SLOWLY BRANCHING PROCESSES!

By Wovrreane J. BUHLER

Unaversity of California, Berkeley

A (discrete time) branching process is a sequence Z, ,n = 1,2, - - - , of random
variables describing the size of successive generations of a population. Here it is
assumed that given Z,, = k the n 4 1st generation consists of the offspring of the
k members of the nth generation; each of these & individuals having a random
number U; (# = 1, --- , k) of children. The U; are mutually independent with
a common distribution given by its probability generating function f(s).

A continuous time Markov branching process is usually described as represent-
ing the number Z; of particles at time ¢{. Any one of the particles present at time
¢t has a probability br + o(7) of splitting within the time interval [¢, ¢ + 7]
into a random number of new particles whose distribution is given by a proba-
bility generating function A(s).

Under somewhat less restrictive assumptions on the processes Stratton and
Tucker [6] have considered a sequence {Zx(¢), N = 1, 2, ---} of branching
processes with Zy(0) = N and such that, as N — «, the branching rate by
converges to zero with Nby approaching a finite limit b assuming that A(s)
is independent of N. They found that the sequence of processes {Xx(t)} =
{Zn(t) — N} converges to a process with independent increments and with
characteristic function

(1) Y(u, t) = exp {bte "“[h(e™) — &™]}.

The interpretation of this result is that, as N increases, the branching of the
process is slowed down so much that in the limit the occurrence of ‘‘higher
generation” particles can be neglected and out of the original particles only a
certain number (with Poisson distribution as limit of binomials) will have split.
Thus the limiting process will be a compound Poisson process (see e.g. Feller
8.

The purpose of this note is to establish the discrete time version and the con-
tinuous state space versions of the above result and at the same time to give a
proof simpler than that by Stratton and Tucker.

Let us first consider the discrete time case. Here slowing down the process is
achieved by letting P(Z; = 1| Z, = 1) tend to one without changing the con-
ditional distribution of Z; given Z; # 1. In other words we consider a sequence
{Z.(N), N = 1,2, ---} of branching processes with Zo(N) = N such that the
distribution of the number of ‘offspring’ of any one individual is given by

(2) f(s,p) = (1 — p)s + pf(s), ls| = 1,
where f(s) may be any probability function and Np — N\ > 0.
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Lemma 1. (i) As p — 0, the iterates of (s, p) satisfy
(3) fn(s, p) =s+ ’ﬂp(f(S) - S) + 0(p), lsl = 17 n = 17 27 IR

(1) If fum(Sn , Sm, D) s the joint probability generating function of Z,(N) and
Zun(N),n < m, then, as p — 0,

(4)  fam(Sn s Sm, P) = $aSm + su(m — 0)p(f(sm) — Sm)
+ np(f(SaSm) — SaSwm) + o(p).

Proor. Using the continuity of f, i.e. the relation f(s 4+ o(1)) = f(s) + o(1)
we show (i) by induction. (4) then follows by conditioning on Z,(N), again
using the continuity together with (3).

CoROLLARY. If pN — N > 0, then the joint distributiqn of X,(N) and X(N)
— X.(N), n < m, converges to that with characteristic function
(5) ‘Pmn(un ) um) = ﬁon(un)¢m—-n(um)
exp {nN((f(sn) — $a)/8u) + (m — n)N((f(sm) — $m)/3w)},

where s = ™ and Xy(N) = Zy(N) — N, fork = 1,2, - .
Proor. The joint characteristic function of X,(N) = Z,(N) — N and
Xuw(N) — Xu(N) = Zu(N) — Zu(N) is

¢nm(un U N) _ Esnzn(N)—Nsmzm(N)—Zn(N) — sn_N[fnm(sn/sm , Sm, p)]N
= [1 + (m — 0)p(f(sn) — sw)/sm + np(f(3a) — )/ + o(p)]"

= G Un 5 Unm).

It is clear that in the same manner a version of the corollary can be established
for the joint probability generating function of the sizes of any set of distinct
generations. This is our final result in the discrete time case.

TurorEM 1. If pN — N > 0, then the distribution of the process {X,(N),
n=1,2, -} converges to that of a sequence of sums X, = D _r- Yy of independent
variables Yy, , all having the same characteristic function

(6) e(u) = Es™ = exp {N(f(s) — 8)/9)}, s ="

From the above discussion it seems clear that the continuous time result (1) can
be shown in a similar way provided a continuous time version of the basic
Lemma 1, (i) holds.

LevMA 2. Let F(s, t, b) be the probability generating function of the variable Z,
of a time homogeneous M arkov branching process with Zo = 1, with basic probability
generating function h(s) and with branching rate b. Then, as b — 0,

(7) F(s, t,b) = s+ bi(h(s) — s) + o(b), ls| = 1.

Proor. Using the obvious relation F(s, b, ) = F(s, t, b) the relation (7) is
clearly equivalent to the equation
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(8) 0F(s,t,b)/0t]| emo = b(h(s) — s) = b[h(F(s,0,b)) — F(s,0,b)], |s| =1

which is well known to be true (see e.g. Harris [4], V. (9.1) for £ = 0).

Indeed it is possible to proceed from here exactly as in the discrete time case to
obtain

THEOREM 2. If {Z,,t = 0} s a Markov branching process with initial state

= N, with basic probability generating function h(s) and with branching rate b
such that Nb — N > 0, then the distribution of the process X¢ = Z; — N converges,
as N — «, to that of a process with independent increments and with margmal
dzstmbutwns gwen by (1), i.e. to a compound Poisson process.

REeMARK. In the proof of Theorem 1 we may admit probability generating
functions of nonnegative, not necessarily integer valued, random variables
(Biihler [1], [2]) without changing the argument. Also a relation similar to (8)
holds for continuous time branching processes with continuous state space
(equation (2.9) in [1]). Thus, both Theorem 1 and Theorem 2 remain true for
for branching processes with continuous state space as introduced by Jifina [5].
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