A LARGE SAMPLE TEST FOR THE INDEPENDENCE OF TWO
RENEWAL PROCESSES'

By SipNey C. Port AND CHARLES J. STONE
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The purpose of this paper is to develop a large sample test for the independence
of two renewal processes. Our original motivation was the suggestion of D. H.
Perkel of The RAND Corporation that such tests are needed in connection with
certain neurophysiological experiments. There are other areas, however, in which
such a test is desired (e.g., in reliability and maintenance procedures for sto-
chastically failing equipment).

Let V., n = 0, be independent random variables such that V,,n = 1, are
positive, identically distributed, and have finite mean. Let W, ,n = 0, be another
such sequence. Set Sy = To = 0 and forn = 1set S, = V; 4+ --- 4+ V, and
T, = Wi+ -+ + W,. Also set

S, = Vo + 8.,
T, = Wo+ Ta,
Z(t) = min {T, — ¢t|Tn > t},
Z'(t) = min{T, — t|T." > t},
and
X.=2'(8), nzo.

If we think of S,” and T, as the time of the (n + 1)st occurrence of two re-
newal processes, then X, is the time elapsed between the (n + 1)st renewal of
the first process and the next renewal of the second process.

Suppose now that V, ,n = 0,and W, ,n = 0, are independent. It then follows
easily that X, ,n = 0, is a Markov process on (0, « ) having stationary n-step
transition functions given by

Pu(z, A) = P(Z(S» —x) e A) + P(Sacx — A),

and furthermore that the process has an invariant probability measure IT de-

fined by
M(A) = [+ (EW)'P(Wy > t)dt.

If V', has the distribution with density (EV,)7'P(V; > t) and W, has the dis-
tribution II, then X, has the distribution II and hence X, , n = 0, is a strictly
stationary process. For a bounded function f on (0, « ), let E.f( Xo), Var, f(Xo),
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and Covn (f(Xo), f( X)) denote, respectively, the mean of f( X,), the variance
of f( X,), and the covariance of f( X,) and f(Xx) when X, has as its distribution
the invariant measure II. In particular, if f is the characteristic function of a set
A, then Enf(X,) = I(A).

For any Borel set A let N,(A) denote the number of X, ,0 = k < n, that lie
in A. If the two renewal processes are independent, then for n large, N,( A ) should
be close to (n + 1)II(A).

Consequently, an intuitively appealing procedure for testing the hypothesis
that the two processes are independent is to choose n, 4, and a positive constant
C and reject the hypothesis if and only if

INJ(A) — (n + DI(4)] = C.

More generally, we can let f denote a bounded measurable function and com-
pare s f(X:) with (n 4+ 1)Euf(X,). Our main result is that under the hy-
pothesis of independence and under mild further conditions on the distributions
of V3 and Wi , a central limit theorem holds for Y_¢ f( X).

THaEOREM. Suppose the sequences V, ,n = 0, and W, , n = 0, are independent.
Suppose also that for some m > 2, E |V1|" < « and E |W4|" < « and that for some
n = 1, T, has a non-singular distribution. Then for all bounded real-valued measur-
able functions f on (0, © ), asn — «

(n 4+ D= f(Xe) = (0 + DEnf(Xo)l=ais N(O, of),
where N(0, o/°) is the normal distribution with mean 0 and variance
o = Vamf(Xo) + 2 2-5= Covn [f(Xo), f(Xi)].

The somewhat complicated proof to follow is necessary because the Markov
process X, does not in general satisfy Doeblin’s condition. Indeed, Doeblin’s
condition fails to be satisfied whenever W; is unbounded.

The referee has pointed out that our theorem follows from Theorem 5.1 of
Orey [4]. This theorem is not correct as stated—the conclusion holds only under
the-additional assumption that, in Orey’s notation, o° = Eq,{f*(Y1))"} < «. It
is easy to construct examples such that ¢ = o and all the assumptions of
Theorem 5.1 hold. We know of no direct way of showing that under our as-
sumptions ¢ < . Any such method would be most interesting and would of
course yield an alternative proof of the above theorem.

Proor orF TuroreM. If X, has the invariant distribution II, then f(X,),
n = 0, is a bounded strictly stationary process. A central limit theorem for such
processes, assumed to satisfy some further conditions, has been obtained by
Ibragimov [1], p. 365. The main part of the proof below is to show that these
further conditions are satisfied. In doing so we will use some estimates of the
renewal function of Stone [3] and some estimates of probabilities of large devi-
ations obtained by Nagaev [2]. The case of arbitrary initial distributions will
easily be reduced to the stationary case.

We assume below that all the conditions of the theorem hold.
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LEMMA 1. Ast — oo,
[21P(Z(t) e dy) — T(dy)| = O([2ruP(Wyedu) + 7).

Proor oF LEmMA 1. Let » denote the renewal measure for the {7} process de-
fined by

»w(A) = X o P(T,eA).

Since E  |Wi)* < « and, for somen = 1, T, has a non-singular distribution, it
follows from a theorem of Stone [3] that »(ds) = »(ds) + p(s) ds, where », is a
finite measure having finite second moment, p is continuous and non-negative,
and as s — o

Ip(s) — (EW)™| = O(f3uP(Wyedu) + s7°).

From the formula P(Z(t) e A) = ff, P(WeA 4+t — s)v(ds) we obtain a de-
composition of the distribution of Z(t) as follows:

P(Z(t) e A) = $u(A) + ¢/ (4),
where
Y(A) = [eP(WedA +t— s)n(ds);
W(4) = [iP(WeA +t—s)p(s)ds.
Then
JSIP(Z(t) € dy) — T(dy)| < ¥i([0, )) + 2 sups [¥:/(A) — TI(4)].
But
([0, ©)) = [(7n(ds)P(WyZ t —s) + [ipn(ds)P(Wy =t —s)
n([0, ©))P(Wy = t/2) + n([t/2, ©))
= 0(™).
On the other hand, ¥,'(dy) = q.(y) dy, where
a(y) = [\ p(t +y — w)P(Wyedu).
To see this, note that
[2dy [P p(t +y —u)P(Wiedu) = [§P(Wy = 2+t — s)p(s)ds
= ["P(Wyz wp(z +t —u)du
= [ [P P(Wieds)p(z + ¢t — u)du.

I\

By Fubini’s theorem the left hand side can be rewritten as
' P(Wiedu) [Fp(t +y — wdy + [Zn P(Wiedu) [iep(t +y — w) dy.

By Fubini’s theorem the right hand side can be written in the same form.
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Using the formula for ¢,(y), we obtain
v/ (4) — T(A)| = [T lg(y) — (EW)T'P(Wy 2 y)|dy
< JTdy [37 It +y — u) — (EW)7| P(Wi e du)
+ (EW)T [T P(Wy 2 t+ y) dy
= O([TruP(Wiedu) + €7 + [CP(Wi 2 y + 1/2) dy)
= O([TpuP(Wyedu) + 7).
In this last step we have used properties of p and the fact that
JoP(Wy =y +t/2) dy = [Tdy [y P(Wiedu)
< [TouP(Wye du).

Lemma 2. Choose ¢ such that 0 < ¢ < EW; and set § = min (1, m — 2) > 0.
Then there is a constant K > 0 such that forn = 1,

f;;c |P.(z, dy) — H(dy)| = Kn"(””, r < en.
Proor or LEmMA 2. Choose a such that 0 < a < EW; — ¢. Forx < cn,
P(Siex — A) S P(Sy < 2) £ P(S, < en) = O(n'™),

the last step following from a result of Nagaev [2], p. 215. Now P(Z(S, — z) ¢ A)
= [T P(S.edt)P(Z(t — z) ¢ A) and thus

7 |Pu(, dy) — TI(dy)]|
< 2supy [Pa(r, A) — TI(A)]

< 2supy [T P(Snedt)|P(Z(t — x) e A) — TI(A)| + 4P(S,
2 [TP(Saedt) [T |P(Z(t — x) edy) — T(dy)| + 4P(S,
O(P(S. £ (¢ + a)n) + [onpuP(Wyiedu) + n™%)

= 0™ +n7") =0,

the last step following from Lemma 1 and Nagaev’s result.

For an event A in the sample space of X, ,n = 0, let Pu(A) denote the prob-
ability of A if X, has distribution II, and let P,(A) denote the probability of A
if Xo = X.

Lemma 3. If n = 1 and A is an event depending only on { X, , k = n}, then

|P.(A) — Pu(A)| £ Kn™ %, r £ cn.

Proor oF LEmMA 3. We need only observe that

[Po(A) — Pu(A)| = [T P(A| X, = y)(Pu(z, dy) — I(dy))|
< [§|Pa(z, dy) — 1(dy)| £ Kn ",

A

cn)

IIA
A
Q
<

LEMmA 4. Let n 2 1 and 0 = k < . Let A be an event depending only on
{X;|j =k} and let B be an event depending only on {X;|j = n + k}. Then
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|Pu(AB) — Pu(A)Pu(B)| < K'n™"*®,

where K’ is independent of A, B, n, and k.
Proor oF LEmMA 4. Let 1, denote the characteristic function of the set A.
Then
|Pu(AB) — Pu(A)Pn(B)| < Enll4 [P(B|X:) — Pu(B)]]
< O((en, ©)) + Kn~ "2,
but
I((cn, ©)) = (EW1)™ [5 POWy 2 ) dy
< (EW)7 [20uP(Wy e du),

from which Lemma 4 follows immediately.

We can now complete the proof of the theorem. If X, has distribution II, then
the theorem follows immediately from Lemma 4 and Theorem 1.6 of Ibragimov
[1], p. 365, at least in the case oy > 0. If oy = 0, then a simple computation shows
that Varg (D_i=f(Xi)) = o(n™") and hence the conclusion still holds.

In general, let f be a bounded measurable function on (0, ©) and — < 6
< . Choose ¢ > 0. Then

|E exp [i8(n + 1) 227 f(X;)] — Enexp [i8(n + 1)™ 27 f(X5)]|
S KM L P(Xo=ck) S e

for k sufficiently large and all n = k. This inequality follows from Lemma 3 or,

alternatively, by a proof similar to that of Lemma 3. For n = k and n sufficiently
large,
|E exp [#6(n + 1) 270 f(X;)] — E exp [#0(n + 1)7 27= f(X)]|

< Elexp [i8(n + D7 2S00(X)] - 1] =
and, similarly,
|En exp [i8(n + 1)7* 25=0f(X;)] — En exp [i8(n 4+ 1) 274 f(X)]] £ e
Combining the above inequalities, we see that
lim, ., B exp [i#(n + 1) 2270 f(X;)] = lim,.., En exp [i#(n + 1) Z}'=of(Xj)],
and the conclusion of the theorem holds, as desired.
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