) imply that

$$(37) F[y_0b_n(1-\delta)+x_a]-a \leq C_L(y_0)/b^n \leq F[y_0b_n+x_a]-a$$

for $n = 1, 2, 3, \dots$, which gives

$$[F(b_n y + x_a) - a]/[F(b_n y_0 + x_a) - a]$$

$$\stackrel{\geq}{\geq} b^n [F(b_n y + x_a) - a]/C_L(y_0)$$

$$\stackrel{\geq}{\geq} [F(b_n y + x_a) - a]/[F(b_n y_0 (1 - \delta) + x_a) - a]$$

according to $y \leq 0$. Then it follows from (32) and (35) that

(39)
$$|\limsup \{b^n[F(b_ny + x_a) - a]\} - \liminf \{b^n[F(b_ny + x_a) - a]\}|$$

 $\leq |C_L(y/(1 - \delta)) - C_L(y)| < \epsilon.$

Case 2. $y_0 < 0$, i.e. $C_L(y_0) < 0$. Relation (39) also follows for this case since only the inequalities in (37) and (38) will be reversed when $y_0 < 0$.

Hence, it has been established that the sequence $\{b_n > 0\}$ defined in (33) satisfies

$$\lim_{n\to\infty} \left\{ b^n [F(b_n y + x_a) - a] \right\} = C_L(y)$$

for all continuity points of $C_L(y)$. Then by Lemma 3 it follows that $F \in \mathfrak{D}(L)$.

COROLLARY. If the cdf F(x) satisfies condition (i) of Theorem 4 and the density f(x) exists and is larger than zero in some neighborhood of the point x_a (defined by condition (i)), then $F \in \mathfrak{D}(L_u)$.

PROOF. Since $F(yz + x_a) \to a$, as $z \to 0$, for $-\infty < y < \infty$, and the derivative of F exists in some neighborhood of x_a , L'Hospital's rule may be used, which yields

$$\lim_{z\to 0} [F(yz+x_a)-a]/[F(z+x_a)-a] = \lim_{z\to 0} yf(yz+x_a)/f(z+x_a) = y.$$

Hence, $F \in \mathfrak{D}(L_u)$ by Theorem 4.

REFERENCES

- GNEDENKO, B. V. (1943). Sur la distribution limite du terme maximum d'une série aléatoire. Ann. Math. 44 423-453.
- [2] GNEDENKO, B. V. and KOLMOGOROV, A. N. (1954). Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Reading.
- [3] Thomas, David R. (1965). Asymptotic value distributions for certain $2 \times n$ games and n-stage games of perfect information. Unpublished Ph.D. thesis. Ames, Iowa, Library, Iowa State University.
- [4] THOMAS, DAVID R. and DAVID, H. T. (1967). Game value distributions I. Ann. Math. Statist 38 242-250.