THE ASYMPTOTIC THEORY OF GALTON’S TEST AND A RELATED
SIMPLE ESTIMATE OF LOCATION!

By P. J. BickerL and J. L. HopGEes, JR.

Unaversity of California, Berkeley

1. Introduction and summary. In [8] Hodges and Lehmann showed that
robust estimates of location in the one and two sample problems could be ob-
tained by inverting the known robust nonparametric tests and using as estimates
the average of the resulting upper and lower 50 per cent confidence bounds. In
particular, they proposed the use of the estimate derived from the Wilcoxon
test, the median of averages of pairs of observations. Unfortunately, despite
some short cuts viz. [8] and [9] computation of this estimate seems to require on
the order of n’ log; n steps, a prohibitive number. In [7] Hodges proposed a

simple alternative éstimate D, given by D, = median; 3(Ziu + Zin—izn)
where Zi, < -+ < Zan are the order statistics of the sample under considera-
tion.

This procedure as was noted in [7] is related in the sense of Hodges and Leh-
mann to the one sample analogue of one of the oldest of non parametric tests,
the Galton rank order test, viz. [6], [4a].

In this paper we derive the asymptotic theory of D, by employing an invariance
principle due to Bickel [2] and thus relating the limiting distribution to that of
certain functionals of Brownian motion. The necessary refinements of the
stochastic process convergence results of [2], which may be of use in related
problems of asymptotic theory, are gathered in Section 7.

Unfortunately, we can only give explicit form to the limiting distribution of
D, in the two cases of rectangular and Laplace parents. Although this limit is
not normal we conclude that D,’s scatter is quite close to that of the estimate
proposed by Hodges and Lehmann.

Using the same techniques we prove in Section 6 the consistency of the Gal-
ton test and characterize its power behaviour for alternatives close to the null
hypothesis.

Finally, Section 4 gives the small sample distribution of the Galton test
statistic and of D, for a rectangular parent.

The techniques of this paper carry over quite easily to the two sample situa-
tions.

Although our evidence is incomplete it would seem that both D, and the
Galton test are robust as well as easily computable non parametric procedures.

2. Asymptotic theory. Let X;, 1 < ¢ < n, be a sample from a population
with distribution F(2 — 6) and density f(z — 8), where f is symmetric about 0,
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and continuous and strictly positive on the convex support of F, {z:0<
F(z) < 1}. Denote by Zin < --+ < Zau» the order statistics of the sample. Let
n = 2m or 2m — 1. In either case we define,

(2.1) Dn(X1, -+ Xn) = mediami<i<m 5(Zin + Za—itnyn)-

This estimate is referred to as D in [7].

We observe the usual convention of letting D, be the mid-point of the interval
of medians, if there is any ambiguity. It follows immediately from the definition
that D, is translation invariant and symmetrically distributed about 6. Let,

(2.2) N.(a) = Z’in=1 I([Zin + Zn—irvyn > 24a]),

where I(A) is the indicator of the event A. We denote by Py[A] the probability
of A when 6 is the true value of the parameter. The following lemma is a ready
consequence of the above remarks.

LemmA 2.1. Under the above conditions we have,

(2.3) PoNa(zn?) < 4(m — 2)] £ Pon*(Dn —0) < -a:] < PN (znh) < m/2].

Proor. [H(D, — 0) < 2] = [Du(X1 — 6, -+, X — 6) < 207 ] by transla-
tion invariance. The lemma follows upon employing definitions (2.1) and (2.2).
Let Q(t) be a version of standard Brownian motion on [0, 1] with a.s. continuous
sample functions, i.e. @(¢) is a Gaussian process with stationary independent
increments, Q(0) = 0, Var Q(1) = 1. Let y(t) = f(F(t)). Denote by A (¢, z)
the random set {£:Q(¢) > 2*xy(t), te (0, 3)}. We now proceed to prove,
LemMa 2.2. Under the above conditions,

lim, Po(Na(zn?) < ma) = PONA®W, 2)) £ o/2)

where N is Lebesgue measure on (0, 3).
Proor. Let Z,*(t) be the process on [0, 1] defined by,

(2.4) Z5(t) = ZF, on [(k — 1)/n, k/n), 1<k

where

IIA

n,

Zrn = Zkn — F'(k/(n + 1)), Zs, =0, Z,*(1) = Z},..

Now, Z,*(¢t) may be considered as a probability measure on D[¢, 1 — ], the
space of all real valued functions on [¢, 1 — €] which possess right and left hand
limits at each point of (¢, 1 — ¢), endowed with the Prohorov metric. For de-
tails on the properties of this space and the formal definition of the above cor-
respondence the reader is referred to Prohorov (12) and Section 7. Then, if
9 = 0, by Theorem 7.1, n*Z,*(¢) converges weakly on [¢, 1 — €] to (¥(£)™"Z(¢)
where Z(t) is a ‘brownian bridge’, a Gaussian process with a.s. continuous
sample functions and cov (Z(s), Z(t)) = s(1 — t),s = t.

For various equivalent definitions of weak convergence of measures the reader
is referred to (12) pp. 164-165. The definition which we shall employ isembodied
in Theorem 1.8 of (12) and states:
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DEFINITION 2.5. A sequence of measures u, on a complete separable metric
space C endowed with the Borel o-field converges weakly to a measure u if and
only if for every real valued measurable function f on C which is u almost every-
where continuous and bounded, Fu(z) = pu(f (=, z)) — z) =
p(f(—o,x)) forall —w < z < o at which G is continuous.

By corollary 7.1, if 6 = 0, 3n}(Z.*(t) + Z.*(1 — 1)) converges weakly to
3(W())7H(Z(t) + Z(1 — t)) on [, 4] for every e > 0. Now, 3(Z(t) + Z(1 — i))
is, of course, Brownian motion with ¢ = % on [0, 4]. Let Z.(¢) be the process
defined on [0, 1] by,

(2.6) Za(t) = Zia for te ((k — 1)/nm, k/n)
where Zo, = 0, Z.(1) = Zun. Then,
supce pn'|Za(t) + Za(1 — £) — (Z2*(t) + Za*((1 — 1))]
(2.7) < SUPw gk M|F(k/(n + 1)) — F'(k/n)|
+ IF(1 = (k/n)) — F7'(1 — ((k+ 1)/(n + 1)))|
< 2/n} supegess (Y(1)) 7
We may conclude from (2.7) by arguments similar to those used in Theorem

7.4 that (n}/2)(Za(t) + Z.(1 — t)) also converges to (¥(t))~Y/2(Z(t) +
Z(1 —t))if 6 = 0. Let

An(e, ) = {t:3(Za(t) + Za(1 — 1)) > an te e, 31}
and
A% x) = {8:3(Z(t) + Z(1 — t)) > zy(t), te e, 31}

We remark that P(N(£:3(Z(t) + Z(1 — t)) = z¢(t)) = 0) = 1. This follows
by an argument similar to that used in Levy (10) p. 31. Now, by Definition 2.4,
and Theorem 7.4 we may conclude that,

(2.8) Po(MAn(e ) < a/2) > PN A*(e,7) £ a/2) for 0L a =<1 — 2
We remark that [N(Aa(e, £)) — N(4.(0, ))| = € and hence that,

(2.9) lim supe.o lim sup, P(A(4.(e, £)) — NA(0, z)) = 8) = 0,
for every § > 0.

Moreover N(A*(e, x)) converges in probability to NA*0, 2)) as e — 0.
We then find from lemma 4.1 of Bickel (2) that

Po(M(A4(0,7)) < a/2) > P(N(A¥(0,2)) £ a/2), O0=ZLa=l.

But \(4.(0, 2)) — Na(zn?)/2m| £ 1/n — 0 as n — . The lemma is
proved.

As an immediate consequence of the lemmas we have,

TurorEM 2.1. The asymptotic distribution of D, is symmetric about 0 and is
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given by,
(2.10) lim, Po(n*(Dn — 6) < z) = P(NA(Y, 7)) < 3)

The distribution of N(A(¢, x)) is, in general, unknown. We are able to give an
explicit expression in two special cases which follow in Section 3.

3. Large sample distribution. (Rectangular and Exponential Cases). Let
f(zx) =%, —1 < « = 1 and 0 otherwise. In this case since ¢(¢) = 3, the limiting
distribution takes on a particularly simple form, and we have,

(3.1) lim, Po(n}(Dn — 0) < ) = PON£:2'Q(¢) > z, 1[0, 3]) < ).

But if @(¢) is standard Brownian motion on [0, 3], R(¢) = 2*Q(t/2) is standard
Brownian motion on [0, 1] and we conclude that

(3.2) lim, Po(n}(Dn — 8) < z) = P(N:R(t) > =, te(0,1)) < ).

Denote P(N(t:R(t) > x,te(0,1)) < a) by g(x, o). Let f(z, s) be the density
of T, the first time R(¢) reaches « for £ > 0. Then it is well known that (cf.
Lévy (10)) '

(3.3) (0, @) = 2/zarc sin o,

(3.4) f(z, s) = z(2r) s Hexp — 2/2s for s> 0
and,

(3.5) PON(t:R(t) > 0,te(0,a)) < a) = ¢(0, a/a).

We now evaluate g(z, a) for £ > 0. We obtain first,
(3.6) g(z, @) = [ PONt:R(t) — R(s) > 0,te(s, 1)) < @) dP(T. = s).

From (3.4), (3.5) and the strong Markov property of Brownian motion we con-
clude that,’

(37)  g(z, @) = [17°9(0, a/(1 — 8))f(z, s) ds + [1-af(z, 8) ds.

Let us make the change of variable » = zf*. We then after some computation
obtain,

(3.8) g(z, @) = (2/m)} [si1m-1 are sin (a’(s® — 2%)™)}
-exp — v*/2dv + (2/x)} 20-a)~d exp — 0°/2 dv.
But now by standard formulae of the calculus we find,
(3.9) 9g(z, a)/dx
= of(2/m) [Tuw-10 exp POT — &)1 — @)’ — 27 d.

2 A result essentially equivalent to (3.7) and (3.8) is to be found in (4b).
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Changing variables to z = ©*/2 — (2°/2)(1 — &)™ we obtain,
(3.10) dg(z, a)/dz
= 2r ¥z exp — 2°/2(1 — a) [5 (exp — 2)2/(2(1 — @)z + a2®) ™ d.

After a final change of variable to » = (s(1 — &)/a)%/z we have,
(3.11) ag(z, a)/dz = (4/m)¢(x)H(3a/(1 — a)2’),
where ¢ is the standard normal density and

HO) = [5 (exp — M1+ ¥)(1 + ) d.
Formula (8b) (p. 314) of (1) yields

(3.12) HO\) = x(1 — ®((2\)%))
where & is the standard normal distribution function. We then obtain
(3.13) 3g(z, @)/3z = 4¢(z)(1 — &(z(a/(1 — a))})).

Of course for & = } the expression simplifies and we conclude that,
TueoreMm 3.1. If f is rectangular on (—1, 1),

(3.14) lim, Po(n}(Dw — 0) < 2) =1 — 2(1 — &(z))* for z >0,
=2(1 — &(—2))° for z<O.

This distribution will be examined more closely in sections 4 and 5.

Now, let f(z) = 3 exp —|z|, —0 <z < .Inthiscasey(t) = tfor0 <t =<1
and we have the only other situation in which we are able to give an explicit form
to the asymptotic distribution of D, . By Theorem 2.1 we may write,

(3.15) lim, Py(n}(D. — 6) < z) = PON(£:Q(8) > 2%, te (0, 3)) < 1).

An explicit formula for the right hand side of (3.15) is given by,
Lemma 3.1. If Q(t) s standard Brownian motion on (0, b) then,

PONt:Q(t) > at, te(0,D)) < a)
(816) = ' [ [Garrewr (4'(c — b)/b + as/b)s ¢ '¢(y + ab') ds dy
+ [ (1 = 77 G0 (—a’/b + (b — a)s/b)s™'e™" ds)
' -¢(y + ab*) dy.

Proor: Consider the random walk S, = 27 Tn where the T}, are inde-
pendent, and

(3.17) P(Tiw = 1) = 3(1 — a(b/n)}),
P(Tw = —1) = ¥(1 + a(b/n)").



78 P. J. BICKEL AND J. L. HODGES, JR.

Define a stochastic process on [0, b] by,
(3.18) Ya(t) = Sibl/nt on [(k — 1)b/n, kb/n).

1 £ k £ n where asusual Sy = 0, Y,(b) = S.b/nl.
It is well known (see e.g. (12)) that n!Y,(¢) converges in ®(DI[0, b]) to

Q(t) — at. Let N, denote the number of positive terms among Sy, -+, S» .
Then,
(3.19) bN./n = NE:n'Y.(¢) > 0).

We conclude from (3.19) and Theorem 7.3 that,

(3.20) PN (£:Q(t) > at, te(0,b)) £ a) = lim, P(Na/n < a/b).
Now,

(3.21) P(Na < an/b) = 2.ioP(Na < an/b|8n = k)P(Sa = k).

Let M, be the measure assigning mass P(S, = k) to kn—t.
We also define,

(3.22) pa(z,y) = P(No < 20| 8. = yn?)

for yn' a natural number between 0 and n, and pa(z, (n + 1)n—*) = 0. More
generally let

Pu(2, y) = Pa(z, (k — D)n™) + 0d(y — (k — 1)) (pa(z, kn ™)
— pa(, (k — 1)n7)),

for (k — l)n_i Sy < kn"*, 1 <k < n + 1. For all other values of y we take
pa(z,y) = 0. From (3.21) and (3.22) we obtain,

(3.23) P(Na £ an/b) = [Zopa(a/b, y) dMa(y).

But by the central limit theorem and (3.17) M. converges completely to a
normal distribution with mean —ab! and variance 1. On the other hand since the
conditional distribution of Sy, -+, S. given S» = k is independent of a and b
we may take a = 0 and apply the following theorem of Chung and Feller (3),
somewhat modified to suit our purposes.

TaeoreM. For fixed x, pa(x, y) converges uniformly on compacts and,

lima pa(z, y) = 7 ° [Cayme (F(x — 1) + xs)s e " ds
for 0<z<1l y>0
=1 =7 [0 (—2' + (1 — z)s) e ds
(3.24) for 0<z2z<1 y<oO
=z for 0<z<1, y=0

Forz = 0 pa(z, y) — 0 and for x = 1, pa(,y) = 1forally.
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Since lim, pa(z, y) is continuous and uniformly bounded for each z as are the
pa(z, y) themselves, upon employing a slight extension of Helly’s theorem and
(3.20), (3.23), and (3.24) we obtain (3.16), and the lemma is proved.

We now note that,

(3.25) [oete=de = 2p7%® — 2 [ 2% " de.

Let v(p) = = ! [5 y % dy, the upper tail of the x.* distribution. Let H(z) =
lim, Po(n}(Dn — 6) < z). Using (3.15), (3.16), and (3.25) we obtain after some
simplification,

(3.26) H(z) = &(z) + 37 yexp (2/3) + [7 (4" + v(¥’)
(o(z +y) —d(x —y))dy
and,
(3.27) H'(z) = ¢(z) + 374 *(exp (¢//3) — 32’ exp (—2%/3))
+ 5 + D) d(o(z + y) + oy — 2)).

We now show that H(z) may be expressed in terms of tabled functions.
Remark first,

(3.28) v(y") = 2(1 — &(2%)).
By integration by parts we can also establish,

(329) [o (1 — @(ay)) dé(y + b)

= —(#(0)/2 + ¢(ab/(1 + a)Ha(l + a®)}(1 — &(b(1 + a*)H)),
and

JS¥*(1 — é(ay)) do(y + b) = 2b®(—b, ab(1 + a*) ™,
(3.30) —a(l+a")™) — ¢(b)(1 + ab(1 + a*)¢(0)) + a(1 + o*)*
(1 — @1 +a)™H(2+ (14 )1+ d + ).

where ®(z, y, p) is the distribution function of (Z, Z’), bivariate standard normal
deviates with correlation p.

Substituting a = 2—*, b = %z in (3.29) and (3.30) and employing (3.27) and
(3.28) we can now state our final formula,

(3.31) H'(z) = 408(—z, z(3)}, —(3)Y) — &(z, —2(3)}, —(D)H)
— 4¢(z) + 6(2)%((3)'z).

4. Small sample distribution of D, for a rectangular parent. In this section we
assume that f(z) = %, —1 < z = 1, and 0 otherwise. We require some termi-
nology. Let S, -+, 8., - - - denote the sequence of fortunes in a fair coin tossing
game, ie. S, D %, Z; where the Z; are independent and P(Z; = 1) =
P(Z; = —1) = %. Let L. equal > % (I((Si > 0)) + I((S; = 0, 8i1 > 0)),
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the gambler’s lead time. Let T equal the first m such that S, = k. It is well
known that (cf. Feller (5)),

(4.1) P(Low = 2k) = ()(°G58)27e
(4.2) P(Ti = m) = k/m(30m0)2™

In the case that D, is uniquely defined and » is even, i.e. n = 4m + 2, we can
express Po(Dn — 6) = —a) in terms of the quantities defined in (4.1)-(4.3)
which may readily be computed. We, of course, have Py((D, — 0) < a) =
1 — Po((Dn — 0) = a). We can now state,

THEOREM 4.1. If n = 4m + 2 then, for 0 < a < 1, we have,

(43) Po((Da—0) S —a) = Do D ko 57 (M)a’(1 — @)™
P(T, = 7 + 28)P(Ln_strsny = 20k — (r + 8))).

Fora>1P((Dn—0) < —a) =0. )

We require a combinatorial lemma proved in (7). Let a = 2b be an even
natural number, y; < --- < ¥. be real numbers with different absolute values.
We define N to be the number of sums y; 4 %a—iy1, 1 = ¢ < b, which are positive.
If we now rearrange y;, - -+, ¥a in order of decreasing. absolute value, say,
ti, -+, tawelet S(q) denote the function $(sgn g 4+ 1).

Let M*(q) = 2.%183), M (q) = (¢ — 1) — M™(q), with the usual con-
vention for an empty sum. We shall -say there is a positive lead at ¢ if either
M*(q) > M (q) or M*(q) = M (q) and 8(q) = 1. Let I(¢) = 1 or 0 as there

‘is or is not a positive lead at ¢. Let L = > %1 I(§) be the total number of positive
leads. We state,

Lemma 4.1 (Hodges). Under the assumptions given above, 2N = L.

Proor. See (7) and for an earlier result of the same type (6).

We can now prove (4.3). Remark first that, in this case,

(4.4) Py((Dn — 0) = —a) = Po(Na(0) = m).

We order the Z/’s in decreasing order of absolute value and in accordance with
the terminology employed for lemma 4.1 let L,* denote the number of positive
leads in the corresponding sequence of signs of the Z,;’s. We conclude from Lemma
4.1 that,

(4.5) Pu(NA(0) < m) = Po(L* £ 2m).
Let K denote the number of Z; , falling above (1 — a), where 0 < a < 1. Then,
(4.6) Py(K =71) = ()a’(1 — a)"".

Moreover, given K = r, Z;, ---, Zn, are distributed jointly as the order
statistics of a sample of (n — r) from a population which is uniformly distributed
on(a — 1,1 — a). We conclude that if, as before, S(k) equals 1 if the kth mem-
ber in the sequence of ordered absolute values of the Z’s is positive and 0 other-
wise, then, given K = r, S(r 4+ 1), --- S(n) are independently and identically
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distributed with P,(S(j) = 1|K = r) = 3, forj > r. Let T* be the first ¢ such
that M (¢ + 1) = M~ (g + 1), where M and M~ are defined as before, if such
a ¢ exists, and if not let T = n 4+ 1. Then,

(4.7) Po(T* = 2(r + b)|K = r) = P(T, = r + 2b)
if 2(r 4+ b) =< n. Also we may readily see that,
(48) Po(L*=20r 4+ k)| K =7, T* = 2r 4+ 2b) = P(Lnsesry = 2(k — b)).

From (4.5)-(4.8)(4.3) follows and the theorem is proved.

The convergence of the small sample distribution to the limitingdistribution
would seem to be extremely rapid. Thus, if G.(z) denotes the cumulative dis-
tribution of n}(D, — 6) and G(z) the limit we derived in (3.14) we find d here
denotes the Kolmogorov-Smirnov distance and G,* is that member of the scale
family G(x/o) which is closest to G, . We remark that convergence to the ‘shape’
@ is much faster than is convergence to the scale.

As a final remark we note that Theorem 3.1 may be proved from Theorem 4.1
of this section.

6. Efficiency of the estimate D, . As we have seen in Sections 2 and 3 the esti-
mate D, is typically not asymptotically normal. Thus to compare D, and X and
D, and W, , the median of averages of pairs, in terms of the ratio of asymptotic
variances may not be realistic.

The definition of efficiency which we shall employ is a special case of a more
general concept of efficiency recently advanced by Hodges and Lehmann.

DeriniTIoN 5.1. Let {7.}{V .} be two sequences of estimates of 6 such that

Lo(n(Tn — 0)) = G(z),  Lo(n*(Va — 0)) — H(x),

where H, G are continuous strictly increasing. Then, there exists a unique oy such
that inf, d(G(z), H(z/s)) = d(G(z), H(xz/ss)) where d is the Kolmogorov-
Smirnov distance. We define the asymptotic efficiency of {T.} to {V.} to be a7’

This definition coincides with the usual one when H, G' are members of the
normal scale family. With this definition we find,

(5.1) eff (Dn, X) = 1.0126, if the parent population is rectangular,

and,
(5.2) eff (Dn, X) = 1.6057  for a Laplacian parent
TABLE 4.1
n ad(Gn, @) a(Gn , Gn*)
2 .0197 .0197
6 .0100 .0036
10 .00007 .00001

14 .00005 .00001
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If we let W, denote the median of averages of pairs we have,

(5.3) eff (D,, W,) = 1.0126 for a rectangular population
and
(5.4) eff (Dn, W.) = 1.0632 for a Laplacian parent.

An intuitively reasonable relationship appears if we compare the variance of
the normal ‘best fitting’ to the asymptotic distribution of n!D, to the asymptotic
variance of n'W, and that of n*M,, where M, = median; X; . We find, both in the
rectangular case, and in the double exponential case that the asymptotic ‘best fit’
variance of D, falls between that of M, and W, , and closer to the latter. This
supports our feeling that this estima te is an adequate easily computable replace-
ment for W, possessing all the latter’s advantages in a gross error situation.
Further evidence for this view appears in numerical studies carried out by J. L.
Hodges in (7) on normal samples of size 18. These yielded an estimated efficiency
of .95 = .007 with respect to X. This number again falls between the asymptotic
efficiency of W, to X and that of M, to X and is of course much closer to the
former.

6. The One-sample Galton test. The estimate D, is the mid point of the
interval between the upper and lower 50 per cent confidence bounds obtained
from the one sample Galton test proposed by Hodges (7). This is a test of
H:0 = 0vs K:0 > 0 in our model, and is given by,

(21, - ,2) =1 if Nu0) >k
=0 if N.(0) <k

Roughly speaking we compare the order statistics of Xi, - - - , X, with the cor-
responding order statistics of —X;, ---, —X, and reject if too many of the
former are larger than their correspondents. As was observed in (7) and may
easily be seen by applying the probability integral transformation the Galton test
is distribution free under the null hypothesis of a continuous distribution sym-
metric about 0. If n = 2m, Lemma 4.1 and (4.1) immediately yield,

Po(Nn(0) = k) = P(La = 2k)
(6.1) = CHC&EH2™ for 0<k=m
=0 otherwise;

and the cut off points may for instance be determined from tables of individual
terms of the hypergeometric distribution. Thus, if H(N, D,n,5) = (7)(7=3)/(%),

(6.2) Po(NA(0) > k) = 27" > ™\ H(2m, 2r, m, r)("m).

For even moderate samples the excellent large sample approximation given by the
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arcsine law can be used. Thus if n = 2m or 2m + 1,

(6.3) Po(N.(0) > k) ~ 1 — 2/ arcsin (k/m)},
and the upper a cut off point can be readily computed. Lemma 2.2 can now be
translated into a theorem about the asymptotic power of the Galton test for
infinitely close alternatives as follows:

THEOREM 6.1. Let 0, = an”*. Definek(a) by 1 — a = 2/ arcsin k*(a). Finally
denote by B.(0, o, ) the power of the level a Galton test, randomized if necessary,
against the alternative f(x — 9). Then, ‘

Ba(0n, &, f) = P(NA(Y¥, —2)) 2 k(a)/2).

Proor. The theorem is an immediate consequence of Lemma 2.2 and the
identity,

(6.1) Py(Nw(0) 2 k) = Po(Na(—0) 2 k).

We may similarly interpret the results of Section 3 as providing information
about the behaviour of the power function of the Galton test for rectangular and
double exponential parents. Of course Section 4 can be used to construct tables of
the power function for any even n for a rectangular parent. We finally remark
that Theorem 6.1 and the results of Section 3 indicate that the Pitman efficiency
of the Galton test with respect to some of the more common tests such as the ¢ or
one sample Wilcoxon tests depends not only on the asymptotic power 8 but also
on the asymptotic level of significance. We are again faced here with the conse-
quences of trying to compare distributions with different shapes.

The methods of section 2 also enable us to prove quite easily the consistency
of the Galton test in our model. We have,

TuroreM 6.2. Under the assumptions of Section 2, 8.(8, a, ) — 1 for every o,
6> 0.

Proor. It clearly suffices to show that,

Py(N.(0) = ka(a)) — 1 where kn(a)/m — k(a).
But by (6.4), Ps(Nn(0) = kn(a)) = Po(Nn(—0) = ku(e)) and hence,
lim inf, Po(Na(0) = ku(a)) = supy lim inf, Po(Na( -—An_%)

Z kn(a)) = sups PON(¢, —4) 2 k(e)/2) =1
QED.

ReMARK. (1) Obvious modifications of Lemma 2.1 and the above proof will
show that the Galton test is consistent for alternatives in which the parent dis-
tribution of the X’s, say G, is such that G(z) < 1 — G(—=x) for all z. It may also
be shown that the test is inconsistent for some levels for a parent population G
such that G(z) = 1 — G(z) on a set of positive Lebesgue measure. The argument
may be roughly sketched as follows.

In the general case, n}/2(( Za(t) 4+ Za(1 — 8)) — (G7'(t) + GH(1 — ¥)))
converges in the sense of Prohorov on [¢, 3] to V(¢) = ZW) N0 +Z(1 =)/
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Y*(1 — t) where y*(t) = g(G'(t)), g is the density of G, and Z(t) is the
Brownian bridge. Then,

lim inf, P(Na(0) = k.(a)) = sup. P(N(E:V(t)
z —nd/2(G7 (1) + G — b)), te e 3]) = k(a)/2) = 1,

if G(z) <1 — G(—=z) for all .
On the other hand if

A= {t:G7(t) = G(1 — t)te (0, 3)}

is the union of closed intervals with a non-empty interior, $*(¢) = ¢*(1 — ¢) for.
te A. We can easily conclude that,

NEV(E) > —n} (@) + @1 — 1), te (0, 3))
S NB:Z(8) + Z(1 — 1) > 0,t£(0, %))
+NEGE) + T =) > 0,te(0, 1)),

The stated result follows.
(2) Csaki and Vincze in (4) have announced the consistency of the two
sample Galton test.

7. Stochastic process convergence. In this section we develop some results
necessary for the proof of Theorem 2.1., which may be of independent interest. We
recall first some definitions and theorems of Prohorov (12). Let [a, b] be a fixed
closed interval. Define D[a, b] to be the set of all functions f on [a, b] such that
f* and f~ the right and left limits of f exist for every point of [a, b), (a, b] re-
spectively and f(t) = f7(¢) or f(¢) for all ¢ ¢ [a, b]. Let,

Ty ={(z,9):y =f(z) or y=f(2),ze(ab)}u{(alf(a)), (b f(b))

T'; will be referred to as the graph of f. We identify all functions possessing the
same graph. If A C [a, b], let w;(A) equal the upper bound of the absolute values
of the difference between the ordinates of points of I'y whose abcissae lie in 4.
Let us then, following Prohorov, define,

(7.1) wy(8) = sup(a:|al s wy(A)
where |A| is the diameter of A. Also, define,
(7.2) By(8) = Sup(a:|al g8 SUPrea Min wy([r1, 7)), wy((7, 7))

where A ranges over all intervals (71, 72) C (a, b) whose length is < é. Prohorov
has shown that the space of all graphs as above may be transformed into a
complete separable metric space, D(a, b), with the following property, (Theorems
2, 4 of Appendix (1) (12)).

THEOREM 7.1. f, — f (in the Prohorov metric) if and only if,

Wr.cQ for all n,

(2) w,,0) = w), 0<6<b—a for all n,
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(3) foX(t) — £(b) at all points of continuity of f. Q here is a fixed rectangle and
w(8) a function on (0,b — a) such that limso w(s) = 0.

Let ®(D(a, b)) denote the class of all probability measures on D(a, b) endowed
with the Borel ¢ field. Then, Prohorov has established the following,

THEOREM 7.2. Let R.(f) be a sequence of processes on (a, b) whose sample func-
tions are with probability 1 members of D (a, b) and let u, be the corresponding prob-
ability measures on D(a, b). Then R, <> p. converges weakly to R <> u if and
only if,

(1) L(Ra(tr), -+, Rn(tk)) — L(R(h), -+, R(tk)) forallty, -, b ela, b).

) ulfilfl S M)=1—eforalln,e> 0,some M < .

(3) ua(fiws(8) < w(d,¢) foralld < 8.) = 1 — eforalln, e > 0, for a function
w(d, €) which | 0asd | Oforalle > 0.

Let Y. be a double sequence of random variables. Define,

Yn*(t) =Y on [te—in, tkn), 1<k=n,
whete ton = @, tan = b, Yo *(b) = Yan. Similarly define,
Ya(t) = Yanyn + (& = tain)(tin — ta—nyn) " (Yin — Ya-1yn)

on [t—1wn , tn) Where again Yn(b) = Yun, fon = @, tan = b. Then Y, *(2), Ya(t)
correspond respectively to members of ®(Dla, b]) and ®(Cla, b]) the set of all
probabilities on the set of all continuous functions with uniform norm. We shall
say that Y,*(t) converges weakly to Y(t) ¢ ®(Cla, b]) if Y.*(t) converges
weakly in ®(D[a, b]) to a measure yielding the same finite dimensional dis-
tributions as Y (¢) and putting probability 1 on Cla, b] considered as a closed sub-
set of D[a, b]. We then have the following.

LemmMma 7.3. Suppose that sup; <k <n (bitna — tin) — 0. If Yu(2) converge weakly
to Ya(t) in ®(Cla,b]) then Y,*(t) converges weakly to Y(t) in ®(Dla,b]).
Conversely if Y.*(t) converges weakly to Y(t)e®(Dla,b]) such that
P(Y(t) eCla, b]) = 1 there exists Y(t) € ®(Cla, b]) such that Y.(t) converges
weakly to Y (t).

Proor. Since Y.(¢) converges weakly to Y, £(sup; |Ya(t)|) — £(sup; |Y(¢)]).
But sup: |Ya(t)| = sup: |Ya*(¢)], and property 3 of Theorem 7.2 follows.

To establish property (2) remark first that,

(7.1) Dy,+(8) = SUP(a—t,1 58 | Yin — Yiu| = wr,(8).

Since the Y, converge, by Lemma 2.1 of Prohorov there exists a w(J, ¢) such
that w(s,¢) | 0asd | O for which,

(7.2) P(wy,(8) < w(s,¢) forall 8) =1 — ¢
and hence
(7.3) P(iby,+(8) < w(de,e) forall & < 8) = P(wy,(8) < w(de,e€))

> P(wy,(8) S w(d, e) forall 8) =1 —e
(2) follows.
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To prove that property (1) holds we remark first that £( Y.(t1), - - -, Yu(t))
— L&(Y(t), -+, Y(t)) for each set (&, -+, &).

Now, |Va(t:) — Ya*(t:)] £ |Va(Ba(t:)) — Ya(ta(t:))| where To(2) is the smallest
tn = «, and {.(z) is similarly defined. But by hypothesis #.(¢:;) — t.(f;) — O for
all 7 and hence

lim sup, P(|Ya(t:) — Y. 5(t:)] = ¢)

(7.4) < lim sup, P(supjs—t <5 | Yn(s) — Ya(t)| = €)
= P(supji—q 53 |Y(s) — V()| 2 ¢)

for all 8. Since the last quantity goes to 0 we conclude that property (1) holds.

It remains to be shown that the limiting measure Y*(¢) of the Y,* processes
concentrates on Cla, b]. Let ».(f) be the number of discontinuities of size = ¢ of
f € ®la, b]. Then it is easy to see that v, is a continuous function on Dfa, b] and
hence that

(7.5) P(r(Y,*) > 0) = P(»(Y*) > 0).
But,
lim, P((Y,*) > 0) =< lim sup, P(supjs—s <s | Ya(s) — Ya(t)| = €)

for each & > 0, since sups |tin — txsna] — 0. Hence, P(»(Y*) > 0) = 0 for all
e > 0 and our first conclusion follows. The converse may be proved similarly by
checking the conditions of Lemma 2.1, p. 180 of Prohorov [12].

THEOREM 7.4. Let Z,*(t) be defined as in (2.4), 0 = 0. Then, n*Z,*(t) converges
weakly in ®(Dle, 1 — €]) to (¥(t))Z(t) where Z(t) is a Brownian bridge with
a.s. continuous sample functions.

Proor. Let

Za(t) = szk—-l)n + (t — tg—yn) (tkn — t(k—l)n)—l(zltn - Z?k—l)n)

on [(k — 1)/n, k/n) where Zi, = Zin — F 'k/(n + 1), Z5, = 0, and
Za(1) = Z%, . Then by Theorem 3.1 of Bickel (2) n*Z,(t) converges weakly in
®(Cle, 1 — ¢€]) to Z(t) as above. Our conclusion now follows from Lemma 7.3.

Let {Yia}, {Mis} be two double sequences of random variables, {tw} be the
associated partitions for both sequences where sup ({g+1y» — ten) — 0. We define
(Ya(t), Ma(t)), Ya*(¢), M,*(t), to be the corresponding processes (measures)
on C[a, b] X Cla, b, D{a, b] X Dla, b] respectively. The following theorem and re-
mark were suggested by a referee. )

TuEOREM 7.5. Let e be a function from Dla, b] X Dla, b] to Dla, b] such that e s
continuous at every point of Cla, b] X Cla, b]l. Then, if (Y., M.) converges weakly to
(Y (), M(t)) in ®[Cla, b] X Cla, b]], e(Y.*, M,*) converges weakly to e(Y, M) in
®(Dla, b]).

Proor. By arguments similar to those used in Lemma 7.1 it may readily be
shown that (Y.*, M.*) converges weakly to (Y, M) where (Y, M) concentrates
on Cla, b] X Cla, b]. The theorem follows by a slight extension of Prohorov’s
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Theorem 1.8 to mappings from R to any separable metric space rather than just
the real line.

RemaRrk. It follows from Theorem 1 of appendix 1 in [12] that e(f, g) =
af + Bg, e(f, g) = fg ete., satisfy the given hypotheses. Le Cam has indicated in
[11] that these mappings are not continuous on the whole of Dla, b] X Dla, b].

COROLLARY 7.6. If 6 = 0, n}(Z,*(s) + Z.*(1 — s)) converges weakly in
®(Dle, 31) to (¥(t)) "'V (t) where V is Brownian motion on [0, 3] with ¢* = }.

Proor. By employing (7.4) for the process n*Z,.( t) we can reduce consider-
ation to even n.

Let C.* = {(f, 9):f, g continuous on [¢, 1), /(%) = g(%)}. Since C.* is a closed
subset of Cle, 3] X Cle, 3] and the process n*(Z,.(s), Za(1 — 8)) concentrates on
C.*fore < s < 1, to show that n}(Z.(s), Z.(1 — s)) converges in ®(Cle, 3] X
Cle, 3]) it suffices to show convergence in ®(C.*). But, the map

Q:(f,9) — h where h(s) = f(s), e<s<i

IIA

=g(8), % 8§1—€,

is homeomorphic from C.* to Cle, 1 — ¢ and 1 — 1.

Then if r is continuous from C.* to R and we define #:Cle, 1 — ¢] — R by
#(h) = r(QX(R)) # is continuous and r(n’Z.(s), n*Z.(1 — s)) = #H(n'Za(s)).
The domain of the arguments of r and # is [¢, 3] and [¢, 1 — ¢] respectively.

Clearly,

(7.6)  &(FH(n'Za(s))) — L(H((¥(8))7Z(s)))
= £(r((¥(8))7Z(s), (W(1 = 8))7'Z(1 — 9)).

By Definition 2.1 this suffices to show that n*(Z,.(s), Z.(1 — 8)) convergesto
((¥(8))Z(s), (Y(1 —s) Y7'Z(1 — s)). The corollary now follows from Theorem
7.5 upon remarking that ¢(s) = ¢(1 — s).

The final theorem of this section deals with the functional we are interested in
considering in Section 2.

THEOREM 7.6. Let H be the subset of Cla, b] defined by H = {f:N(¢:f(t) = 0) = 0}.
Then H is a measurable subset of Dla, b] and the map f — N(¢:f(t) > 0) s con-
tinuous on H.

Proor. Let T'(z) be the indicator of the set 0. Then there exists a sequence of
continuous uniformly bounded functions ¢, such that ¥.(z) — T'(z). The maps
¥n:f — [2¥a(f(2)) dt are continuous on Dla, b] for each fixed n. But ¥u(f) —
N(t:f(t) = 0) asn — « and we may conclude that H is measurable.

Define,

I
L

‘i’(x; €) r < —¢
(7.7) = —zx/e + 1, e<z 20,

=1, z>0,
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and,
Y(z, ) = 0, <0
(7.8) =zxfe, 0<z<ce
=1, T > e

Then, if f» — f in Dla, b], where f ¢ H, by Theorem 2 of (12) fu(x) — f(z) for all
z and hence,

(79) Ja¥(a(t), € dt = [29(f(2), €) dt.

A similar statement holds for ¢.
Now, by (7.9) and (7.10), for any g,

(7.10) Jaw(g(2), €) dt = N(t:g(t) > 0) = [a¥(g(t), ) dt.
Combining §7.9) and (7.10) we find that,
(7.11) |lim (inf)(sup)m N(¢:fm(t) > 0) — N(t:f(t) > 0)]
= [a (B@), € — w(f(1), ©)) di.
But by (7.7) and (7.8)
Jo (@ = ) S NEIfD] = &) = NEf() = 0),
as e — 0. Since f ¢ H, the theorem follows.

Acknowledgment. We should like to thank the referees of this paper for some
helpful corrections.
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