AN OCCUPATION TIME THEOREM FOR THE ANGULAR COMPONENT
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1. Summary. Let Z(t) = (X(¢), Y(¢)), t = 0, be the standard plane Brownian
motion process. Let (R(t), 61(¢)) be the polar coordinates of Z(¢). Suppose that
R(0) = r > 0 with probability 1, that is Z(-) starts away from the origin. We
shall define the process 6(¢), t = 0, as the total algebraic angle traveled on the
continuous path Z(s), 0 < s = t; we take 6(0) = 6:,(0); we haved(-) =
6:1(-) mod 2.

Let f = f(6), 0 < 6 < 2w, be a bounded measurable function such that
f(0) = f(2m). For r, > r let 7 be the first passage time of R(-) to the point r; .
This note is devoted to the computation of the functional

(1.1) L(f) = E.o{ [35(0:(2)) dt},

where E,q{--} is the expectation operator under the condition R(0) = r,
6:(0) = 6. This is interpreted as the expected occupation time of a measurable
subset of [0, 2x] if f is the indicator function of the subset. We find an explicit
formula for L(f) as a linear functional on the Hilbert space L,[0, 27].

A preliminary result of interest is presented in Section 2: the random variable
[6(+) — 6(0))/|log (ri/r)| has a Cauchy distribution for any positive numbers
r, 71 with r ¢ r; . This recalls the independent result of Spitzer that [8(¢) — 6(0)]/
3 log ¢ has a limiting Cauchy distribution for t — « [4].

I thank the referee for his constructive remarks and for the alternate proof
of Theorem 2.1 given in Section 6.

2. Distribution of 6(7). The process 8 (t), t = 0, has the following representa-
tion. Let U(%), t = 0, be a standard one-dimensional Brownian motion process
independent of Z( - ); then,

(2.1) 6(t) — 6(0) = U([sds/R(s)), ¢

according to Ito and McKean [2], p. 272.
We use this representation in the proof of
TuaeoreEM 2.1. The random variable

[6(r) — 6(0))/|log (r1/7)|

has the Cauchy distribution for any positive r 5~ ry .
Proor. By the representation (2.1) the characteristic function of 8(7) — 6(0)
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is
(22)  Efexp [wU([Jids/R'(s))]} = Elexp [(—u*/2) [} ds/R*(s)]}.

Except for the change of variable u — u’/2, the latter expression in (2.2) is the
Laplace-Stieltjis transform of the distribution function of

(2.3) [ods/R*(s).

We shall find this distribution function and then its transform.
The two-dimensional process

(R(t), [ ds/R*(s))

is a diffusion process with the following local characteristics: the local mean vector
is (1/2r, 1/7*) and the local covariance matrix is the singular matrix

(5 9)

The distribution of the random variable (2.3) will be derived as a certain ab-
sorption probability for the diffusion. For fixed ¢ > 0 let the variable s satisfy
0 =< s = t. Let us denote by p(r, s; r1, t) the probability, under the condition
R(0) = r, that the sample path R(-) hits r; for the first time after the sample
path fE dv/R*(v) hits ¢ — s. This probability is the same as

(2.4) P{[sdv/R*(v) > t — s}

under the condition B(0) = r. According to classical diffusion theory [3], p. 48,
this absorption probability is the solution of the partial differential equation

7*8"p/dr’ + rop/or + 20p/ds = 0
p(ri, s;m,t) =0, p(r, t;r,t) = 1.
We solve this by the method of separation of variables: the solution is
p(r, i1, t) = (2/m) [T ¢ sin [yllog (r1/r)|] dy/y.

From (2.4) wesee that 1 — p(r,0;71,t) is the distribution function of the random
(2.3); hence, the density function is

(1/m) [T ye ™" sin [yllog (ry/r)|] dy.
Integration by parts changes this integral to
(1/xt)llog (r/r)| [ %" cos lyllog (ry/r)[] dy,
which, in accordance with the formula
2/x) 7t [3 eV cosuy dy = ¢,
has the value
(2r£){log (r1/r)]| exp [~[log (r/r)["/21].
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The Laplace transform with respect to ¢ is well known to be
exp (—|log (ri/r)|(20)"), u 2 0;

hence, by the remark following equation (2.2), the characteristic function of
6(r) — 6(0) is exp ( —|u log (r1/r)|) which is the characteristic function of the
Cauchy distribution with the scale factor |log (r1/7)|.

We remark that this characteristic function has the form

(2.5) (r/r)™
forr <-ry.
3. Application of Dynkin’s formula. We shall compute L(f) as
L(f) = Timn.o Erof [5 €(6(2)) dt},

where f is a periodic bounded measurable function of 8 of period 27. First we do
it for the special case f(§) = ™ (m = integer) and then extend it to the more
general case.

Assume that r < r; ; then the expectation operator (1.1) is well defined for a
bounded function f because Er < «. We apply Dynkin’s fundamental identity
for strong Markov processes [1]:

(8.1a) Eno{[5e™™ P dt = ¢(\, u; 1, 0) — Ergle o\, u; 11, 6(7))},
—wo <u < o k20,

where we have put ¢(\, u; r, 0) = [7 e ME, 5(e™®) dt. The process Z(-) is
well known to be stochastically invariant under rotations of the plane around the
origin; hence, the conditional joint distribution of the random variables

{Ty B(T) - 0(0)) o(t) - 0(0)) i 2 0}7

given R(0) and 6(0), is independent of 8(0); therefore, the following relations
hold:

o\, u;r, 0) = e™o(\, u; 7, 0);
Er.O{fB e—)\t+€u0(t) dt} - es‘uGE"o{fa e—)\t+€u0(t) dt};
Er,o{e—)‘7¢()" U; T, 0(7))} = e‘uoEf-O{e—)‘T+iuo(7)}¢()‘) U; T, 0)'

We put E,{--} = E.p{--} and ¢(N\, u; r) = ¢(N, u; 7, 0); then equation (3.1a)
takes the form ‘

(3.1) Effie™™ 0 dt) = (N, u; r) — (N, u; r1)E, {0,
Ito and McKean [2], p. 271, have computed ¢:
(32) o\ u;r) = Kiw((2M)') [0 Lu((2N)'e)20 do

+ I ((2N)r) [7 Kiu((2N)%) 2z de,
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where K,(z) and I,(z) are the Bessel functions as defined in [5], p. 77-78. We
substitute the expression on the right hand side of (3.2) in (3.1) and let X — 0;
then we find E,{ [§¢™® dt} by a careful analysis of the right hand side.

4. Asymptotic estimates of the functicn ¢(\, u; r) for A — 0.
Lemma 4.1. For u # 0,

limyeo Kjui((2N)r) [5 1ui((2N) )22 dz = #*/Jul(Jul + 2).

Proor. Recall the formula [5], p. 183:
(4.1) K,(2) = 3(2/2)" [7 exp [—t — 22 /48)t " dt.
It shows that (by the change of variable t — 2°/4t)

Kiui((20)'r) ~ 270 (Jul)r I (2n) 7, A0,

for |u| # 0. The formula [5], p. 79,
(4.2) I,(2) = [(2/2)"/T(» + $)T(3)] [§ & sin™ 0 db
shows that

[t L2 )2z de ~ (20)™122 142/ (1) 4+ 2)T(Ju| + 1), N — O.

The lemma follows from these two estimates.
LEMMmA 4.2

limaso L ((2N)) [7 K ((2N) )2z dz = r*/lul(Jul — 2), |u| > 2.
Proor. Formula (4.2) implies that
L ((2N)r) ~ (20) ™% 791ip(Jy| + 1), A—0.
Formula (4.1) implies that
[? Ku(zz)22 dz = (2/2%) [3 ¢ dt [Fon00 9™ %™ dy,
which, by the change of variable ¢t — t2’, is equal to
271Ul [ g D5 1% gy gt
~ 2[R URDI[E 26 gl g (5 — 0).

‘Integration by parts transforms the latter expression into z~"'#*™I2*IT(|u|)/
(lu| — 2). Putting z = (2\)*, we obtain the result of the lemma.

Lemma 4.3. Ii((2M)*) = r(0/2)! + O(A\}), A > 0.

Proor. Put z = (2\)}, » = 1 in formula (4.2); then expand the exponential
in the integrand and integrate. Note that the coefficient of N vanishes because of
the relation [§ cos 6 sin® 6d6 = 0.

LemMmA 4.4.

I7 Ki((2N) 22 de = (/N[5 Ki(2)z de — r(20)}yKi(y)],

where y 1s some number satisfying 0 = y = r(2)\)*.
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Proor. By a change of variable, the integral on the left hand side of the above
equation is equal to (1/\) [t Ki(2)z dz. Apply the law of the mean to this
integral considered as a function of the lower limit of integration.

Lemma 4.5.

L((2\Y) = M/ + 0(N%).

Proor. The calculation is similar to that for Lemma 4.3.
LemMA 4.6.

7 Ku((2N)i2)22 de = N [r(20)Ka(r(20)Y) + 2Ko(r(20)h)].

Proor. The expressions on each side of the equation tend to 0 as r — o,
The validity of the equation then follows from the equality of the derivatives
with respect r, implied by the formulae [5], p. 79:

K/ (z) = —Ki(z), —zKs(z) = zKi' (z) — Ki(z).

Lemma 4.7.
lima,o (N, u; ) = 27/ ([ul + 2)(|u] — 2), lu| > 2.
Proor. We apply Lemmas 4.1 and 4.2 and formula (3.2)
LEmMA 4.8,
o\, 1;7) = =% + r(20)7 [T Ki(z)z dz + o(1), A—0.

Proor. Apply Lemmas 4.1, 4.3, and 4.4, and formula (3.2). We also use the
fact, deducible from (4.1), that

(4.3) limy,o yKi(y) = 1.
LEMMA 4.9.
o(\, 2;7) = 3°/8 +(r*/2)[—log r — log (2\)} + C] + o(1), A —0,

where C is a numerical constant independent of r.
Proor. Recall the formula [5], p. 80,

(4.4) Ko(2) = —logz + o(z) + C, z2—0,
where C is a constant; Lemma 4.6 and formula (4.3) imply
L ((20)'n) [7 Ka((20h)20 do' = /4 + (r°/2) Ko(r(2M)} + o(1),
A—0.
The lemma follows from the formulae (4.4) and (3.2), and Lemma 4.1

6. Computation of L(f). We shall now find the explicit form of the functional
L(f) given in (1.1). In accordance with the remarks in Section 3, we omit the
subscript 8 from the expectation operator.
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LemMa 5.1. The functional L(e™) is equal to

Hr® = 1), u =0,

yoi-n, -1

2r'log (r/r), lu| = 2,

2/(lul + 2) (lul = 2)]F* — (r/r)™'n ], lul > 2.

Proor. The case |u| > 2 is a direct result of equation (3.1), Lemma 4.7, and
formula (2.5). The cases |u| = 1, 2 follow from equation (3.1), Lemmas 4.8 and
4.9, the formula (2.5), and the asymptotic relation for fixed » and r:

Er[e—)‘r+iu0(f)] — Er[eiud(r)] + 0()\), A—0.

The expression for 4 = 0 is apparently well known; it can be verified by calcu-
lations similar to those for the other cases, or from the infinitesimal generator
of the process R(?). )

TuroreM. Let f(0), 0 < 6 < 2w, be a bounded measurable function such that
f(0)= f(2r). Let us denote by {fa} its sequence of Fourier coefficients:

fa = (1/2x) [T ¢™f(6)d6, n=0,=%l,--;
put
dn = E{ [i ™ dt}, n=0,=£l-;
then,
(5.1) L(f) = D n—wfndn.
Proor. The sequence {d.} is square-summable by Lemma 5.1; hence, the func-
tional M (f) = D_n——o fn dn is defined for any f in L,[0, 2], and is (linear and)

continuous over L.[0, 27]. Let us denote by N (f) the restriction of the functional
(1.1) to the space C[0, 27] of continuous functions f on [0, 27]; N(f) is continuous
on C[0, 2x]. The two functionals M and N are identical for functions f of the
form f(8) = ™, (m = integer); by linearity, they are also identical for linear
combinations of such functions. The class of linear combinations of complex
exponential functions is dense in C[0, 27] (Weierstrass’ theorem), and converg-
ence in C[0, 27] implies convergence in L[0, 27]; therefore, N(f) = M (f) for all
f in C[0, 27] by the continuity of these functionals.

We have shown that M(f) = L(f) for all continuous functions f. The indi-
cator function of an interval is the limit of a monotone sequence of continuous
functions, where the convergence is both pointwise and in I.[0, 2x]; therefore,
M and L coincide over indicator functions since they are positive functionals,
and since L is continuous on convergent monotone sequences. The equality of
M and L for all bounded measurable functions now follows from conventional
approximation arguments.

We point out an alternative form of the functional L(f)®. By the Riesz-Fischer
theorem there exists a function g in L.[0, 27] whose Fourier coefficients are the
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elements of the sequence {d.}. The function ¢ is real-valued because d, is real
andd, = d_,,n =0,1,2, --- . Parseval’s theorem implies that

L(f) = (1/2x) [3" £(6)g(8)d6,  fin L0, 2.

6. Another proof of Theorem 2.1. The referee has presented another proof
of Theorem 2.1. The distribution of the random variable considered in that
theorem depends on the pair (r, r) only through r/r because {Z(t)} is stochas-
tically equivalent to {¢*Z(ct)} for any fixed ¢ > 0. Define # by the equation
log # = % log (r1r); let § correspond to # as () does to 7, ; then § — 6(0) and
6(r) — & are independent, identically distributed random variables. By a de-
fining property of the Cauchy distribution it suffices to prove that 6(r) —
0(0)(= 6(r) — 6 + 6 — 6(0)) is distributed as 2(§ — 6(0)). Now log Z(t) =
log R(t) + 46:(t) has real and imaginary parts which define a diffusion in R’
which, since log z is analytic, differs from Z(¢) only by a random time change
[2], p. 280. The same is true of 2 log Z(t), or more generally, of ¢ log Z(t), ¢ #~ 0.
These processes have identical hitting probabilities; hence the assertion about
6(r) — 6(0) follows.

? Appep IN Proor: The functional L has a representation as an integral operator
whose kernal is the Green’s function for the circle; however, I have not been able to de-
duce (5.1) directly from it. I would like to thank Zbigniew Ciesielski and Walter Rosen-
krantz for their informative comments about this representation.
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