THE MARTINGALE VERSION OF A THEOREM OF
MARCINKIEWICZ AND ZYGMUND

By RtICHARD F. Gunpy

Rutgers—The State University
1. Introduction. Suppose that {di}r— is an orthonormal sequence of inde-
pendent random variables, ie., E(dy) = 0, E(dy’) = 1,k =1,2, --- . When
does the assertion that

(A) lim,e O nes vedy exists and is finite almost everywhere
imply
(B) 2iul < = w

for any numerical sequence {#:}s— ? In fact, since the converse is always true,
the question is: When is (A) equivalent to (B)? At least three sufficient condi-
tions for this equivalence are known: (i), uniform boundedness of the random
variables {dy} s— , Khinchine and Kolmogorov [5]; (ii), uniform integrability of
the sequence {di’}i—y, Kac and Steinhaus [4]; and (iii), the condition that
E(|di]) 2 T > 0 uniformly in &, Marcinkiewicz and Zygmund [6]. The Mar-
cinkiewicz-Zygmund theorem ([6], Theorem 4)—that (A) is equivalent to (B)
under condition (iii)— is more general than either (ii) or (i) and is the starting
point for the present paper.

We extend the theorem of Marcinkiewicz and Zygmund in two respects. We
prove the equivalence of (A) and (B) when (a) the orthonormal system {dj };—
is a sequence of martingale differences that satisfy a condition analogous to the
one given by Marcinkiewicz and Zygmund, and (b) each ‘‘coefficient” v, is, in
general, not constant but a function of the past, i.e., a function of dy, dz, -- -,
d._1 . As in the classical case, one-half of the equivalence problem may be settled
immediately: if the sequence of “coefficient’” random variables {#:}5— is such
that D ey v < o on a set A, then the partial sums S, = D i nd) converge
to a finite limit almost everywhere on A for any sequence of martingale differ-
ences {di} 7= such that E(dy’ || $x_1) = 1 almost everywhere. (See Neveu, [7],
Proposition IV.6.2, page 148). Clearly, the converse is false in general since
it is false for the original problem. (A counterexample may be found in [6], page
73).

With the provision that all random variables are integrable in the setting just
described, the partial sums S, = D i udy form a martingale. Such martingales
occur naturally in the study of certain classical orthogonal series, and, in this
connection, a special case of the main theorem of this paper appears in [3]. There,
however, the assertions and technique of proof are limited to a class of atomic
martingales. The present formulation is the outcome of an attempt to place the

Received 14 November 1966.
725

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%ﬁ
The Annals of Mathematical Statistics. IIEGIE ®

Www.jstor.org



726 RICHARD F. GUNDY

results of ([3] Section 3) in the context of what is known about sums of inde-
pendent variables. However, it now seems more appropriate—in the light of a
recent paper by D. L. Burkholder [1]—to consider our result as another contribu-
tion toward a theory of martingale transforms.

2. Notation and Definitions. Let (Q, &, P) be a probability space, ., k = 0,
1,2 ... an increasing sequence of o-fields with & C . The symbol I{ } is used
to denote the indicator function of the (F-measurable) set in braces. Sets are
said to be equivalent if their indicator functions are equal almost everywhere
(a.e.).

Let {dy , F&} 51 , or more briefly {d} 7= , be an orthonormal sequence of mar-
tingale differences relative to the sequence  , & = 0. In what follows, we con-

sider the sequence of partial sums S = {S,}n-1,

(1) S, = Zl?=1 Vi )

where {v:} 1—1 is a sequence of random variables subject to the restriction that v
is measurable with respect to Fx—; . For our purposes, we may assume that all
random variables are real valued; the extension of the main result to complex
valued variables is straightforward. Following Burkholder [1], we consider S as a
transform of the martingale T = {T, = >y di} w1 by the multiplier sequence
{v} i1 . Here, we conform to the usual custom: the transform S is called a mar-
tingale if and only if E(|ndi|) < o forallk = 1.

In conjunction with sequences of the form (1), we consider various stopping
times: a stopping time ¢ is a random variable taking values in the set {1, 2, - - - |
+ o} such that ¢» = I{t = k} is measurable with respect to & for £ = 1.
Usually, a stopping time is defined as the infimmum over a set of integers. If the
set in question is empty, we set ¢t = + . If A denotes an F-measurable set,
then we write A,(©) = {t = +»}N A and {t = +»} = Q,(x). A transform
sequence of the form (1) stopped at ¢ is denoted S* = {8, 7~ . The sequence
S is itself a transform of the martingale T by the multiplier sequence @y :

Snt = Z/?=1 (pk'l)kdk, n = 1, 2, s,
It is convenient to introduce the notation
p = p(M, S) = inf {n: [S.| > M},
the first passage time of the sequence |S| across the level M. The random variable
p is a stopping time and, associated with it, we have the sequence of indicator
functions m, = Ifn < p < + »},n = 1.
3. A Condition for Martingale Differences. Now let {d), :}s= be any se-
quence of martingale differences. For the moment, we do not assume that they
are orthonormal. The following condition reduces to one given by Marcinkiewicz

ahd Zygmund ([6], Section 3, p. 69) when the random variables {ds} -1 are inde-
pendent with E(dx) = 0,k = 1.
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ConprrioNn (MZ)*:

(1) 0 < (BE(d || F41))' < 405

(ii) E(|di| || Fima) = T(E(di’ || Fir))’
almost everywhere for each & = 1. Here T is fixed constant subject to the in-
equality 0 < T' = 1, and is independent of the index k.

Any sequence of martingale differences {d} s that satisfies condition (MZ)*
may be normalized so that E(dy’ || $x—1) = 1 a.e., & = 1. Clearly this involves
no loss of generality and the sequence becomes orthonormal in the usual sense.
In fact, we incorporate this normalization in the following.

ConprTioNn (MZ):

(i) E(d || Fr1) = 1 ace.;

(ii) P(|dx| > N || Fx1) = v > 0O for some constants A > 0,y > 0 uniformly
fork = 1. :

This condition is equivalent to condition (MZ)*; the proof of equivalence is
a corollary of Lemma 1, given below.

Condition (MZ) is applicable in a number of situations. For example, the
reader may easily verify that if {dy} v is a sequence of independent orthonormal
functions such that the L,-norms ||ds[, < B < + « uniformly in k for some p,
2 < p £ + =, then condition (MZ) is satisfied. More generally, if the sequence
{d2} =1 is uniformly integrable, then condition (MZ) holds (the converse, how-
ever, is false).

The hypothesis || supk|di| ||, < « for some 1 £ p < « is sometimes used to
secure special martingale convergence theorems; for example, see Neveu ([7]
Proposition IV.6.2, page 148) and Burkholder ([1] Theorem 4). Condition
(MZ) is weaker than this hypothesis in certain situations, although neither
condition implies the other in general. For example, if {di} s is a sequence of
independent identically distributed random variables—or more generally, any
stationary sequence of martingale differences with a trivial tail field—then
|lsupk|di| ||, < o for some 1 < p < = is equivalent to ||di[e = B < ® uni-
formly in k. This in turn, implies condition (MZ) if ||di|z = 1 fork = 1.

For another example of the applicability of condition (MZ), let us consider a
class of atomic martingales introduced by Chow [2]. The following definition
appears in [3]: an increasing sequence of purely atomic o-fields {F} = is said to
be regular if for any two atoms E) belonging to § and Ej.1 belonging to Fy.41
with E;, 2 Eyy, we have 0 < § £ P(Eyy1)/P(Ey) for some § > 0 and all
E =1

ProposrtioN 1. Any martingale T = {T, = D i1t} ney relative to a regular
sequence of atomic o-fields may be represented as a transform of an orthonormal
sequence {di} v that satisfies condition (MZ). Furthermore, the sequence {dy}i-1 is
uniformly bounded.

Proor. Notice that the definition of regularity also restricts the upper bound
of all ratios as follows: either P(Ey1)/P(E;) = 1 — §or P(Ew1)/P(Ey) = 1,
in which case Ej is also an atom of F.1. We eliminate this second possibility
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by embedding the sequence {4} 7~ in a regular sequence {F; '} x— such that
P(Bun)/P(E) <1 — .

Clearly, this is always possible if- the probability space is nonatomic. Further-
more, any martingale T relative to {F;'} ;= may be represented in the form (1)
with

& = w/(E(w’ || Fia))? and o = (B(w’ || Fia))’

whenever v, > 0. Since the set {vy = 0} is equivalent to {u; = 0}, we may define
dy arbitrarily on the set {1, = 0}, subject to the restrictions E(dy || $x—1) = O,
E(dy’ || $+-1) = 1, where d is measurable with respect to 3,’. Note here that the
above definition involves a slight abuse of notation. If E(|us|’) = o for some
k = 1, strictly speaking, E(w:’ || $x_1) is not defined.” However, since the se-
quence of o-fields in question is regular, F; is necessarily constructed by partition-
ing each atom of F;_; into no more than 8~ sets of positive measure. Therefore,
on each atom of %;_;, w, is essentially bounded so that E(w || Fx—1) may be
defined in the obvious way. The fact that the orthonormal system satisfies
condition (MZ) follows easily from the observation that ||dif. < 6~ fork = 1.

The identification of the sequence of partial sums of a Haar series with the
sequence of 2"th partial sums of some Walsh series (see, for example [3]) in
effect results from the above construction applied to the increasing sequence of
partitions of the unit interval determined by the dyadic rationals. In this case,
the orthonormal system {dy} 5-; may be taken to be the collection of Rademacher

functions.

4. Preliminary Lemmas. The first lemma is due, essentially, to Paley and
Zygmund [8].

Lemma 1. (Paley and Zygmund). Let § be a o-field, g = 0 a random variable,
and 8,0 < & < 1 a fized constant. If E(g || F) = « > 0and E(¢°||F) < Bon a
set A, then

P(gzsa|F) 2 (1 —06)"/8

a.e. on A.

Proor. A virtually equivalent assertion may be found in Zygmund ([9], page
216, 8.26). The proof is short; we give it for completeness. Let I; be the indicator
function of the set {g = da} and I; the indicator of its complement. Then

E(gl; || §) < ba
and, therefore, by the Schwartz inequality,
(@ —da)’ = (B(gL || 5))" £ E(Iyg" | %) E(L: | ) = BE(L || )

where these inequalities are understood to hold a.e. on A.
. CororrLARY. When E(dd || $xe1) = 1 a.e., condition( MZ)* is equivalent to con-
dition (MZ).

Proor. Suppose (MZ)* holds. Let 8 = 1 = E(dy’ || $ry) anda« = T, 6 = L.
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Then by Lemma 1,
P(ld] =2 T/2||Frs) = T4 >0

so that condition (MZ) holds.. Now suppose (MZ) holds for some A > 0 and
v > 0. Let I, = If|di] = A. Then the relation |ds| = |di|I) implies

E(|dy| || F5—1) = E(|di|Ix || Fo1) = NE(I1 || Fpa) = My > 0

a.e., so that (MZ)* holds with »y = T.

LemMA 2. Assume that the sequence of martingale differences {di}r—1 satisfies
condition (MZ). If lim sup [v.d.] < 4 on a set A, then lim sup |v,| < +
almost everywhere on A.

Proor. Let A, v be the parameters given by condition (M Z). Choose M suffi-
ciently large so that if I, = I{|v.d,| = M} then X ey I, < + o a.e. on a sub-
set A € A such that P(A") = (1 — ¢)P(A). Let J, = I{|v)| = M/\ and

K, = I{|d,] = N}. Then J,K, < I, and
E:=1'Y Jn é Z:.’=l E(JnKn ” EFn—l)
S 20 E(LL || Fa) < + oo,

a.e. on A by Lévy’s strengthened form of the Borel-Cantelli Lemma (see Neveu
[7], Corollary, page 151). This implies that

Z:=l Jn < + w)

a.e. on A’, and since ¢ > 0 is arbitrary, we conclude lim sup [v,| < + o a.e.

on 4.
LemmMa 3. Ifsup |Sa] < + « a.e., then, given any ¢ > 0, there exists a stopping
time t such that
(1) P(Q(=)) 21 — ¢
(i) [|8,'[fdP < + =
foralln =1,2,---.
Proor. The hypothesis implies that lim sup |v.d.] < 4+ « a.e. so that by
Lemma 2, lim sup |v,| < + « a.e. Let
t = inf {n: |vepa| > M}.
The random variable ¢ is a stopping time since |v,41] is measurable with respect
to F,. Also P(Q(©)) = 1 — e provided M is chosen sufficiently large. If
¢r = I{t = k} then we may write;
[18:PaP = 2wt [lowf'erdP < n- M2,
forn = 1,2, ---, as is required.
LemMa 4. If sup [S.] < + = a.e. then given any ¢ > 0,0 < K < 1 there
exist a constant M and stopping time r such that
(1) P(Q( o)) = 1 — ¢ the first passage time p(M, 87) has the properties
s (1) E(m || o) = Kae.forn=1,2,-..;
(iil) D met [E(mn || Faer)dP S e
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(In the following proof, all inequalities between random variables should be
interpreted to hold a.e.)
Proor. The stopping time r is defined as the minimum of four stopping times:

r ="min (p, 3, d, p").
Let p = p(M, 8) = inf {n: |S,| > M} where M is chosen so that
P(Q(»)) = 1 — Ke/4.
Let 7 = inf {n: E(mp41 || Fu) > K} where
o = I{n +1 = p < + oo},
Notice that ¢ < p on the set {¢ < + «} since, if m = n, then
0 = [ipmm T020P = [ gt E(mass [| F)AP Z [ iy, imy B(mnsa || Fa)dP
> KP(i =m,p = n).
Moreover,
KP(i < + ©) £ 2 nz0 [iicn) B(msa | 52)AP = 2200 [iny B(m || F0)dP
= D o [tz mdP £ P(p < + =) £ Ke¢/4.

Let ¢ = min (p, ) and notice that P(2,()) = 1 — ¢/2. Consider the first
passage time p' = p(M, 8°) together with the indicator functions T
= Iin < p' < + =}; we have

E(mnn| %) £ K forn =0,1, ---.

In fact, ¢ < p implies m,” < m, forn = 1,2, --- . From this it follows that on
the set {i = + «} we have

E(r, || Fom1) < E(m || Faa) S K forn = 1.

On the set {# = N}, we have
E("rn, ” EFn—l) = E(ﬂ'n “ 8:'n—l) =K

forn =12 -.--,N and

E(rypn || Fvx) = 0 fork = 0,
since 7 < p implies |Sx4x| = |Sy| = M fork = 0,1, - -- . Since N is arbitrary,
we may combine these inequalities to conclude that E(m, || F.—1) < K for
n = 1,2, --- . In summary, the stopping time g and corresponding martingale
S’ together satisfy requirements (i) and (ii) of the lemma. From now on, we

restrict all considerations to the martingale S°.
In order to define the stopping time d, notice that

e = 2aanIip =n) < + o,
- Tt follows from Lévy’s version of the Borel-Cantelli Lemma that
Z:Lo=1 E(""n, “ E;:n--l) < 4+ .
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Define the stopping time d = inf {n: D it E(m || Fx_1) > N} where N is
chosen so that
P(Qa()) Z 1 — ¢/4.

Now the argument follows the paftefn established above. Define e = min (g, d)
and the martingale S°. Let p* = p(M, §°) and m,* = I{n < p* < + «} for
n=12 - .Sincee < g implies 7," < m,, it follows that E(r,* || Fou) =K

forn =1,2, ---. Also Z';Ll E(r,* || F2—1) = N by the argument given above
with =, in place of m, and ," in place of ,’. Therefore, the martingale S° satis-
fiesrequirement (i) of thelemma (since P(2,()) = 1 — 3¢/4) andrequirement
(ii). However, at this point, we may conclude only that

vy [B(r,* || F.a)dP < N,

This difficulty is easily overcome by choosing M sufficiently large. In fact, if
requirement (iii) is not fulfilled, choose Ny so that

2nnort JE(m" || Fncr)dP = €/2.
Now choose M’ > M sufficiently large so that if
p" = p(M, 8,
and
m = I{n < p" < + =},
then
JE(r)" || $oa)dP < /2N,

forn =1,2, ---, No. Clearly, T < m, forn = 1,2, --- and requirements
(i), (ii), and (iii) will be satisfied with

r = min (e, p”) = min (p, ¢, d, p").
The proof of the lemma is complete.

5. A Convergence Equivalence. The main theorem may be stated as follows:

TuroreM. If an orthonormal sequence of martingale differences {di} = satisfies
condition (MZ), then, for any multiplier sequence {v}i=1 , the following three sets
are equivalent:

A = {lim Y iwdy exists and is finite} ;
B={Xiau' <+ o}
C = {20 (nd)” < + w}.

We prove the theorem is two stages. First, we show that A and B are equiva-
lent. The fact that A essentially contains B is the main contribution of the paper.
The converse is known (see [7], Proposition IV.6.2, page 148).
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Second, we show that B and C are equivalent. In so doing we use the equiva-
lence of A and B together with a device involving Fubini’s theorem that was
suggested to us by D. L. Burkholder.

The proof of the equivalence of A and B rests on the possibility of constructing
a certain stopping time. This is expressed by the following proposition (which,
incidentally, does not involve condition (MZ)).

ProrositioN 2. Let {di} i be a sequence of martingale differences such that
E(d? | Foa) = 1 ace. for all k = 1, and {vi} =1 a fixzed multiplier sequence. Then
the sets A and B are equivalent if and only if for any € > 0, there exists a stopping
time s and a constant K such that

(i) P(As()) = (1 — ¢) P(4);

(ii) [18:°fdP £ K < + o
forallmn = 1.

The proof of Proposition 2 consists of a standard stopping time argument
quite similar to that used in [7], Proposition IV.6.2, page 148. The details are
omitted.

Proor or THE THEOREM. (1) The sets A and B are equivalent. We proceed to
construct the stopping time s mentioned in Proposition 2.

Since A is the set where lim,.., S, exists and is finite, there exists an M such
that if p = p(M, S) then P(4,(®)) = (1 — ¢/3)P(A4). The resulting mar-
tingale S” satisfies the hypothesis of Lemma 3, so that if ¢ = min (p, ¢) (where
t is the stopping time of Lemma 3), then

[18.9*dP < +

forn = 1,2, --- . (However, we assume that

limyue [ [Sa?PdP = +;
otherwise, there is nothing to prove.) In addition, we may assume that

P(A(»)) =21 — 2¢/3.
Choosing ¢ = min (eP(4)/3), (T*/128)%) and K = T?/8 where T is the pa-
rameter specified in condition (MZ), we apply Lemma 4 to the martingale
S = 8% (Henceforth, we drop the superscript ¢.) We denote by r, p, and M,

respectively, the stopping time, first passage time, and constant provided by
Lemma, 4, and

o = I{k = p}, m o= I{k = p < +x}.
Fix n = no where ng is thé smallest integer such that
([ 18.,[*dP)} = M.
Then we compute as follows;

M 2 [|8/PensadP = [|S/[dP — [ (pn) S, dP
= [ Dol dddP — 251 [y | 2ok v dif* dP
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= [ 2ol dldP — 27 [ipmi 2oim 0 di dP
-2 Z;;l f(p=j) Zl§k<i§n v dv; d; AP
=71~ 1I — III.

We may write I — II = D iy [0’ dil dP — D ey [ vilme di® dP since v di
= 0 a.e. on the set {p < k}. Therefore

I—1II = Y% [ 0 d? — ol m dil) dP

=2 i [0’ E (7 di || Fama) AP
where 7, = 1 — m; . Since

E(iy || Se1) = 1 — E(mi || $2a) Z 1= T?/8,
it follows from condition (MZ) that
E(7, di® || Fr) = (T/2)'T%/8 = T*/32.
Consequently,
I —1IIz1%823 % [u}dP = T%32[ |8,/ dP.
Now we estimate
IIT = 23 7 [ipmiy Dnsi<izn v divi di dP
= 2 D ici<izn % dimpvi dim; dP.

Recall that mar; = m¢ for ¥ < ¢ and that g;r; = 7, , and sum over k = 1, 2,
+, % — 1 to obtain,

IIT = 230 [ Si_wwpir:d; dP
= 2> 0 [ SiwipB(wid; || Foa) dP.
Since |Si_ipi < M, we may apply the Schwartz inequality to estimate
11| < 2M Y20 [ |oi||E(dirs || Fi1)| AP

2M Y0 ([ ol dP)( [ B*(dir: || Fio) dP)}
2M(2im [0l dP)(Xia [ EX(dims || §1a) dP)?
2f 18" dP(2ias [ B*(dim; || §a) dP)?
since M =< ([ |8, dP)*. Now we estimate as follows:

v [ B'(dirs || §ia) AP £ 20 [ B(d || Fi0) B (ms || §41) P

= >ry [ B(wi|| 5:a) dP = (T*/128)%

A IA A

I\

Consequently
11| < 1%/64f |8,/*dP sothat M* = I — IT — IIT
r*/32f |8, P dP — 1%/64[ |S,|* dP

r*/64 |S," dP for every n = .

v 1A

I
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The proof of the theorem is now essentially complete: The stopping time
s = min (r, q) satisfies requirement (i) of Proposition 2 since P(Aq ())
z (1 — 3¢)P(4) and P(Q(©)) 2 1 — (¢/3)P(4).

We have shown that requirement (ii) is satisfied with K = (64/I*)M* for
all n = no. Since the expression in (ii) is an increasing function of n, require-
ment (ii) must hold for all n = 1. Therefore, we may conclude from Proposition
2 that the sets A and B are equivalent.

(2) The sets B and C are equivalent. Consider the product probability space
Q X [0, 1], where [0, 1] is the usual Lebesgue unit interval. Let {ri}i— be the
collection of Rademacher functions defined on [0, 1]. Then, by [5], the sets
C X [0, 1] and {lim,.. 2 i 70 di exists and is finite} are equivalent with
respect to the product measure. From part (1) of the present proof we may
conclude that the last mentioned set is equivalent to B X [0, 1} with respect to
the product measure. Therefore, by Fubini’s theorem, the sets B and C are
equivalent with respect to the original probability measure.

We have shown, therefore, that the sets 4, B, and C are equivalent as required
and the proof of the theorem is complete.
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