AN INTRINSICALLY DETERMINED MARKOV CHAIN!
By J. MacQueeN’

Stanford University

Consider a Markov chain X,, X3, X,, -+, on the non-negative integers
withPXep=2—1|X;=2]=v2),PXpu=2+1|X;=2] =1 — v(x),
forz = 1,2, - - - , and with 0 an absorbing state; thatis, P[X;y = 0| X; = 0] = 1.
Thus the process can either go up or down one step and for z = 1, y(x) is the
probability of going down. Forz = 0, 1, - -+, let ¢,(z) = P[X: = 0 for some
t = 0 given Xy = z]. Hence ¢,(0) = 1 by definition.

Now let ¢ be a given function on the interval (0, 1) satisfying 0 < ¢ = 1.
We impose on the function vy of the preceding paragraph the condition

(1) 'Y((I?) = <P(91(x)), T = 19 2’ Tt

Thus the transition law of the process depends on the probability that the pro-
cess is absorbed at zero; but the probability that this happens depends on the
transition law. The process, if it is determined at all, is determined by its own
behavior, i.e., it is determined ‘intrinsically’.

We show the possibility of determining a process in this fashion, by virtue: of
the following result:

TuroreM 1. If ¢ is uniformly continuous on (0,1) with0 < a = info < sup ¢
= b < %, then there exists a function v such that v and q, jointly satisfy (1);
these functions, v and g, , are unique if ¢ is non-increasing.

For the sake of a phenomenological interpretation, we can imagine that X, is
the fortune of a man who works at gambling. The harder he works each day,
the greater the probability of his winning one unit, and the less the probability
of losing one unit, these being the only outcomes. Being concerned with the
probability of becoming destitute, but at the same time not particularly liking
to work, he assesses the latter probability each day, and thereby decides how
hard to work, generally working less the lower this probability is. Theorem 1 says
that choice of such a procedure, as expressed by ¢, is theoretically possible and
leads to a unique mode of behavior.

Proor or TuroreEM 1. The proof will make use of the following elementary
lemmas.

Lemma 1. If v = 1 — ¥ satisfies 0 < v(z) < 1,2 = 1,2, -+, then there is
at most one function q satisfying
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(2) Q(ili) = 'Y(x)Q(x - 1)+ ’7($)Q($ + 1); z =12 .-,

subject to ¢(0) = 1 and g(z) > 0asx — «.

Proor. Suppose for two solutions ¢ and ¢’, sup.»1 (¢(z) — ¢'(z)) = m > 0.
Since g(z) — ¢'(z) — 0 as & —> ‘o, there is a largest integer z, = 1 such
that ¢(z0) — ¢'(20) = m, and g(2 + 1) — ¢'(% + 1) < m. Considering that
'f(xO) > 0,

(3) m = g(m) — ¢'(x) = ¥(z0)(g(xo — 1) — ¢ (0 — 1))
+ F(20)(g(%o + 1) — ¢'(2 + 1)) < m,

and this contradiction completes the proof.
Lemma 2. If the function ¢ = 1 — @ on the interval (0, 1) satisfies 0 < ¢ < 1
and s non-increasing, then there is at most one function q satisfying

subject to ¢(0) = 1, g(z) =2 gz + 1), 2=1,2, --- ,and g(x) > 0asz — =,

Proor. Proceeding as in the proof of Lemma 1, and employing the fact that
if g(z)) — ¢'(z)) = m > 0, then ¢(q(z0)) = ¢(¢'(20)), and that g(z — 1) =
q(z + 1), we find

(5) m = q(z) — ¢'(zm) = o(q'(%0))g(ma — 1) + &(g'(%0))q(z0 + 1)
— o(q'(20))q (. — 1) — (g (%0))q (@0 + 1)] <m,

a contradiction as before, and the proof is complete.
Now let C be the class of functions ¢ on the non-negative integers with

g(z) 2 ¢g(zx+ 1),z = 0,1, ---, and satisfying

(6) /(1 —a)f = ¢(z) = /(1 = D), =012,
where @ and b are as in the hypothesis of Theorem 1. If v satisfies
(7) o < v(z) £, =12 -,

then ¢, is given as the unique solution of
(8) Q(x) = 'Y(x)Q(x - 1) + 'y(x)Q(x + 1), r = 17 2: R

subject to ¢ £ C. It is obvious that ¢, satisfies (8) and will be unique by Lemma
11if ¢, & C. To prove that ¢, ¢ C, let ¢ = g, in the case where y(z) = b, 2 = 1,
2, ++- . Considering that b represents the maximum probability of going down
one step, clearly ¢, = g for v satisfying (7). Also, in that case, X is the sum
of independent, identically distributed random variables with mean 1 — 2b > 0.
The strong law of large numbers implies g,(z) — 0 as £ — «. It is now easy to
verify that g(x) = [b/(1 — b)]° since the latter function satisfies (8) when
v(z) = b, and is the unique solution by Lemma 1. Similarly, ¢, < ¢, where g,
is defined as ¢., for the case where y(z) = a,z = 1, 2, - - - . It remains to remark
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that g,(2) = ¢y(z + 1) since ¢,(z + 1) = qv(z) Pr [X; = z for at least one
t = 0gwen Xo =z + 1].

Consider then the mapping U: C' — (' defined by (Ug)(z) = q,(x), where v
is given by v(z) = ¢(¢(2)),z = 1,2, --- . In view of (1) we have to show that
U has a unique fixed point. It is easy to check that C is a compact, convex,
subset of the Hilbert cube consisting of all sequences {£.} such that |£,| < k/n for
a suitable constant k. We will show that U is continuous. Then the Brouwer
fixed point theorem implies (see Lemma 3 [1], p. 453) that U has a fixed point.

Since ¢ is uniformly continuous, ¢ — ¢ in sup norm implies ¢(q'(z)) —
¢(g(x)) uniformly in £ = 1. Thus all we require in order to establish the con-
tinuity of U, is that for v, and v satisfying (7), v, — v uniformly in z implies
@ = ¢v, —> gy . Suppose to the contrary, that sup.s: | gu(z) — g(z)| fails to
converge to zero as n — . Then there is a subsequence {¢n;} such that ¢, —
g0 # g, with g C, since C is compact. Each qn,, satisfies an equation like (8)
with v, replacing v, so adding and subtracting o and v in an obvious way,
we write, (omitting the argument z > 1)

(9) 90 = (90 = gu) = 70" + 70" + (vn, — V)@~ + (u, — 7)g0"

+ 'ynk(q;k - qﬂ—) + 'fnh(qj:k - qo+),
where ¢~ and ¢* stand, respectively, for the functions ¢(z — 1) and ¢(z + 1).
Considering (9) as k — «, it becomes apparent that qo satisfies (8), hence
¢o = ¢y by Lemma 1. This contradiction establishes the continuity of U. Ap-
plication of Lemma 2 completes the proof of Theorem 1.
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