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ABSTRACT

Heller has given necessary and sufficient conditions that a stochastic process
be induced from a Markov chain. We consider a process induced by a Markov
chain to be a probabilistic finite automaton with one input.

With each state of a probabilistic finite automaton, we may associate a func-
tion p(u | v), which tells us the probability that, if we apply the input sequence v
to the machine started in the state, we should observe output sequence u. We
give a necessary and sufficient condition that a function p(u |v) be realizable
as such an input-output function. Finally, we show Heller’s result is extended by
our condition.

Heller (1965) has given a necessary and sufficient condition that a stochastic
process be induced from a Markov chain.

Let S be a finite set and let ®(S) be the set of maps S* — R (the dual of S*)
(where, for any set S, we write S* for the set of finite sequences of elements
from S). Then p £ ®(8) is a stochastic process if it satisfies

(a) p(8*) €0, 1],

(b) 2esp(s) =1,

(C) ZSSSp(sly *tySny 8) = p(sla ] 8,,).

On recalling the notion of probabilistic finite automaton, we shall see that it is
an appropriate generalisation of the notion of “stochastic process induced by a
Markov chain.”

A probabilistic finite automaton (pfa) is a quadruple (X, Y, @, P) where

X is a finite set: the set of inputs,

Y is a finite set: the set of outputs,

Q is a finite set: the set of states, and

P is a conditional probability function P(d,y]q, ).

We interpret P(q’, ¥ | ¢, #) as the probability that if the machine is started in
state ¢ £ Q and input x ¢ X is applied, then the output should be y ¢ Y and the
next state should be ¢’ ¢ Q.

Rather than concentrating on the finite set @, it is more natural to consider II,
the set of probability distributions on @, augmented by a separate state called
0, as state space. We may then define a next state function by
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melm, (y | @)l = 2ime P(as, v | qi, %)/ 22 P(gi, ¥ | ¢iy @)
if >;P(gs,yla,z) is >0
=0 otherwise.

The input-output function of a state = is defined to be the function

(Y1, o Un | B, o %) = Dgpeaasien Ta; Llimt P(Qesr, ¥ | @, %),

and is the probability, given initial distribution state = and input sequence
Zi, -+, Zn , that the output sequence be 41, -, Yn .

We say states = and = are equivalent if they have the same input-output func-
tions, i.e., p(-|-) = p.(-|*). A pfa is in reduced form if no distinct states are
equivalent.

DEFINITION. A state-output pfa is one in which the output y is a function f of
the state ¢’ i.e., P(¢',y | ¢,z) = Ounlessy = f(¢’).

TaEOREM 1. Every pfa is equivalent to a state-output pfa.

Proor. Just take new finite state-set @ x Y, and use the transition function

PU(g,¥), v (¢, 9), %) =0 ity =y
=P(g,y |¢gz) if ¥ =4" QED

This is, of course, a standard construction.

A stochastic process which is, in our terminology, an input-output function of a
state-output, one input pfa, is clearly what is usually called “a stochastic process
induced by a Markov chain.”

We must now generalise the notion of stochastic process to yield our notion of
“stochastic system’” in such a way that a stochastic system with oneinput reduces
to a stochastic process.

Let X and Y be finite sets, B the real line, and ®(X, Y) the space of all func-
tions p: (X x Y)* — R.For p ¢ ®(X, Y) we write

p(y17""yn]x1) ’x") for p((xlyy1)7"'7(xn7yn>)'

DeriniTION. A function p ¢ ®(X, V) is called a stochastic system if it satisfies
the three conditions

(81) p((X x V)*) < [0, 1], .

(82) Zst p(ylz) =1,

(83) Zerp(yl; ] y’nyylxla'” ’xnax) = p(yly ,ynlfvl,"‘ yx”)
for all z ¢ X.

If we let X have but one element, and then identify X x Y with Y, which we
relabel S, conditions (S1-83) do indeed reduce to the conditions (a)—(c) for a
stochastic process. Thus, we may inded think of a stochastic process as a stochastic
system in which we have no control over the input.

Note that a stochastic system is not a stochastic process in which X x YV
replaces S. We denote by @,(X, Y) the convex subset of ®(X, Y) comprising the
stochastic systems.
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Clearly any input-output function for a state of a pfa is a stochastic system.
Our central aim in this paper is to characterize such stochastic systems, thus
generalizing Heller’s result.

Our study is prompted by the: work of Carlyle, additions to which have been
made by Bacon, Even, and Page. These authors have only studied stochastic
systems in which the assumption is made ab ¢niiio that they come from a pfa.
The removal of this assumption parallels the work of Raney for the deterministic
case.

Henceforth we shall restrict our attention to ®,(X, Y), but the reader should
note that many of our notions and proofs carry over almost unchanged to the
general case of ®(X, V).

Let (X, Y) be the set of stochastic systems restricted to X x Y, which is

N

p|X x Y:Pe®(X, Y)}.

A restricted stochastic system (RSS) is a quintuple ® = (X, Y, II, =, §) where,
setting Z = X x Y, we have

II is a convex set to which a 0 is adjoined

7:I x Z — Z is such that if w; and m, are in I, then for all convex combinations
am + agme , we have 7(aim + aem 2) is a convex combination of the non-zero
images among 7(m , ) and 7(m, , 2)—and 0 is there are none

: 1 — @'(X, Y) u{0}. with 8(0) = 0.

Given an RSS, ®, we may associate with each “state’” = ¢ II an “input-output”
function p, by the equation:

Doy, sym @, ooy x) = J1ES0 8(me) i | Toal

where mo = Ty, Thtl = T[‘Il'k, (yk+1 | $k+1)], 0=k<mn.

DEeriniTiON. An RSS R is a realization of the function p ¢ ®,(X, Y) if there is
a state 7 of ® whose input-output function 7. is equal to p.

An RSS is said to be in reduced form if pr, = pr, = m = w2, and all states are
reachable from some state i.e., 3 & II such that I = 7(m, Z*).

The reader should note that any state = of a pfa M induces a realization
(X, Y, 10, 7,8) with 8(x") (y | ) = pr(y | ).

Given any pfa M, we may map its distribution states = into elements p, of
®(X, Y). It is clear that if M is in minimal-state form (Bacon, 1959),then no
image of any pure state can be expressed as a linear combination of the images of
other pure states.

‘What is surprising is that distinct distribution states of a minimal-state machine
may map to the same stochastic system. A. Paz (personal communication) gave
me the following example. Consider the 4-state deterministic machine for which
all inputs cause a transition to the 4th state, but the respective outputs for inputs
0 and 1 are 1 and 1 for state ¢1 , 0 and O for state ¢, , 1 and O for state ¢; , and O
and 1 for state qi. If we consider this, as a stochastic machine, it is clearly in

“ minimal-state form. However, m = (3, 3,0, 0) and m = (0, 0, %, 1) have
pﬂ'l = p"'2 *
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LeMMA. Let p ¢ ®,(X, Y) be induced by a state = of a pfa M. Let M' be the sub-
automaton of M comprising the states reachable from w with positive probability.
Then any reduced realization of p may be obtained from M’ , by mapping its distribu-
tion states inlo the corresponding elements of ®,(X, Y).

THEOREM 2. Every function in ®(X, Y) has a realization.

Proor. We define an action of Z* on @,(X, ¥) as follows:

For z = (y|)eZ* and pe ®.(X, Y), we define the function p-z by the
equation

[p-2l(yrl21) = p(yyn [ 2z)/p(yl2) if p(y|=z) >0
=0 if not.
The reader may readily verify that

(1) przisin ®(X, Y) u {0},

(ii) for allzand zin Z* [p-2]-2 = p-(82),

(iii) 2z carries convex combinations of points into (usually different) convex
combinations of their non-zero images—and into O if there are none.

Ziajpi'z = Zf(afpj(z)/Zk ax pi(2) )pi-2

unless all p;-z are 0. )
It then follows that (X, ¥V, ®(X, Y), #, §) is a realization of p ¢ ®(X, Y) as

soon as we take
#p',2) =9’
(") = 9" 2. QED
TuEOREM 3. Every p e ®(X, Y) has a reduced realization. Furthermore this
realization is unique up to isomorphism, i.e.,if (X,Y, 1,1, 8) and (X,Y,Oa, 72, 62)
are both reduced realizations of p, then there is a one-to-one correspondence 6: II; — II,
such that

Tz(oﬂ', Z) 07‘1(7!', Z),

di(w) = 8y(6m).

Proor. To get a reduced realization, we merely replace ®,(X, Y') in the realiza-
tion of Theorem 1 by p-Z*. Uniqueness follows from the observation that any
realization (X, Y, I, 7, 6) enjoys the property that for all z ¢ Z *

8(r(m2)) = (p-2)Z

(extending 7 to a function I x Z * — II in the natural fashion). QED
TurorEM 4.” The stochastic system p is induced by a state of a pfa iff the function
p s contained in a polyhedral convex set whose union with 0 is closed under the

2 An earlier draft of this paper only considered closure under an action of X*. I am
grateful to Alex Heller and the referee for drawing the insufficiency of this condition to

my attention.
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action of Z* in ®,(X, Y), i.e., iff A a finite set {q1, -+ , ¢a} S ®(X, ¥) of non-
zero q.’s such that p and each non-zero q;-z may beexpressed as a convex combination
> Ngi for suitable constants N, (0 < \; < 1, dhi=1).

Proor oF THEOREM 4. The “only: if”” part is obvious. For the “if”’ part, sup-
pose that g1, - - - , ¢, have the stated properties. We exhibit a pfa M with finite
stateset qi, - - - , ¢, and for whichw = (m, - - - , 7,) implies that the correspond-
ing p, for M is just ), 7P, . Our task is to find matrices

P(gi,y|qi,2) = mi(y| @)

which describe the transition and output probabilities. To do this we must simply
solve the equations

(1 8(g)ly | 2l = 2ima(y | 2),
g+ (y12) = 2imu(y | 2)gi/ 2imi(y | %)
(2) if 2 imy(y|z) >0
=0 otherwise.

Multiplying the coefficient of ¢; in (2) by the > mi(y | x) of (1), we determine
mij(y/x) for the given set {g1, -+, ¢a}. The example of Paz, cited above, in-
dicates that the m;; need not be unique. QED

Our only task now is to recall enough of Heller’s terminology to show that
his condition is indeed a restriction of ours. Recall the conditions (a)—(c) on a
stochastic process p.

We may extend p to As, the free associative R-algebra generated by S by
p( ers' f(a:)x) = %:zes’ f(x)P(x), and setting p(l) = L

Note that 4 is the dual of S, but we keep ®(S) and A distinct.

Denote by Ps the coordinate cone of As consisting of polynomials with non-
negative coefficients, and let ¢ = > zes . Then an R-linear p: As — R is a
stochastic process if the following conditions hold

(P0) p(1) =1,

(P2) for all £ ¢ As, p(&s) = pé.

Then a realization of a stochastic process p is a quintuple (S, II, 7, §) is a RSS
which has a state = with p, = p. :

Heller introduces the notion of a stochastic S-module (sS-module) as fol-
lows:

Let L be a right 4s-module’, lpe L, and ¢: L — R (linear). Then p¢ = ¢(Lf)
defines a linear p: As — R. Call (L, g, k) a sS-module if

(1) qlo = ]-’

(ii) g(LPs) S [0, ],

(iii) for all e As, q(lot(c — 1)) = 0. Then clearly p is a stochastic pro-

7
3 Heller uses left modules, but I find right modules easier to use.
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cess if (L, g, lv) is an sS-module—we then say that p is the stochastic process
associated with (L, g, ).

The reduced realization of a stochastic process p is obtained from the reduced
$S-module with which p is associated. We make ®(S) into an Ag-module by

setting
Is(y) = l(sy) for le®(S), seS*

and we extend this by linearity

If = D sessf(s)ls for feds.
The reduced module for p is ]ust (p4s, g, p) where (1) = I(1). The reduced
realization for p is just (8, pS¥ 7, 8) where I(m, £) = w, 8(w) = w39, ie,
Heller has just taken all linear combinations of the functions rather than just

convex combinations.
LemMA. Every stochastic sS-module defines a realization of the associated sto-

chastic process p as follows:

Take Il = L.
m(l, &)= I,
8(1)(s) = q(ls),
r=1.

Heller calls an sS-module (L, g, ly) reduced if (i) L is cyclic with generator
l,ie., lbA, = Land (ii) L has no nonzero submodule L’ with ¢(L’) = 0.

By a cone in a real vector space V we mean a union of rays from the origin.
A convex cone C is strongly convex if it contains no line through the origin; and
is polyhderal if it is the convex hull of the union of finitely many rays.

We may now state Heller’s main theorem (his Theorem 5.1):

TueoreM 5. Let (L, q, ly) be a reduced sS-module. The associated stochastic
process s induced from a Markov chain if there is a cone C C L such that

(i) lheC,

(i) ¢(C) < [0, =],

(ii1) C s invariant under Pg , i.e., CPs C C,

(iv) C s strongly convex and polyhedral.

Taking note of Theorem 1, and our discussion of the relation between the
reduced sS-module and the reduced realization, we see that this is an immediate
consequence of Theorem 4.
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