ON HITTING PLACES FOR STABLE PROCESSES

By Sioney C. Port
University of California, Los Angeles
1. Introduction. Throughout this paper X(¢) will denote a drift free stable
process on R (d-dimensional Euclidean space) having transition density p(t, )
and paths which are normalized to be right continuous with left hand limits at
every point. The familiar fact that all so normalized processes are strong Markov

processes will be used without further explicit mention. For a compact subset
B C RY let

Ts = inf{t > 0: X(t) eB}(= o if X(¢{)gB forall t>0).

be the first hitting time of B. Our purpose in this paper will be to investigate the
asymptotic behavior, for large ¢, of the quantity

(1.1) F(t,z) = [sPa(t < Ts < o, X(Ts)edy)f(y),

where f is a continuous function on B. Previously this quantity was investigated
for planar Brownian motion by Hunt [2], and in the special case of f = 1 for
general stable processes by the author in [4] and [5]. The results we obtain here
will be extensions of those for the case f = 1 to the case of an arbitrary f,and the
proofs of these results will be dependent on the results for the case f = 1. In
essence, our technique will be to show that the general case can be reduced to the
case f = 1.

In order to state our results it will be necessary to recall some concepts and
notation from [4] and [5]. Here we shall be brief referring the reader to the above
cited papers for fuller details.

The measure P,(Ts > t, X(t) e dy) has an upper semi-continuous density
gs(t, z, y) which satisfies the well-known first passage relation:

(1.2) p(ty—=x)— [s[oP(Tseds, X(s)ede)p(t—s,y —2)=gs(t,z,y)-
Let
Hy(z, dy) = P(Ts < o, X(Ts) ¢dy)
and
gs(z,y) = [5 gs(t, z, y) dt.

We must now discuss the case of recurrent and transient processes separately-

In the recurrent case we assume that P,(Ts < «) = 1. Then we know (see
[5]) that gs(x, y) < o forz # y and y £ B. [Actually more is true, but this is all
we shall need]. Moreover, except for linear Brownian motion, the limits

limll/l—>°° gB(z) y) = gB(x’ 00),

M pae [5 Ha(z, dy)f(y) = [s Ha( =, dy)f(y)
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exist when f is continuous on B. If « is the exponent of the stable characteristic
function of X(1) — X(0), then in the recurrent case, either 2 = o > d = 1 or
a =d,d=1or2 [For«a = d = 2 we have planar Brownian motion, for

a = d = 1 the symmetric Cauchy process.] Set
(1.3) h(t) = p(1,0)T(1 — 1/a)T(1/a)t ™', a>d=1,
p(1, 0) logt, a=d.

Our first result is the following
THEOREM 1. Assume X (t) is recurrent and P,(Ts < ) = 1. Let f be continuous
on B and let F(t, x) be given by (1.1). Then except for linear Brownian motion
limt-»eo h(t)F(ty x) = gB(x) «© ) fB HB( «© ) dy)f(y)'

ReMARK. For the standard linear Brownian motion it easily follows from the
continuity of the paths that

lime (7t/2)'F (L, x) = |& — pal f(p2) x> pe
=0 Mn=2T=pe
= |z — pl f(p1) < m

where p; = glb of B and p; = lub. of B.

We now turn our attention to the transient processes. Here we shall only deal
with symmetric processes, i.e. those processes such that X(1) — X(0) has log
characteristic function —|6]* with @ < d. It is well-known that the potential
kernel density for these processes is just the Riesz kernel

(1.4) g(z) = T((d — @)/2)/[2%" *(a/2)] " |2|*™".
From (1.2) we easily derive that
(1.5) gly — x) — [ Ha(z, d2)g(y — 2) = gs(z, ¥),

and that gs(z, y) < o wheneverz # y. Also (Prop. 18.4) of [3]) there is a unique
measure 75 having support contained in B (called the capacitary measure of B)

such that
(1.6) PATa < ©) = [5g(y — o)ma(dy).
The finite total mass of 75, 7s(B) = C(B), is called the capacity of B.
Our first result is to show that the conditional hitting distribution of B from o
is just the normalized capacitary measure of B. The analogue of this result for

recurrent processes can be found in [5].
THEOREM 2. Assume C(B) > 0. Then for any continuous function f on B,

liMjzow 2 Po(X(T5) e dy | Ts < «)f(y) = [a(ma(dy)/C(B))f(y)-
The result for transient processes corresponding to Theorem 1 is as follows.
TureorEM 3. Under the same assumptions as Theorem 2
limesw (/7 [(d/a) — 1p(1, 0)7'F(t, ) = PoTs = ©) [af(y)ms(dy),
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where
p(1,0) = 2I(d/a)[al(d/2)(4m)* "

We conclude this section by showing how the above results for the case of
Brownian motion yield interesting facts about the exterior Dirichlet problem for
B. For planar Brownian motion this was done by Hunt [2], so we will consider
only the case d > 2.

Hunt [2] showed that for Brownian motion on R%, d = 2,
K(t,z) = [5PTs < t, X(T5) £ dy)f(y)

was the unique bounded solution of the exterior Dirichlet problem for B for the
heat equation,

0K/ot =V'K,

with initial value 0 on R — B and boundary function f on B. It is also a familiar
fact that if d > 2, then the corresponding problem for Laplace’s equation has a
unique bounded solution ¢ satisfying the condition

(L7) ¢(z) = Olg(=)), |z = .

Now it is well-known that Hzf(x) is a bounded solution of the exterior Dirichlet
problem for B for Laplace’s equation. Moreover (See (2.1))

limyejow Haf(2) /g(x) = [5f(y)ms(dy).
Thus Hgf(x) is the unique solution satisfying (1.7). Clearly
K(t,z) T Haf(x)

and

F(t, ©) = Hsf(x) — K(t, ).
We see therefore that F(¢, x) is just the discrepancy between the time inde-
pendent solution and this time dependent solution. It follows from Theorem 18.9
of [3] that P,(Ts < ) = ¢.4(x) is just the classical capacitary potential of B.
Consequently, Theorem 3 translates into the following purely analytic result on

the Dirichlet problem.
COROLLARY 1. Let B be a compact subset of R®, d > 2, having positive Newtonian

capacity. If K(t, x) and o(x) are as above, then
(1.8) limaw ((d/2) — 1)(4m)*" |o(z) — K(t, 2)| £
= [1 ~ ¢rp(2)] [2S()7a(ds)

where 7(ds) is the capacitary measure of B, and ¢x s the corresponding capacitary
potential.

Actually, arguing as in Hunt [2] Section 6.6 we can establish a slightly more
general version of the above result.

THEOREM 4. Let B, ¢, , and w5 be as in Corollary 1. Assume L(x) is bounded
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and continuous on R* — B, and such that L(z)/g(z) — L*, |z| — . Let K.(¢, x)
denote the bounded solution of the heat equation on R® — B with initial values L(z)
on R® — B and boundary function fon B. If o(z) is the bounded solution of Laplace’s
equation on R* — B with boundary function f on B satisfying (1.7), then

lime,. ((d/2) — 1)(4r)*? Ko (¢, 2) — o(z)|t“P™
=[1- ﬂovrB(x)”L* - fo(S)?rB(ds)f.

2. Proofs. We first establish Theorem 1. Let M = sup..s|f(z)]|, and set
a = [5Has(,dy)f(y). Then

WOF (L, x) = h(t) [raga(t, x, y)Hef(y) dy
h(t) [rags(t, z, y)[Haf(y) — aldy + aP.(Ts > t)h(t).

Now by Theorems 2 and 4 of [5], we know that the 2nd term on the right con-
verges to ags(x, «© ), and thus to complete the proof we need only show that the
first term converges to 0. Let ¢ > 0 be given and choose r such that
|Hgf(y) — a|] < e whenever |y| > r. Then using the scaling property, p(t, x) =
Y1, 207) we see that

[h(t) fre gs(t, z, y)[Haf(y) — a] dyl
é h(t)[Pz(TB > t)e + 2M fhllé"gB(t’ z, y) dy]
< h($)P,(Ts > t) + O(R()E).

The desired result now follows at once from the above estimate.
Proor or TuEOREM 2. From (1.6) and the fact that g(z + y) ~g(z), x| — =,
uniformly in y on compacts, it is clear that Theorem 2 is equivalent to showing

(2.1) limz1-o [5 Ha(z, dy)f(y)/9(x) = [af(y)ms(dy).
To establish this we proceed as follows. Define measures

vo(dy) = g(z) Ha(z, dy).
Then from (1.6) we see that

(2.2) limjzjme0 v2(B)
= lim,xl_,w fB (g(y - l‘)/g(l‘))ﬂ's(d?/) = WB(B) = C(B) < =,

and thus there is a sequence {x,}, |z.] = « such that v, ,(dy) converges weakly
to some measure y(dy) on B having total mass C(B). From (1.5) we see that

(2.3) limyy1oee g5(2, ) /9(y) = 1 — Hs(z, B).

But Hunt’s duality results (see Section 17 of [3]) show that gs(z, y¥) = ¢s(y, )
for our symmetric processes. It now easily follows from (1.5) and (2.3) that

limpzpow [27:(d2)g(y — 2) = P(Ts < ).
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Thus we see that
(24) or(y) = [sv(de)g(y — 2) < Py(Ts < ).

We will now show that y = w5 . To this end let M (B) be the set of all measures A
with support in B whose potential

on(z) = [5g9(y — z)N(dy) = 1.

If Ne M(B), then N(A) = 0 whenever A is polar. Indeed, if 4 is polar and
N(4) > 0, then there is a compact polar set K © A such that A\(K) > 0. But then
if » is the restriction of N to K, we see that

0< ofz) En(z) =1
By Theorem 18.9 of [3]
P.(Tx < ©) = supremx) orn(T)

and thus P,(Tx < ©) > 0,a contradiction. The symmetric processes considered
here satisfy Hunt’s hypothesis H ([3] p. 193) with the consequence that

{zeB:P(Tp < o) < 1}
is polar. For measures N\; , \; having support in B, define
(Mo N) = o [59(y — 2)M(dy)ho(de).
Then the Schwartz inequality holds:
A, A2 = (O, M) (e, ).
Since y(B) = ws(B) = C(B) and v, 75 ¢ M(B) we see that
C(B)" = (v, ms)" = (v, v)C(B).
Thus
(v,v) 2 C(B).
On the other hand (2.4) implies that
(v,v) = (75,7) = C(B).
Thus (v, v) = (75, 7s) and thus v = 75 (see, e.g. Lemma 4.1 of [1]).

If there were another subsequence {z,}, |x.] — ® such that v.,(dy) converged
weakly to a measure y(dy), then (2.2) would again show y(B) = C(B), and the
same argument as used above would show ¥ = m5 . Thus (2.1) holds. This com-
pletes the proof.

PrOOF oF THEOREM 3. Set o(z) = P,(Ts < =) andset A = [, f(z)ws(dz).
Then we may write
F(t,z) = [rags(t, z, 2)e(2)[Haf(2)/¢(2) — A/C(B)]dz

+ (A/C(B))P:(t < Ts < ).
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Now by Theorem 1 of [4] we know that

liMesw (Y7 Pt < Th < ) = [(d/a) — 1)]7'p(1,0)C(B)P,(Ts = ).
To complete the proof we must now show that
(2.5) limga, 47" [raga(t, x, 2)e(2)[Haf(2) /o(z) — A/C(B)]dz = 0.
Choose ¢ > 0. Then by Theorem 2 above, there is a & such that whenever |z| > 4,

|Hsf(2)/¢(2) — A/C(B)| < e
Also A
f,,,és gs(t, x,2)dz = f|,|§5 p(t, z — ) dz = O(t%'%).
Equation (2.5) now easily follows from these two facts. This completes the proof.
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