THE THEORY OF EXPERIMENT: OPERATIONAL DEFINITION OF THE
PROBABILITY SPACE

By Mivron Puiuip OLson
Lafayette, California

1. Introduction. In his monograph [2], Grundbegriffe der Wahrscheinlichkeits-
rechnung, A. Kolmogorov gave a brief explanation of the relation between the
mathematical objects of modern probability theory and concepts used in the
description of experiments. While the correspondence given there is intuitively
very satisfying, no instructions are given to the experimenter for the practical
determination of the mathematical objects. Kolmogorov’s discussion provides a
path leading from mathematical theorems to physical interpretations; but the
experimenter is often concerned with travel in the opposite direction, from the
physical world to the mathematical abstraction.

An obvious problem is that human agents can collect only a finite amount of
data; but, in a vague sense, an abstract probability space may contain an un-
countably infinite amount of data. The fact that no matter how much data is
on hand, more can be collected already suggests that the derivation of the prob-
ability space from physical experiments will necessarily involve limit operations.
One of the central results of this paper will be the proof that under certain con-
ditions measures derived from samples converge to the probability measure
governing the random phenomenon. The Glivenko-Cantelli theorem is a result
in this direction. However, the methods used here as well as the results are quite
different.

Even so, one might ask why the author would bother with such an investiga-
tion, since the theory of experiment as demonstrated by the continuing existence
of insurance companies, gambling houses and other, more scientific, applications
seems to be reasonable and satisfactory. The first reason is that the theory given
here has mathematical consequences through its contact with the theory of
statistics and information. The validity of the second reason depends on one’s
tastes. If probability is purely abstract and, hence, a branch of measure theory,
then the scheme for interpretation of the results given in Kolmogorov’s mono-
graph entirely suffices. On the other hand, if probability is a physical concept
seeking mathematical expression, then it should be subject to Bridgeman’s
dictum: The only valid definition of a physical concept is in terms of the opera-
tions used to measure it. And this criterion of operational definition necessitates
the investigation proposed.

2. Preliminary discussion. The attempt to give a direct construction of an
abstract probability space from experiment has never been entirely successful.
The problem studied here is more limited; its framework is similar to the setting
of the Glivenko-Cantelli theorem. It is assumed that the experiment possesses a
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sample description space S, a o-algebra of subsets of S denoted Z, and a proba-
bility measure u defined on 2. This may impose a considerable limitation on the
class of random phenomena considered. For example, the author knows no oper-
ationally defined method for determining whether a probability (in a generalized
sense) is countably additive on a o-algebra or merely finitely additive on an
algebra. However, some limitations seem necessary on the class of phenomena con-
sidered. These are stated in the form of informal assumptions given below.

AssumpTioN 1. It is assumed that the random phenomenon is described by the
triple (S, Z, u) where p is a fixed but unknown probability measure on Z.

The point of departure from the Glivenko-Cantelli theorem is contained in the
following informal definition, also called an assumption.

AssumpTION 2. A measuring instrument is a finite disjoint measurable par-
tition @ = {A;, Ay, - -+, Ai} of S such that on any trial of the experiment, it can
be announced with certainty in which element of the partition the outcome lies.
A measuring instrument 6; is “finer” than another 6, if each 4; ¢ 6, is of the form
A; = UL B, where B;e6, for i = 1,2, --- , I;. This relationship is denoted
6, = 6,

A little reflection will convince the reader that this definition is a fairly accurate
description of the way in which experimental outcomes are measured. In the
Glivenko-Cantelli theorem, it is assumed that the experimental outcomes can be
measured exactly.

Assumprion 3. The experimenter can make as many “independent” trials of
the experiment as he wishes. Independence here is in the vague physical sense
that the outcome on a preceding trial in no way determines the outcome on a
foHowing trial. It will be convenient to denote the outcomes of an infinite
sequence of such “independent trials” by s* = (s, sz, - - - ). This is in spite of
the fact that the actual outcomes s; cannot necessarily be known precisely, but
only through a partition. (8%, =¥, 1*) is equal to (XY S, X1 =, X7 u), which is
the probability space of infinite sequences of “independent trials” s*.

(Assumption 3 serves the mathematical purpose of putting a fixed but un-
known probability measure on the space of a denumerable number of trials.)

A procedure for experimental determination of the measure p can now
be sketched. The experimenter chooses a measuring instrument 6; =
(A, A5', ---, Ay} and makes m; trials of the experiment. This determines a
sample measure y; such that

(2.1)  m(A44) = number of times A;' occurred in m; trials/m; .

Then a finer measuring instrument 6, = (A4, 45, ---, A%,) is chosen and m;
further trials are made determining a sample measure p, such that

(2.2)  w(A:’) = number of times A;’ occurred in m,y trials/ms .

This procedure is repeated to obtain a sequence (6;, m;, u,) of partitions and
sample measures. It remains to investigate the conditions under which
(65, mj, u;) converges to (Z, u).

3. The convergence theorem. Before discussing the convergence problem, it
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is necessary to create an abstract setting in which the discussion of convergence
can take place. Suppose there is given a family of partitions {6;};-, such that
6,11 = 6, and a sequence of positive integers m; . With each s* £ §¥, in the manner
described above, there is associated a sequence of partitions and sample measures
{6;, m;, ui(s*))} 7= . Except for a set E* e2* of u* measure zero, u;(s*) is
absolutely continuous with respect to u restricted to 6. This means that if
u(Ax’) = 0, then sample sequences for which A’ occurs between the (m;_; + 1)st
trial and the m;th trial form a set of u* measure zero. Thus, on 8* — E¥,

(31) I"J'(S*y Ak:) = fAki XJ'(’S*y S)/..L(dS), Akje 0,
where
(3.2) Xi(s*, 8) = (22t [ui(s™, A7) /(A7) Ixa1)(s),

with the convention that the coefficient of x4, is zero if u(A7) = 0. As long as
s* is restricted to 8* — E™, u;(s*, -) admits the integral representation shown in
(3.1). Thus, X; : (8* — E*) — Ly(8, =, 1) and X; is a u* a.e. defined function
taking values in the Banach space Li(S, Z, u). It is measurable because it takes
only a finite number of different values. Noting that | Xz, sz (s¥) = 1,

(3.3) S 11Xl sz (s5)u*(ds™) = 1, j=1,2 .

In this way, we have that X;isa u* a.e. defined representative of an equivalence
class in Ly(S*, =%, u*, Li(8, =, 1)), the Banach space of all x*-integrable func-
tions taking values in L;(S, Z, p). It is in this latter space that the discussion of
convergence will take place.

LemMa 3.1. Let {0, , m;) =1 be as described above and X be the function on S*
whose value everywhere is the function 1 ¢ L1(S, Z, u). Then,

(34) ”X - Xf”Ll(M*yLl(M)) = [(nJ - 1)/mf]%1 .7 = 17 2) Tty
where n; 1s the number of elements in the partition 6; .
Proof.
IX — Xz = for IX = Xilln,a(s™)u*(ds™)
(35) =[50 5 1X(s) — Xi(s)|(s™)n(ds)u(ds"™)

= [or 200 |w(A7) — wi(s*, A7) |w*(ds™)
= D0y [ [w(A7) — wi(s*, A7) |w*(ds™).

|u(A ) — ui(s*, A7)| takes on only a finite number of values [u(A4)|, |u(4:) —

N, A — 1|. Because of the “independence” of the trials, the w*
probablhty that u;(s*, A7) = k/m;is none other than (% )u(A:)*u(S — A7) ™*:
i.e., k successes in m Bernoulli trials with probability of success equal to u(A4/’).
Hence, we have

(3.6) |IX — Xillz, ez
< 2 S w(AS) — k/mi|()u(AS) (S — A",
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But u(A.) is just the expected value of k/m; with respect to the binomial distri-
bution shown. The inner sum is the L;-norm of a random variable defined on
0, 1, 2, ---, m; with respect to a probability measure. It is dominated by L.-
norm; and, hence,

(3.7) [IX — Xillzyr L0

< M 2k (m(AY) — k/my)’ () (A (S — AT

The right side of (3.7) is the sum of the standard deviations of the binomial
distributions shown divided by m; , and we have

(38) [1X — Xjllo,qrriwy = mit 2ordy (mi(u(AF)(1 — (A7)}
< DM {u(AH)u(S — Ad)/mit < {(n; — 1)/m}t.

('This same result could be calculated directly from the multinomial distribution. )
The last inequality follows from a simple maximization argument. Q.E.D.

The lemma shows that X; — X in Ly(8*, =%, ¥, Li(S, 2, n)) if {(n; — 1)/
m;}* — 0 asj — «.Let Ce O, the o-algebra generated by the partition 6,
and completed with respect to u-null sets. Then given ¢ > 0,
(3.9) limp.p™(s™| [u(C) — w(s™; C)] 2 ¢

= lim,o u*{s* | [¢ |X(s*;5) — Xu(s™; 8)|u(ds) = ¢}.

In (3.9), we have tacitly extended X, from S* — E* to all of S*. The nature of
this extension is unimportant in formulas like (3.9) because E* is a set of p*
measure zero. Therefore

limyae u*{s™ | |0(C) — m(s™;C)| = ¢
limee uw*{s* | [c [X(s%; s) — Xu(s*; 8)|u(ds) = ¢

< limp,.p™{s™ | [o |X(s%;8) — Xu(s™; s)|u(ds) = €

(3.10)

I

lim e ”eMl 1 X — Xilo,wlle sz wrmy = 0.

IIA

For, || X — Xz, (s¥) is just a real-valued integrable function on (8% =% u*);
and, in the course of the proof of the lemma, we have shown that

(3.11) Jor IX = Xille, (s")u¥(ds™) — 0 as 1 — .

Observe that no matter how close ui(s*, C) is to u(C), ura(s*, C) may have
any of the values 0, 1/my, - -+, (mya1 — 1)/muya, 1 for sufficiently improbable
sample sequences.

DErINITION 3.1. A sequence {(0; ,m; , u;)} ;=1 of partitions, integers, and sample
measures is said to converge Ly(u*, Ly(n)) to (21, u), where Z; is the smallest o
subalgebra containing U} 6; completed with respect to u null sets in 2,
if X;— X in Li(p*, Li(p)).

In the following lemma, if A is the smallest ¢-algebra completed with respect to
 null sets in = over a family of sets in =, then A" denotes the smallest (uncom-
pleted) o algebra over the same family.
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LevMa 3.2. Let {(8;, mj, u;))o comerge Ly(u”*, La(u)) to (21, ) and
0; £ 0i1,7=1,2, --- . Then C & Z1 if and only f there exists a sequence of sets
Cie®/,1=1,2, -, such that for each ¢ > 0,

(3.12) limpe p*{s* | ng(s*, s) — xc,(s)Xl(s*, 8z Z ¢ = 0.

(xe(s¥, 8) = xo(8)X(s¥ s) is another notation for the function on S* whose
value at each point is the set indicator function x.(s) as an element of Ly(u).)

Proor. Let C eZ;. By definition, Z; is the smallest ¢ algebra over the o
algebras {0,} %, and the completion of the ¢ algebra ', the smallest ¢ algebra
over U2, 6; . 2, is also the smallest ¢ algebra over the algebra Z, , the collection
of all finite unions of the sets A/ ¢6; ;¢ =1, -+ ,n;;7 = 1,2, --- . The set
indicator functions for elements of =y are then L;(u)-dense in the set indicator
functions for elements of =; . The assertion of the lemma is trivial unless C g Z.
Hence, if C ¢ 3, and C £ 2, then there exists a sequence {Di} i1 C Zo such that
given e > 0, there exists n such that for allk = n, ||[x¢ — X0/l 21w < e Using the
fact that ©;" © @," C - - - , a smallest positive integer ¢ exists such that Dy, & 0, .
Define C; = S e ©, for I < ¢ . Let k&, be the smallest & such that ¢, > ¢ . Define
Ci = D,, for t < 1 < t,. Continue in this fashion. The resulting sequence
(€)7o is such that Cr e O, and {x¢,} 71 converges Li(u) to x¢ . Now xc, (s, s)
— xe(s*, s) in Ly(u) norm for each s* £ S*. (Note that this convergence is uni-
form in s* because the functions are constants.) X,(s* s) — X(s%s)
in Ly(u*, Ly(x)) norm. Hence

(5" Llxe(s™, 8) = xo()Xu(s™, 8) e < e}
{3* l ch(s*, s) — Xcl(s*, 8)|lzw < €/2}
(3.13) 0 (8" | Ixe()X(s%, 8) = xa(8)Xi(s", 8)l|es < ¢/2}
{s* [ Ixe(s™, 8) — xei(s™, 8) i < ¢/2}
n {s™ | X (5%, 8) — Xu(s™, 8w < ¢/2).
Then, taking complements, we have
p*(s™ | lIxe(s™, 8) — xe(9)Xu(s™, 8) |l Z ¢
(3.14) < '™ ] lIxe(s™, ) — xe(s, O)lnw 2 ¢/2)
+ w s | XY, ) — Xu(s", 9)llnw 2 ¢/2).

Letting [ — o, the first term on the right hand side of (3.14) goes to zero because
X¢; — Xe in In(p)-norm and the second term goes to zero because convergence
in Ly(u*, Ly(u))-norm implies convergence in u* measure.

Conversely, let Z; be the collection of all sets satisfying (3.12). We have shown
above that Z; C Z,, and the proof is completed by proving the reverse inclusion.
If C & =y, then by hypothesis there exists a sequence {C}}7=y © U7 0, < =,
such that (3.12) is satisfied.

(3.15)  [lxc(s) — xei(8) et = Ixe()X (5% 8) — xe(8)Xu(s™, 8) ||,
+ ”XCL(S)Xl(S*7 8) - XCt(S)X(S*r 8) ”lq(u) .

-]

)
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Relation (3.15) holds for ™ almost all s* £ S*. On the right hand side are two
sequences of functions on S* converging in u* measure to zero. Given ¢ > 0,
{s:*} 721, and lo(e) can be found such that both terms on the right side of (3.15)
are less than ¢/2 at s;* for all I = lo(¢e). Hence,

(3.16) limpe [Xc(8) — xei(8)||zyw = 0.

This shows that C ¢ 2, . Q.E.D.
Let xc(s™, s) = xc(s) for all s* ¢ 8* and recall that

(3.17) lIxe(s™, 8) = xe () Xu(s™, 8) |y = I(C) — mi(s™, C1)].
Thus, we see that Lemma 3.2 describes a sense in which the sample measures on
the partition o algebras get ‘“‘close” to the unknown measure u. However, the
sense of convergence here is too weak to operationally define the measure.
Rather, we seek an assertion about the convergence of the sample measures
valid for all s* ¢ S* except possibly a set of u* measure zero.

Lemma 3.3. Let {(6;, mj)}j=1, X, and {X;} 71 be as in Lemma 3.1. Then given
€; > 0,

(3.18) X = Xilnw(s™) 2 ¢f £ (nj — 1Y emd.

Proor. This is an immediate consequence of a basic inequality [3], p. 158,
and the fact that (n; — 1)/m,’ is an upper bound of [ s« [|X — X[ 1,00 (s*)u*(ds™)
as shown in (3.5). Q.E.D.

Observe that the function [ X — Xjl|z,w(8¥) has only a finite
number of different values as.s* varies. These values depend only on the trial
(>°iZt m)) + 1 through > i—; m,. Because of the independence of the trials,
{(IX — Xl (s%)}5 is a family of independent random variables on the
probability space (S*, =*, u*).

Therefore, we have

p* Uis (s 11X — Xl (™) 2 ¢

= p (8" = A 5T X = Xl (s™) < ¢}

1— JTm s [ 1X = Xoallnw(s™) < ¢

1 — I — w™s* | 1X — Xillnw(s™) 2 )
<1 - I = X nm — DY/mi).

Then, according to Theorem 7 [1], p. 96,

(3.20) limpw 1% Uim (8" 1X — Xiallow(s™) = ¢ = 0

it > % (n; — 1)*mif < . Thus, for example, if m; = =", § > 0,

S (ng — Dimt = 2 %an7 a subseries of a convergent harmonic

series with coefficient 1 + 6/2. Then,

(3.19)

It

Il
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limjae p® Uiy (8% | |X — Xiall,w(s™) = ¢ =0 forall e >0,

and the convergence a.e. criterion [3]. p. 115, is satisfied, implying that X, — X p*
a.e.

DEriniTION 3.2. A sequence { (8, ,m; , u;)} 7= of partitions, integers, and sample
measures is said to converge u* a.e. to (Z;, 1), where Z; is the smallest o sub-
algebra containing U, 6; completed with respect to u null sets in 2, if X; — X p*
a.e.

LemMa 3.4. Let {(6;, m;j, uj)} e converge u* ae. to (21, u) and 6; < 60;41,

J=1,2,---. Then C & Z, if and only if there exists a sequence of sets C; & O/,
l=1,2, .- such that for each ¢ > 0
(3.21) lime.. [xe(s®, ) — xe,(8)Xu(s¥, 8) || = 0

for u* a.e. s e S*.
Proor. Let {C;}7-1 be the sequence of sets constructed in Lemma 3.2. Then,

xo(s*, 8) — xe($)Xu(s*, 8) ||z,
= ng(s)X(s*, s) — XCI(S)X(S*, )z, w
(3.22) + ()X (5% 8) — xei(8)Xi(5*, 8) ||z
< [ Ixei(s) = xe(8) u(ds) + [ Ixe()IIX(s% s) — Xu(s¥, 5)| u(ds)
= [ Ixe(s) — xei(s) w(ds) + [ 1X(s* s) — Xu(s*, s)| u(ds).

Given ¢ > 0 and s* contained in the convergence set of {X,(s* s)}imy, there
exists I(e, s*) such that [[xc — xellz,w < ¢/2 and | X(s* s) — Xu(s™ 8)[z,m
< ¢/2forl = I(e, s¥). Since e is arbitrary, equation (3.21) holds. The converse is
immediate from Lemma 3.2, since xc,(s)Xi(s*, 8) — xc(s*, s) u* a.e. implies
convergence in u* measure Q.E.D.

We will call 2, , as in Lemmas 3.2 and 3.4, the operationally defined domain of
definition of the measure u. It might be argued, however, that Z, is not the maxi-
mal family of limits of sequences of sets in U, ®;" and that Z; was imposed by
the two rather strong definitions of convergence. But even if a weak definition of
convergence for the {(8;, m; , u;)} 7= was given so that the domain of definition
of the limit measure was extended to all the set indicator functions in the weak
closure in L;(u) of the linear manifold spanned by {xz | £ ¢ U7 0,'}, no new
sets would be added to the domain: the weak closure of a convex set is equal to
its strong closure. We can now summarize the preceding lemmas and discussion
in our major theorem.

TuEOREM 3.1. Let (8, Z, u) be a probability space, and {(8; , m; , u;)}j= be a
sequence of finite measurable partitions, integers, and sample measures such that
h =0, =< ---.Then,

(1) if (n; — 1)*/m} —>0asj— o, {(6;, mj, us)} = converges Ly(u", La(u))
to (21 ’ M),'
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(2) of 225 (ny — 1)Y/mi < o, {(6;, ms, 1;)} 5= converges u* ae. to (21, ).
In both (1) and (2), 2, is the ¢ subalgebra generated by U7, ©; and completed
with respect to u-null sets.

Further, in (1) C & 2, if and only if there exists a sequence of sets Cy e O, the
smallest o subalgebra over the partition 6, , such that for each ¢ > 0,

liml-wo “*{S* | ”XC(S*) ’S) - XC:(’S)XI(’S*’ 8)”141(14) g 6} = 0.

In (2), C & Z, if and only if there exists a similar sequence such that for L ae.
* *
s efS7,

(3.23) limi.e [|xe(s*, 8) — xe,(8)Xu(s™, 8)llL,w = O.
Moreover (3.23) implies
(3.24) limg,e [u(C) — wi(s*, C1)| = 0.

Proor. All assertions have been proved except that (3.23) implies (3.24).
But,

[ xou(ds) — [c, Xu(s¥, s)u(ds)]
J Ixe(s*, 8) = xe,(8)Xu(s*, 8)|u(ds)
= ,,XC('S*7 S) - XC;(S)XI(S‘*, S)”Ll(l‘) . QED

Equation (3.24) is exactly what an experimenter would want: the sample
measures on some sets at his disposal converge almost everywhere to the measure
on the limit set.

CoroLLARY 3.1. A probability measure u is operationally defined on its whole
domain of definition = if and only if each C ¢ T differs by a u null set from A’ ¢ =,
where =’ is a countably generated o subalgebra whose completion with respect to u
null sets is .

Proor. This is an immediate consequence of preceding results.

CoRrOLLARY 3.2. Let X, be a real-valued random variable on a probability space
(S0, =0, mo). Xo tnduces a probability measure u on (S, Z), the real line with the
Borel sets. Let {(0; ,m; , uj)} o= converge Ly(u”*, In(u)) to (2, ), and {F'XJ(s*, )} i
be the distribution functions of the sample measures. Then, given ¢ > 0,

W(C) — m(s*, €|
(3.25)

lIA

(3.26)  limjsw p*{s* | s* € 8%, supses | Fxo(s) — Fx,(s%s)| = ¢} = 0.
Proor.
SUDses |[Fxo(8) — Fx,(s* 3]
(3.27) < supge [W(E) — [z X,(s*, s)u(ds)]
supzes [ [xe($)X(s%, s) — xz(8)Xi(s", s)|u(ds)
[X(s* ) — Xi(s™, 8|z, -

A 1A

A
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Therefore,
(3.28) {s¥ | sup |Fx,(s) — Fx,(s* s)| = ¢

C {s* | IX(s%, 8) — Xi(s™, )|l 2 .
Lemma 3.2 implies the desired conclusion. Q.E.D.
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