ESTIMATION ASSOCIATED WITH LINEAR DISCRIMINANTS!

By SeEYMOUR GEISSER

State University of New York ot Buffalo

1. Introduction. Suppose we have two p-variate normal populations where
I is N(p , Z) and II; is N(p2 , Z) and sample estimates & of w1 , & of us based
on n; and n, observations respectively. Further assume we have an independent
estimate S of the common covariance matrix = based on » degrees of freedom i.e.,
v8 is Wishart, W(Z, v) and v = n; + n, — 2 if all the information on X is supplied
by the two samples. Now the samples provide us with a linear discriminant,
Anderson [1], page 138, .

(1.1) V=1[—%x+&)]S(&H — &)
as an estimate of the population discriminant
(1.2) U=le— 3(m+ w2 (1 — )

where the new observation z has prior probability ¢, of being from II; and ¢, from
I, + ¢ = 1. Forr = ¢/qu ,

(1.3) U > logr assigns z to II,
U <logr assigns z to II;

or if w; , e and 2 are unknown

(1.4) V > logr assigns z to I,
V <logr assigns z to II.

There are then three questions that naturally arise here. Firstly, the estimation
of the population discriminant U. Secondly the estimation of the true errors of
misclassification, ¢ and e ; and lastly, though most importantly, the estimation
of the “index” errors of misclassification, 8; and B, i.e., the errors incurred in
using the sample discriminant V on future observations. These problems will be
investigated by the Bayes approach previously outlined by the author [4], [5],
[6], [7]. In essence it is asserted that in the absence of any prior objective knowl-
edge on p , pe and 2 it is convenient to assume that the prior density for these
parameters may be represented by

(1.5) 9w, w2, Z7) « 2|
This leads to
(1.6) P, m,37) « [27|07700
cexp { =3 tr TS 4 m(F — w)(& — m) + na(F2 — w)(F — )1}
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for the joint posterior densities of w1 , uz and =" as the starting point for our in-
vestigation to the aforementioned estimation problems. What then will be offered
is a method for assessing the errors involved in discriminatory problems for those
investigators and statisticians who find linear discriminants useful and appealing
but prefer a Bayesian orientation in their interpretation. As a secondary feature
this method can then be compared with the complete Bayesian approach of [4],
[5] (see Section 5) and with orthodox frequency techniques where available or as
outlined in a paper by John [8]. At this point an exact comparison between the
sampling theory methods and the approach advocated here is difficult because
of the rather complicated nature of the distributions involved in the frequentist
procedures. Suffice it to say that they will differ for ﬁmte sample sizes but tend to
be close as the sample sizes increase.

2. The distribution of U. We now seck the posterior density of U first under
2 ¢ II; and then under z ¢ IT; . From Anderson [1], page 135, it is clear that, con-
ditional on w; , p2 and =, U is N(%a, @) under II; and N( —%a, a) under II; with
the “distance” between II; and II, given as

(2.1) a= (m — w)Z7(m — m).

For fixed =, ca is non-central chi-square x°(p, 2\) from (1.6), where
Cc = nlnz/(nl + nz) a,nd

(2.2) N =& — B)ZH(E — &)
Thus for « > 0
eo i Hot2i)—1
(23) PaN) = 0 s 2/
Further from (1.6) it is clear that b\ is central x* with » degrees of freedom where
(2.4) b= 2/c(f — %) S (& — &)
so that |

P(N) = b(bN) "2 P (1 /2).

Now

(2.5) P(U, a,\) = P(U | a, N\)P(a|N)P(N)
and

(2.6) P(U,a) = P(U|a)P(a)

and from (2.3) and (2.4) we find

_ 3y e)! I (/2 + )b
(2.7) Ple) = X oamr (o F 30/ 2T G/ + B

which is incidentally the posterior density of the non-centrality parameter asso-
ciated with Hotelling’s 7" statistic. It may also be expressed as
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(28) P(ca) = X5wif(x*p + 2)
where the weights to
(29) wy = (6/(2 + 5))"™(2/(2 + b))

are the individual terms of a negative binomial density and f(x*| p + 2j) repre-
sents the density of x* = ca with p + 2; degrees of freedom. This is similar to
the non-central x*, which can be put into the same form except that the weights
w; are the individual terms of a Poisson density. From (2.7) we find

(2.10) E(a) = ¢'p + 20071,
(2.11) Var (o) = 2¢7[p + 4»(b + 1)b77]
and )

(212)  E[e™] = (1 — 2¢7%) P21 — 2¢77' (b + 2)it) "

Since U, given a, is N(3a, o) under IT; and N( —3a, ) under II; , we may find
the density of U in the following way:

(2.13) P(U|I) = [§ P(U|a, I;)P(a) de, i=1,2.

This density can be evaluated by reference to Table 98, page 143 of Bierens
De Haan [2] but since it is somewhat complicated and not too important from
the Bayesian viewpoint, it will not be given here. However we can easily find,
without explicit evaluation of (2.13), that E(U | II;) = $E(a) = —E(U |II,)
so that

(2.14) E(U|I) = %p(nl—l + 1) + 3(8 — B)'S (& — %) = —E(U | ILy).
In either case, V(U) = E(U*) — E*(U) = E(a) + % Var (a), which results in
(2.15) Var(U) = pc[1 + (2¢) 71+ [1 + ¢ + (eb) (& — %) 'S (%1 — &2).

This yields p(n™" + ns ") + (&1 — &)'S™'(& — %) as an estimate of the
“distance” between the two populations. More generally the characteristic
functions of U under II; or II; is also obtained without any trouble by integrating
first with respect to U and then « in the joint density of U and a. This yields

(2.16) E[e™ | L] = ¢ *"[((2 + b)g: — 2)/bgi] ", i=1,2,
where
(2.17) gr=1—cht(1 +4t); go=1— ¢ it(it — 1).

- It may be shown that from (2.16) and (2.17) that U in either case is asymp-
totically normal for increasing », when » = n, + n — 2. Hence as a rough
approximation in finding limits on U we may use X = [U — E(U)]/[Var ()
as N(0, 1).

Thus far we have considered the posterior distribution of U for random z.
This of course does not provide us with an estimate of the ‘“discriminant” U.
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To find such an estimate requires that we fix z and then find the posterior distribu-
tion of U. This can be accomplished by writing the algebraic equivalent of (1.2)
which is

(2.18) U=13(—m)27( = m) — 3z — m) =z — m)

and noticing from (1.6) that for fixed 2z the two terms on the right are each
distributed as a constant times non-central x* conditional on =, In other words
U, for fixed ¢, is a linear combination of non-central x* variables conditional on
=7, One then could combine this with the marginal distribution of =™ and then
integrate out = to find the density of U for fixed z. This is somewhat complicated
and since we are mainly interested in this density only as it provides us with a
sample estimate of U, we shall not attempt its explicit evaluation. However we
shall return to this point at the end of Section 4.

3. Estimation of the ‘true’ misclassification errors. Now for fixed u;, we
and 7

(31) PrU<logr|m,m,Zzell] = e = [T d(v) dv = &(11),
(32) Pr(U>logr|m,m,Z52el] == [rd®) d =1—d(r)
where ¢(v) = (271-)_%6*%"2 is the standard normal density and

(3.3) n o= (logr — %a)/a, m = (logr + %a)/dl.

In other words we define ¢ and e to be functions of the random variable « whose
distribution is conditioned on the sample values Z; , &, and S.
Now for log » = 0 (we may choose g2 = ¢: and label II; and II, accordingly)

we note that 7, is a monotone decreasing function of o and is a monotone in-
creasing function ¢ . Hence for log » > 0

(3.4) Prlm<a<a]=1-2p

is equivalent

(3.5) Prin(e) < mn < 7mlay)] =1—2p
and consequently

(3.6) Pr {®[ri(on)] < & < ®[r(a1)]} =1 — 2p.

Hence limits on ¢ can be obtained from the posterior density of a. For log » > 0,
72 decreases monotonically with o until o = 2 log r where 7, attains its minimum
value, (2 log 7)¥, then 7, increases monotonically as « increases. Therefore limits
on 72 can be computed from « in the following way: Let

(3.7) Prira<m<ml=1-—2p
for (2log r)} < 1 < 722, then
(3.8) Prlag < a<a]+Prlow<a<al=1-—2
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where ap < a3 < 2logr < as < a3, i.e.,
a = 21k — log 1) — Zrm(rh — 2 log r)},
(3.9) a1 = 2(r5 — log ) — 2ru(rh — 2log r)},
ay = 2(7h — log 1) + 2ru(s5 — 2 log )},
o3 = 2(13 — log ) + 2ru(7s — 2 log r)%.
Further since e is a monotone decreasing function of 7, we have
(3.10) Prl — &) < € <1 — &(ma)] =1 — 2p.

As a rough approximation to the distribution of « given by (2.7) we may equate
the first two moments of o to a constant times a chi-square distribution with d
degree of freedom resulting in

(3.11) (nama/(ma + n2))(p + 20/b)(p + 4v(b + 1)/6") "a ~ x4’
where
(3.12) d = (p+2v/b)"/lp + 4(b + 1)/b"].

For ¢ = ¢1, so that log r = 0, we note that —7, = 7o = 1t with0 < 73 < .
Hence we obtain identical limits for & and e in this special case.

Confidence limits on ¢; may be obtained depending on confidence limits on «
through the sampling distribution of ¢(& — %)'S™ (% — &) = cQ which is
w(» —p — 1)7'F(p, v — p — 1) where F is non-central F with non-centrality
parameter ca. As v — o, the sampling distribution of ¢ tends to non-central
x*(p) with non-centrality parameter ca, thus limits on ca are obtained from the
confidence inversion of the non-central x’(p). However as » — o« the posterior
distribution of ca tends to non-central x’(p) with non-centrality parameter
¢Q, thus limits on ca are obtained directly from the non-central x(p) distribu-
tion. Hence it is clear that the confidence limits and the posterior limits will
differ somewhat.

4. The “index” errors of misclassification. We now turn to the problem which
is paramount from the practical point of view and that is the estimation of the
index misclassification errors when using the sample or “index” discriminant,
V, on future observations. In actual practice, an investigator is often interested
in how well his particular index discriminant will do on future observations since
this sample is what he must work with. He is probably more interested in these
index errors of misclassification, 8; and B:, than in the “true” errors, & and e .
Now for the fixed values & , &> and S

(41) Pr(V<logr|m,m,Z;2ell) = B = [5 ¢(v) dv = ®(61),
(42) Pr(V>logr|u,m,Z;2ell) =B = [5 ¢(v)dv =1 — &(8,),

where



812 SEYMOUR GEISSER

(43) 6= (B(& + &) — wl'S™(&Z — %) + log 7}
A& — &) E — &),
(44) 6= {3@& + &) — wl'S7(& — &) + log 7}

& — &) STESNEH — &)
and 6; and 6, are random variables that are functions of w; , u2 and 2. Hence we
have defined B; and B, as functions of the random variables p1 , pe , = for fixed
values of & , % and S which differs from the sampling interpretation where 8
and B. are considered either as functions of the fixed parameters p; , p2 , Z ob-
tained from the unconditional sampling distribution of V in terms of the random
variables &, %, and S, or defined as functions of the random variables Z:,
%y, S, in particular see John [8].

First we note that (4.1) and (4.2) follow from the fact that V is normal, con-

ditional on py , ps and 2 for the fixed values of Z; , Z; and S. Further from (1.6)
6, and 6, are normally distributed conditional on 2 with

(4.5) E(6,|2) = [log r — & — &)'al/[aZa]’,
E6:|2) = [log r + 3(& — &)'dl/[a’Zal’;
(4.6) Var (6,|2) = m™", Var(6:|Z) = ny '

where a = S (& — ). Moreover it is easy to show that y = va'Sa/a'Za is
distributed as x* with » — p -+ 1 degrees of freedom. Hence the joint density of
01, 0. and Yy is

(4.7) P(6:,6:,7) = (nma)}(2r) ™" exp {— (0 — 1) + na(be — 1)’ }
~e_”’2y("_”_1) /2/2(v—p+1> ’2I‘((v —p+1)/2)
where
(4.8) t=[logr — ¥z — &)al/(va'Sa) = vk,
tr = [log r + ¥(& — &)al/(va’Sa)} = vk, .
We then integrate out y in (4.7) and obtain
(4.9) P8y, 6:) = (nms) exp [—3(mb’ + nabe’)l/
(v — p + 1)/2)[1 + t'ny + &7ng] 7701
X 20 (b + tmafe)22(1 + bl 4+ t'ne) T
T((v+4 —»+ 1)/2)/5!.
The marginal density for 6;, ¢ = 1, 2, is
(410) P(0:) = (ny/2m)" exp BndIT((v — p + 1)/2)(1 + nit)) 7
i [t 22 (1 + nt) VT + 5 — p + 1)/2)/5!

= e
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We may also obtain most conveniently by conditional and unconditional ex-
pectations the following:

(4.11) E(6;) = kym,  E(6:;) = kam

where o

(4.12) m=T((v—p +2)/2)(2/M}Y/T((r —p +1)/2) > ((r —p + })/»)}

—1 as v—>

and

(4.13) Var (6,) = m ™" + k’f, Var (6:) = ne t + kif, cov (61, 6) = kiksf

where .

(414) f =" —p+1— 200 — p + 2)/2)/T(( — p + 1)/2)]
—1/2v >0 as »— ».

Marginal limits on 6; and 6; can readily be converted from

(4.15) Prijou<6 <6l =1—2p

to

(4.16) Pr@®(0u) < B < ®(0p)] =1—2p
and from

(4.17) Pridn <0:<62]=1—2p

to

(4.18) Pril —®(fn) <B<1—®bx)]=1-—2p
or

(4.19) Pr [®(—0) < B < &(—0x)] =1 — 2p

due to the monotone character of the transformations from 6; and 6 to By and B; .
Further the simultaneous probability

(4.20) Pr[®(0u) < B < ®(012); 1 — 3(02) < B2 < 1 — ®(bw)] = P
is equivalent to
(4.21) Prifu <61 < bi;0n <0 < 0s2] = P.
The joint characteristic function of 6; and 6, is calculated to be
(4.22) Elexp (tu161 + tusfe)] = exp [—1(m w4+ ne us’)]
Yo [t + taue) 25
(v +j—p+1)/2)/T((» —p + 1)/2)
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with the marginal characteristic function of 6;
(4.23) Elexp (#m:)] = exp (—u/2n:) 2 5= litm2' 1517

I((r —p+1+4+5)/2)/T((» —p + 1)/2).
From (4.22) and (4.23) it can be shown that the joint distribution of

(4.24) vi = (6: — kam)(ns™ + k)7, i=1,2,
tends to the bivariate normal distribution N (0, 0, 1, 1, p) where
(4.25) p = kikeof/ (™ + k) (nat + )}

for increasing ». In particular the marginal distribution of v, tends to the N (0, 1)
distribution. Hence approximate limits on 8, and B. are given by

(4.26)  Pr {®kom — (m " + ki) < B < Bllom + (m™* + ki’f) vyl

~1 — 2p,
(427) Pr (@[—kan — (ns ")) < B < @[—hwm 4+ (ns™ + k’F)'w,l}
~1—-2p
where
(4.28) p = [, ¢(v) dv.

It is to be noted that the normal approximation given here for the posterior
density of 8; differs slightly from the normal approximation to the sampling
distribution of this quantity given by John [8] in formula (97). The basic dif-
ference being in the variance. If we are interested in the probability for the joint
rectangular region R specified in (4.26) and (4.27) then

(429) Pr([ﬁl ) 62) ER] = 2[L(vp y Up 5 P) + L(vp y Up 5 —P) + 1 - 2p] -1
where
(4.30) L(vy,vp50) = Jo, [5,6(2, 40,0, 1,1, p) dz dy

and here ¢(z, ¥ | 0, 0, 1, 1, p) is the bivariate normal density with means (0, 0),
variances (1, 1) and correlation p. The evaluation of L(v, , v, ; p) can be obtained
from tables, or very conveniently from the charts of Zelen and Severo [10].

An inspection of the marginal characteristic function of 6; (4.23) reveals that
0; is dlstrlbuted as the sum of two mdependent variables X and k;Y where X
isN(0,n: ") and Y is distributed as [»~ o_p41)’. To have an idea of the usefulness
of the normal approximations (4.26), (4.27) and (4.29) we recall that (2x." »—
(2d — 1) is well approximated by the standard normal distribution for a
moderate number of degrees of freedom d. Therefore 8; , which is the sum of a
normal component X, and ¥ which tends to N([k’(» — p + %) /o, k2/2)
reasonably quickly as v 1ncreases, should tend even more rapldly to
N(k{i(v — p + 3)/v]}, 1/n; + k’/2v) then does the approximation (2xd ) —
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(2d — 1)} to N(0, 1). Further the approximation suggested (4.26) and (4.27)
uses the exact means and variances rather than the asymptotic ones which
should perhaps even enhance the value of the approximation. Generally » = n,
+ ne — 2 if the estimate of the covariance matrix is computed only from the
sample (otherwise » will be even greater) so that the approximation should be
fairly accurate for v — p + 1 = 20. The same reasoning will hold in the bivariate
case because from an inspection of the joint characteristic function (4.22)
we determine that we can represent 6, = X; + kY, 6, = Xz + k.Y where X; ,
X, and Y are mutually independent and are N (0,7,”"), N(0,n, ") and [y “x>_pa]*
variables, respectively.

We note for p = 1, the univariate case, that n/8; = niX; + nik;Y has a
posterior density which is the fiducial density with a suitable change in notation
obtained by Fisher [3], page 123, formula 91. Although he cast his problem in a
different framework it can readily be transformed into the discriminatory setting
thus implying that the limits on 8; are fiducial limits in the sense of Fisher, at
least in the univariate case.

It is to be noted that 8; and 8., the conditional probabilities of misclassification,
are functions of the random variables w1 , uz and =™ within the previous frame-
work. What has been presented are probability limits on these random variables.
The unconditional or posterior predictive probabilities of misclassification

(4.31) PrV <logr|zell]
(4.32) Pr[V > logr|zelly)
may also be obtained. For example
(4.33) EB) = [PrV <logr|m,u;= 2elP(u,po, Z") dus dus d="

= [R5 [f(V |, pe, Z; 2e )P, po, 27 du dpe 27V
where f(V | wm, 2, Z; 2 € I;) represents the conditional density of V. Hence
(4.34) EB) = [RE7f(V |2eIh) dV = Pr[V <logr|ze L]
where f(V |z e1I;) represents the unconditional or predictive density of V.
The evaluation of (4.34) is accomplished by noting that for @ = (& — &) -
S7H & — %),
(435) [(m 4+ DQ/ml7V = [(v(m + 1)/m)Q (2 — #)'S7(& — &)

+ $(mQ/v(m + 1))

It has previously been shown, [6] or [7], that the predictive distribution of the
first term on the right hand side of (4.35) involving z is (v + 1 = p) Y1
where ¢,,1-, is the ¢ distribution with » 4+ 1 — p degrees of freedom. Therefore
the predictive density of V is

(4.36) r(m + 1DQ/m(v + 1 — p)Pbyr, + 3Q.
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Thus we obtain
(437) EB) =Pr[V<logr|z exlIl]

= Prlbsy < (log 7 — 3Q)b(m + 1)Q/(v + 1 — p)m™
which may be evaluated directly from tables of the ¢-distribution. Similarly
(4.38) E(B:) =Pr[V > logr|zelly)

= Pr [tuap > (log 7 + 3Q)(ne + 1)Q/(v + 1 — p)nal .

These expectations, the unconditional or predictive misclassification errors, are
in a sense the optimum point estimates of the conditional misclassification errors.
From one point of view the limits on 8; and B, provide a more comprehensive
guide to errors incurred in using the linear discriminant ¥ than their expectations,
although the latter are also extremely valuable as “optimum” point estimates.

It is to be noted that we so far have made no attempt to justify the use of
V as the appropriate discriminant other than as Anderson states, “It seems in-
tuitively reasonable.” In support of this we may further add that for any fixed
2z it is easily shown that the posterior mean of U, which minimizes the
squared-error loss function, is

(4.39) ElU |2l = 3p(ne ' —m ™) + V.

This is a consequence of the fact that the expectation of U is the sum of the
expectations of the right hand side of (2.18). These can be obtained conditional
on =~ and then unconditionally by integrating over the posterior distribution of
=7, thus avoiding the exact evaluation of the density of U. Now if we wish to
incorporate this bias p(n.™" — n; ") into our analysis this is easily accomplished
by substituting throughout this section log r — 3p(ns ™ — ny *) for log r.

5. Some remarks. It is suggested that use be made of the results in this paper
in the following way. First the investigator, for some values n; and n. already
chosen, should compute limits on the true errors e and e to assess the diserim-
inatory power of the variables under consideration. If he finds the discrim-
inatory power unsatisfactory, he may wish to include more variables until he
is satisfied that the true errors are small enough for his purposes. Then he cal-
culates his estimate of the index errors—if his estimated index errors are much
larger than his estimated true errors, he might, if possible, collect more data
on the two populations until he can drive his estimated index errors down to
what he thinks is close enough to his estimated true errors for his purposes. If
new classifiable data is unavailable, he at least knows how well his sample
discriminant will do and what its possibilities for improvement are, given the
variables he has to work with.

* We note here that the Bayesian approach taken in this paper is somewhat
different from the one previously taken in [5] and [6]. There we presented what
we conceive of as a theory for a complete Bayesian approach to the problem of
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classifying new observations when the type and number of populations is known
with the number, being exhaustive and samples are available on each of them.
Classification of the observation depended on the product of the prior probability
and the predictive density of z under the various and exhaustive possibilities.
The predictive discriminant therein obtained from the ratio of the predictive
densities was linear only when n; = n,, in particular see [5]. In addition, mis-
classification errors were defined there in terms of the predictive densities and
here in terms of the linear discriminants. It turns out that E(B:) and E(B:)
are exactly the predictive errors of misclassification if n; = m, for the complete
Bayesian approach. For n; 3 n. , the predictive discriminant is non-linear and
the regions over which the predictive misclassification errors are computed are
consequently more complicated. However the differential error will diminish
as the difference between the sample means increases and as the sample sizes
increase.

The Bayesian (or perhaps better termed semi-Bayesian) approach presented
in this paper adheres more closely to the orthodox discriminatory procedure due
to its emphasis on linearity and parametric estimation. This semi-Bayesian
approach is somewhat akin in spirit to the previous presentation of a pseudo-
posterior density for the correlation coefficient in [7] and to Pratt’s incomplete
Bayesian approach [9].

Finally, there is little doubt that for large sample sizes, the two Bayesian
classification methods will yield substantially equivalent results. Moreover,
linearity has much to recommend it due to its intrinsic simplicity and important
interpretive uses. Work is also currently in progress on the problem of quadratic
discriminants via this semi-Bayesian approach, i.e., for Z; = 2, .
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