TESTING HYPOTHESES IN RANDOMIZED FACTORIAL EXPERIMENTS'

By S. EHRENFELD AND S. ZACKS

New York University and Kansas State University

0. Introduction. In the present paper we study the problem of testing the
significance of a subgroup of 2° pre-assigned parameters in an n/2™° fractional
replicate of a 2™ factorial experiment (s < m). In our previous paper on Random-
ization and Factorial Experiments [3] we outlined ANOVA schemes for such tests
of significance, which were shown to be appropriate for the two randomization
procedures RP I and RP II studied there. The test statistics proposed are the
familiar F-like ratios. The main difficulty in performing those tests is in choos-
ing the critical level for a given level of significance. This is also the main prob-
lem in performing ANOVA tests in the non-randomized designs. The problem is
due to the effects of the nuisance parameters, which may be excessive and yet not
under our control.

To be more specific, as will be shown in the sequel, the conditional distribution
of the F-like ratio test statistics, given the fractional replicate chosen, is like that
of a double non-central Fly; , »s ; \,\*]. Here, » and vs are the appropriate degrees
of freedom, X and \* the parameters of non-centrality, being functions of the
fractional replicate chosen, and of the vector of unknown parameters. Even under
the null hypotheses, that the pre-assigned parameters are zero, A and A* might be
quite large due to the effects of the nuisance parameters. In the classical fractional
replication model the assumptions imply that, under the null hypotheses,
A = \* = 0. For such a model the proper test criterion for level of significance v
is the (1 — «)th fractile of F[», , vs), i.e., F1_,[v1 , . This is not the case, however,
when X and \* are positive.

When the values of the nuisance parameters are known, the problem is solved
by a simple adjustment of the test statistics. A similar adjustment may also
yield locally optimal test procedures when certain information is available on the
nuisance parameters (see K. Takeuchi [6]). However, no proper solution to the
problem can be attained in the non-randomized case if the values of the nuisance
parameters are unknown. The objective of the present article is to verify that
under certain conditions on the nuisance parameters, if the fractional replicate is
chosen according to the randomization procedures studied in [3], the distributions
of the F-like test statistics are approximated by the distributions of central F
statistics, and the test criterion Fi_,[v1, v yields approximately the required
level of significance v. We also prove that under the established conditions on the
nuisance parameters, if the fractional replicate is of a sufficiently large size com-
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pared to the number of pre-assigned parameters, the Hotelling-T" statistic yields
a uniformly most powerful invariant simultaneous test of the significance of all
the pre-assigned parameters. This simultaneous test procedure is applicable in
cases where the number of pre-assigned parameters is relatively small, since it
requires that the fractional replicate will be of size n/2™*, where n > 2°. To es-
tablish the required conditions on the nuisance parameters, we show that the
conditional bias of the common least squares estimators of the subvector of pre-
assigned parameters is a sum of terms which are, under the randomization pro-
cedure considered, uncorrelated random variables; and the partial sums of these
terms constitute a martingale. Extension of Doob’s theorem [2] on the asymptotic
normality of such standardized sums yields the required conditions for these con-
ditional bias functions to be asymptotically normal. This property implies that the
distributions of the F-like test statistics are asymptotically like those of central F
statistics.

In Section 1 we present the statistical model and the testing problem. We intro-
duce certain required notions and describe briefly one randomization procedure,
RP I to which we restrict attention in the present study. The results can be
easily extended to the other randomization procedure, RP II. In Section 2 we
study the asymptotic distribution of the common least squares estimator of the
subvector of pre-assigned parameters. The asymptotic theory is formulated in
terms of the number of uncorrelated summands in the conditional bias functions.
We assume that the factorial model under consideration is of a very large size,
while the number of pre-assigned parameters is small. In Section 3 we introduce
the ANOVA scheme suggested in [3], and study the distributions of the F-like
test statistics under RP I. In Section 4 we study the problem of determining the
critical levels of the F-like ratio test statistics, which will insure a prescribed level
of significance. The difficulty is discussed, and several possible solutions are sug-
gested. In Section 5 we study the problem of the simultaneous testing of all the
pre-assigned parameters. We show that under the conditions of Section 2, and
whenever the fractional replicate is sufficiently large, the Hotelling-T* statistics
yield uniformly most powerful invariant simultaneous tests, with respect to all
possible testing procedures under RP I.

1. The statistical] model and the testing problem. Consider a 2™ factorial
system in which the main effects and interactions are represented by a vector
@' = (Bo, -+, By-1) of N = 2" parameters. We are concerned with a subgroup
of 8 = 2° (s < m) main effects and interactions. The corresponding parameters
will be called pre-assigned parameters, and will be represented by a subvector «
of order S. The parameters not in « are called nuisance parameters. Without loss
of generality (see Ehrenfeld and Zacks [3]) we assume that « consists of the first
S parameters of §.

The N treatment combinations are classified, according to the common con-
founding method, into M = 2"° mutually disjoint and exhaustive blocks (frac-
tional replicates). The defining parameters according to which these M blocks
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are constructed are not in a. According to Zacks [7],if Y, (v =0, --- , M — 1)
designates a random vector of order S, representing the yields of the treatment
combinations in the vth block, the statistical model specifies:

(L.1) Y, = (C9)e + (H.)B" + = (0=0,---,M —1)

where 8* is the subvector of nuisance parameters; (C®) is a Hadamard matrix of
order S, defined recursively by the direct Kronecker’s multiplication as follows:

(12) (C(S)) — [} —}] ® (0(812))

and

(13> (Hv) = (01(){1)’ e :01(),1‘1{4)—0 ® (C(S))7 v = O: e :M - 1’
™ (y=0,---,M —1;u=1,---,M — 1) are the elements of the matrix
(C’(M)). It is further assumed that the error vector ¢, (v =0, ---, M — 1) is

distributed like N(0®, ¢*I®), 0 < ¢* < «. The conditional (unadjusted) least
squares estimator of « (see Zacks [7]) is

(1.4) & = SHC)'Y, (v=0,---,M —1).
It is easy to verify that the components of &, are given by,
(1.5) bi=ai+miteae; (v=0+,M—1;5=0,---,8—1)

where

(16) Mvi = y:llcgf)ﬁwus (D=O,,M—1,Z=0,,S—1),
and e ~ N(0, ¢°/8) independently for all » and all 4. The functions #,; are
linear functions of the nuisance parameters alias to a; (¢ = 0, --- , 8 — 1).

In a non-randomized procedure a block of treatment combinations (fractional
replicate) is chosen in a fixed manner. A randomized procedure is one in which the
vth block is chosen with probability &, (» =0, -+ ,M — 1).InRP 1§, =1/M for

ally = 0, ---, M — 1. In the present study we restrict attention to the case
where n blocks are chosen independently according to RP I (sampling with re-
placement). Let &, , - -+ , &, denote the estimators of « according to (1.4) cor-
responding to the n chosen blocks. On the basis of the given values of
(&, , -+, &,) we wish to test each of the S composite hypotheses:

(L.7) H:a; =0, g* arbitrary (¢ =0, ---,S — 1) against the alternatives
(1.8) H,":a; % 0,8% arbitrary (4 =0,---,8 — 1).

We shall also treat the problem of a simultaneous test of all the S hypotheses
Hy"”. In most interesting cases we expect, however, that the simultaneous test
will reject the hypothesis that all the components of a are zero. In this case we
wish to test the significance of each component of « individually.

) 2. The asymptotic distribution of the estimator & under RP I. According to
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(1.5) and (1.6), the conditional dlstrlbutlon of &, given v, is like that of
N(e + n,, (¢*/8)I®), when n, = (n0, -+, mprea). Under RP I n, is a
random vector, being a linear combination of vectors consisting of the nui-
sance parameters, with random coefficients. Indeed, let 8w be a vector of
order S X 1, consisting of the first S elements of B, i.e., Bw = (Bo, - - ) Bs—1).
Let 6(2) = (65 , o+, Bes—1), and similarly, for each j = 1,---, M — 1, let
@(]) = (,8(]_1)5 y T, ﬁjs_l). Deﬁne the S X (M - 1) matrix

B=(Bw,8w, ,Buwy).

Let C, = (C$, .-+, C_)) where C,’ (v = 0, - — 1) is the vth row
vector of C™, short of the first element {4 = 1. Accordingly,
(2.1) n, = BC,, v v=0,---, M — 1.
We write n, as a sum of { = m — s random vectors X (k = 1, , t) defined in

the following manner: Partition the matrix B into ¢ submatrlces By, of order
S X 27, where:

(22) B, = (6(4) PR @(2Q—1))7 q = 2k_1) k= 1. y b
Correspondingly, we partition the random vector C, into ¢ subvectors z; , where:
(23) zk = (Ciﬂql)) : 'S]gq)—l)i q = 2,6—17 k= 1’ o )t
According to the well known properties of the ™ matrices (see [3]) we have:
(24) zk = C(M)(zoy e Z;—l)) q = 2k_l) k= 1’ R 2

where z, = 1. Furthermore, define for each k = 1, , t, Xy = Bizy . Then, it is
simple to verify that

(25) n, = Z’i—=l X]c .

We investigate in the present section the asymptotic distribution of n, ast— .

For further development we present several properties of the sequence of
random vectors {X;,X,, --+, X;, - - -}. For the sake of simplifying notation, let
W, = (2, - ,2/),k =1, According to (2.4), given Wi_ , z is deter-
mined up to a sign, and under RP I one has:

zZr = Wi, with probability %,
(2.6) = =Wy, with probability 2,
k=12t
Accordingly,
(2.7) E{Xi} =0, forall k=1,.--,¢
and

(2.8) E{X,X1,} = 0, for all By # k.
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That is, the vectors {X;: k = 1, ---, t} are mutually uncorrelated. Property
(2.8) results from the fact that the inner product of two dlfferent column vectors
of €™ is zero; Whlch implies that for every ¢ # ¢, E{CHPC} =
(1/M) 2 7= CP % = 0. The same orthogonality property yields, according
to (2.3),

(2.9) Elzz)} = 19, q=2, k=1,-,t
Thus, the covariance matrix of X} is:
(2.10) E{X.X\'} = BiB\, k=1t

Let T, (m =1, ---, t) be the vector of partial sums: Tp, = D_pe1 Xi. T is
determined uniquely by the matrix B and the random vector W, . Let &, =
{(B, Wy)}. Then, under RP I,

(2.11) E{Tni1|Fn} = Tw + E{But1Zni1 | Fn}

=Tw, m=1,2, -
Thus, {(Tn, x): m = 1, 2, ---} is under RP I a martingale. The covariance
matrix of T, is, according to (2. 8) and (2.10),
(2.12) E{T.T.} = >y BBy, m=1,--,t

We assume that, for ¢ sufficiently large (t = t), 3. = Dt BiB, is positive-
definite. Thus, for every ¢ = ¢, there exists a non-singular § X S matrix Q; such
that ¥; = Q.Q.. The following lemma is important for the proof of the main
theorem.

LemMma 2.1. Suppose that %, = Zk_l B..B,/ is positive definite, and let £, = Q.Q. .
Furthermore, let (\®: ¢ = 0,---, 8 — 1} be the characteristic roots of
BB/ (k =1, .-+ ,t). Then, the conditz’on.'

(2.13)  sUposijcs-1SUPLgkse [2uig [Bivusl /(i NP = 0o(1), ¢ =27,

as t — «, implies that

(2.14) supr<i <t |Q¢ BiWit| = o(1), as t— o,
Proor. Foreveryk =1, - -+ ,t, ByBy = D 2L g(u)g(u) , ¢ = 2. Accordingly,

forany kand k' = 0,1, -- tlfq—2’“_1 g =27,

(2.15) BiBi'BuBis = D 2Tt D% BanBwBmB

= D 3 euBwBin
where ¢y, = (u)@(w) The commutatnrlty of the inner product, and the sym-
metry of BwB(w , imply that BiB: and BBy are commutative, for all 1 < Fk,
k' £ t. Accordingly, there exists an orthogonal matrix P which s1multaneously
diagonalize each of the matrices BiB)' (k = 1, --- , t). It follows that,
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SEn® 0
(2.16) P, P = .
0 Zli=l.)\§£)1
P does not depend on ¢. Moreover, for every k = 1, --- , t,
TEn® 0T
(2.17) B/3 7B, =B/ P - PB,.
0 Tiod
Tia® o

(2.18) Q7B = : PB,, k=1t

0 Z/tc=1 By
Finally, according to (2.3), (2.4) and the definition of W ,
(2.19) Q7'BiWies = (fo 7 D326 Poi 257 BirigsmysC0, + -+

(501 2570 P 2520 BiragrnsCii), ¢ = 27,
k=1,---,t;where{; = Z,‘M)\i(k) (¢=0,---,8—1);and P = (Py;). There-
fore, for every k = 1, - -+ | ¢,

Hence,

8—1

(2.20) 1Q: 'BiWi| < D iSb et D it IPal 2555 [Brtg+wal-

Hence (2.15) implies (2.14).

Turorem 2.2. The following three conditions imply that the distribution-law of
Q.”'T, approaches N(0, I®) ast — o :

(i) for t sufficiently large ¥, is positive-definite;

(ii) condition (2.13) of Lemma 2.1.

(iii) the fractional replicate is chosen according to randomization procedure RP 1.

Proor. Let ¥,(u) denote the characteristic function of Q,'T;. We show that
the above three conditions imply that lim;.. ¥;(u) = exp { —iu’u}, which is the
characteristic function of N(0, I®). The proof follows Doob [2] p. 386.

Write,
(2.21) V,(u) = Efexp {#u'Q, T,_1} exp {fu'Q,"X.}}.
Expanding exp {i1'Q, "X} we obtain:
(2.22) exp {'Q "X = 1 + w'Q X, — 1(u'Q,X,)*
+ #ufQ7XS, o = 1L
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Furthermore, under RP I, E{X,|F, 4} = 0.
Let,
Ek,k—l = E{Qt_lxkxk’(Qt—l)l l gk—l}, k —_ 1’ cee, t'

Then,
(2.23)  Elexp {/'Q "X} |5} = 1 — Lo 4 38 | uf B{Q X | 5.

However, E{|Q. X[ | F11} = |Q "B:W.|* = 0(1), as t — =, according to con-
dition (ii) and Lemma 2.1. Thus,

‘I’g(ll) = {exp {’iu/Qt_ng_l}E {exp {iu,Qt_IXg} |€Ft__1}}
(2.24) = E{exp {iu'Q, T} (1 — 3u'$,,qu + o(1)))}

Condition (ii) implies that for every k = 1, --- | ¢,
'Lt = E{u'Q  BiWiaWiiBy (Q.7) u | F1i)
(2.25) = [l B{QTBiWia|* | Fia} = [uf’ |Qi 7 BiWies[*
= o(1), as t— o,

Therefore, for all m = 1, -+« , £, if Tpy = D11 Xs,
(2.26)  Wn(u) = Efexp {i'Q, "T,}}
= E{exp {i'Q/ "Tn_1 — 30'%nnu(1 + o(1))}},

ast—> oo, where To = 0, and ¥, o = ¥; . Thus, foreverym = 1, - - - , ¢t the follow-
ing inequality holds as t — o«

Wn(u) — Efexp {10'Q, "Tny — (1/2t)u’u}}]
= |E{exp [iu'Q, T, — (1/2¢t)u’u]
(2.27) -(exp { =30 [Emma(1 + o(1)) — (1/)I®Nu} — 1)}]
< Eflexp {(+30'[(1/0)I° — Zpmalu + ' $nmau-0(1)}
— 1)} £ OIE{Z[(1/DI® — $pmalu} + o(1)/4).
Moreover,
|\I/¢(u)e%“'“ _ 1| — Ian=1 (\I,m(u)e(ml‘zt)u’u _ \I,m_l(u)e((mﬂmt)u'u)l
(2.28) S 2ot [Un(0) — Wpg(u)e VPN
< 0(1) 2 ha E{(1/20)u'u — 'S o} + o(1), as t— »
Finally, for every ¢,

(2.29) 2ont B{Emma} = Q7 (Qomat B{XaX 1) (QTY

7w
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Hence

(2.30) 2omet B{(1/20)u'a — $u'$ u} = 0, for all u.
We have thus obtained,

(2.31) W (u)e™™ — 1] = o(1), as t— o,
which implies that

(2.31a) limy,e ¥(u) = exp { —3u'u}.

This proves the theorem.

In the next section we present an ANOVA scheme in which individual tests of
significance are performed for each component of «. For these tests we shall be
concerned with the conditions under which all the marginal distributions of the
components of &, approach normal distributions. The condition is weaker than
(2.13), since we are not concerned with the joint distribution of all the compo-
nents of &, . From Theorem 2.2 we obtain

CoROLLARY 2.3. Under the randomization procedure RP I if the nuisance pa-
ramelers satisfy the condition

(2.32) supi<r<el iq;ql [Bigusl/( thc=1 iq;ql 6%+u8)%] = o(1),

g=2"" as t— w,

for each i = 0, --- , 8 — 1; the marginal distribution laws of the components of &,
are asymptotically, ast — », N(a;, ¢*/S + D3 .,), where:
(233) D%,t = EI€=I Z‘.;g;l B%-}-uS; q = 2k—17 T = 07 e 7S -1

The proof of Corollary 2.3 is obtained from Theorem 2.2 by considering one-
dimensional vectors. In this particular case, letting in (2.13) ¢ = j be indices
which can assume only one value, (2.13) is reduced to (2.32). Under this con-
dition 9,:/D;, is distributed asymptotically like N(0, 1), 7 =0, ---, S — 1.
Finally, the conditional distribution of &,; (¢ = 0, ---, 8 — 1), given v, is like
that of N(a; + n.:, °/S). Hence, the asymptotic distribution of &, as ¢ — o,
under RP I and condition (2.32), is like that of N(as, /S + D).

The following is a trivial example of a sequence of constants {8; :5 = 0,1, ---},
which for every ¢ = 0, ---, S — 1 satisfy condition (2.32). This sequence is
defined as follows:

Birus = 1/k, for u=q7q+1,...’q_|_]c_1,q=2k—1’
=0, for w=gq+%k ---,2¢—1,

wherek = 1,2, --- t;t=1,2,---,4=20,1, --- , 8 — 1. For this sequence we

have
ftq;ql ﬁg+u3 = l/ky q = 2k‘17 k= 17 27 ]

and, D35, [Birus| = 1. Thus,
SUP1 <k <t Zf‘q;ql Iﬁ”“sl/z’tml fﬁ;; 53+us = 1/212:1 k' — 0, as t — o,
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for each ¢ = 0, --- , 8 — 1. Thus, condition (2.32) is satisfied.

This example shows that the number of non-zero nuisance parameters in each
row of By (k = 1,2, --- , t) should not grow too fast. For large values of k£ (as
t — ) most of the nuisance parameters should have a “negligible’’ effect. Con-
dition (2.32) requires that all the diagonal elements of £, = D i, BiB;: will ap-
proach infinity as ¢ — . This means that as k grows there must be some con-
tribution to the growth of D,; from elements in By .

There are examples of sequences of nuisance parameters which do not satisfy
(2.32), and a fortiori do not satisfy (2.13), but nevertheless the fourth central
moment of 9,;/D;; — 3 as t — oo, which is the fourth central moment of N(0, 1).
One example of such a sequence is: Bipus = k'/2¥ foralls =0, ---,8 — 1,
andallu = 2, ... 2 — 1, wherek = 1,2, ---, ¢, --- . For this sequence,

Dly= Ylk/2 = 4(1 — (t 4 1)27¢ 4 27y 54
ast— w;foralls =0,---,8 — 1. On the other hand,
2 |Birus| = K, q =27, forall ¢=0,---,8 — 1.
Hence
SUP1gist D ucq |Bisus] = £ — o0.

Thus, condition (2.32) is not satisfied. Nevertheless, one can show that for such a
sequence, since under RP I

(2.34) E( Z}tc=1 in)4 = ZZ=1E{X21} + 42 Zlgk;daggtE{XiﬁXizi}’

where X;; denotes the ith components of X, Oty E{Xt:} — 16 as t — o, and
D iski<ky st B{ X3 X4, — 8 as t — . Therefore,

limae B( Y by Xxi)*/DY, = 3.

This example shows that we can expect a fairly good approximation to the
asymptotic distribution of #,:/D;,: by that of N(0, 1) even if condition (2.32)
is somewhat violated. If the contribution of the alias (nuisance) parameters is
too small or too large the asymptotic approximation to a normal distribution
will not hold.

3. The ANOVA scheme and the distribution of test statistics for RP I. As
shown in [2], the hypotheses (1.7) can be tested on the basis of n independent
estimates of e, &,, -+ &, say, obtained by RP I, by an ANOVA scheme in
which the following statistics are determined for each component «; of @ (z = 0,
s, 8 —1).

(3.1) Q(Auyi, ~** ) Qi) = 8D jua(du;i — @;)° (1 =0, ---,8 —1)
where &.; = (1/n) > }-1 é,;:. We compute also
(3.2) Q*(6.:) = nS&; (i=0,---,8 —1).

The conditional distribution law of &, given v is N(é: + 7., o°/S). Thus,
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under RP I, the distribution law of & is the mixture M D 2 N(a: + mos,
M—1

a*/8); for which Ed,; = a;, and Var {&,} = 0*/S + Y vt Brus (1 = 0, -+,
S — 1). This results from properties established previously. It follows that,

(33) E{Q(awi, -+, Gui)} =0 + S22t Bius, 2 =0, -+, 8 — L

Similarly, the conditional distribution law of &.;, given (w1, ---, v,), is
N(o; + 7i.i, 0" /nS) where @1.; = (1/n) 2 1m ;i . Hence,

Var {&.:} = o*/nS + (1/n) 222 B2us,

and

(34) E{Q"(a:)} = ¢ + S iS5 Bhus + nSa; @ =0, -+, 8 — 1.
Comparing (3.3) and (3.4) we conclude that the F like ratios,

(35) F9 =nai/(n — 1)7' 215" (quyi — @)’ ({=0,---,8 — 1),

are proper test statistics for testing Ho® (¢ = 0, - - - , § — 1). One can ask whether
a more sensitive test of Ho'™ can be attained by pooling the ‘“within” mean-
square-errors, which appear in the denominators of (3.5) for the various values of
2. In other words, is

(8.6) F*® = nali/(n — 1) 2000 2 0 (i — @0)’, =0, -+, 8 — 1,

a more powerful test statistic than F®, for eachs = 0, - - - , § — 1? This question
will be discussed in the sequel. We shall see that under RP I the distributions of
F*® might be considerably more complicated than those of F®. This complica-
tion does not appear in RP IT (see ANOVA scheme for RP II in [3]). The com-
parison of power functions of the test statistics in the ANOVA schemes for
RP I and for RP II is of great practical importance, and will be presented else-
where.

We turn to the study of the distribution of the test statistic F® (3.5) under
RP I. For the sake of simplification we delete the subsecript <.

Let a; be a scalar component of &,; ( = 1, -+, n). The conditional distribu-
tion of the quadratic form Q(ay, - - - , an), given (v, « -+ , v,) = v,, is like that of
(*/8)x:" [n — 1; N(V, ; 8)], where the parameter of noncentrality is:

(3.7 A(Va; 8) = (8/26%) 2 51 (05 — 7)™

n; designates the component of n,;, corresponding to a; and 3 = > i ny/n.
As gpecified in (1.6), each value of 5; is a linear function of the nuisance param-
eters which are alias to the component of « under consideration. Similarly, the
conditional distribution of ¢ = »_7— a,/n, given v, , is like that of (¢*/nS)-
x2 11 N* (v, 5 8)], where

(3.8) N (V.5 8) = nS(a + 7)*/24%

x3Tn — 1;\] and x2[1;\*] are independent. Accordingly, the conditional distribu-
tion of the F-like statistic (3.5), given v, , is like that of a double-non-central
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F[1,n — 1;\* \]; whose distribution can be represented by a mixture of central
F variates according to:
Fl1,n — ;NN ~ (n — Dx[1, N/x’ln — 1;N]
(3.9) ~ (n = DxIL + 2J)/x’ln — 1 + 2M]
~[(1 + 20)(1 + 2M/(n — 1)
-FI1 4+ 2J,n — 1 + 2M],

where J and M are two independent random variables, having Poisson distribu-
tions with parameters ( expectations) \* and \, respectively.

Let H(x|v, v2; a, B) denote the distribution function of the double non-
central Fn, vs; o, 8], and let H(x|», »;) denote the distribution function of
Flvi, v). If G(x |1, n — 1) denotes the distribution function of the F-like ratio

(3.5), then :
G"(xllwn - 1) = E(vn){H(x|1,n— 1;)‘*(Vn76>7)\(vn;6>)}
(3.10) = Eg ) {EuvlH(2[l + 2M/(n — 1)]

(142071 + 2, n — 1 + 2M)}}.

In Section 2 we established conditions under which the asymptotic distribution
of g is normal. As is readily proven, if the distribution of 5 is N(0, D*), 0 <
D’ < o, the distribution of the F-like ratio is like that of a non-central
F[1, n — 1; ). Indeed, if n ~ N (0, D?) then a; ~ N(a, ¢°/S + D?) identically
foreveryj = 1, - - -, n. Thus, in this case Q(ay, - - - , @) ~ (¢ + SD*)x'In — 1]
and Q*(d@) ~ (o> + SD*)x:’[1, . Therefore,

F =n8Q*(a)/(8/(n — 1))Q(ar, -+, an) ~F[1,n — 1; ¢,
where
(3.11) £ = nSd’/2(s" 4+ SD?).

4. Determination of critical levels. In all cases where the distribution of
n is expected to be reasonably approximated by a normal N(0, D?) distribution,
the (1 — y)th fractile of the central F[1,n — 1], as a critical level for a test which
rejects when the F-like ratio is too large, will attain a level of significance (size
of the test) ¥, close to the value v aimed at. The actual size of the test ¥ is:

5 = Ee{P{FIl, n — 1; N, N] = Fi,[1, n — 1]}}
(4.1) = Eqo{Eum{PIFIL + 2J,n — 1 + 2M]]
= Fiyll,n — 11+ 2M/(n — 1)/(1 +27) | J, M]}}.

In the case of a non-randomized fractional replicate the attained size of the
test depends on the fractional replicate chosen and on the nuisance parameters.
In the non-randomized case we have:
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(4.2) (va) = Ega{PIF[L + 2J,n — 1 + 2M]
Z Fis[l,n — 1)1 + 2M/(n — 1)I/(1 4 2J) | J, M]}.

A check of the tables of the fractiles of the central F distribution shows that for
every vy £ 0.10 and alln = 4, - ~

(4.3) Fi,[l,n —1] =2 Fi 1 +2J,n — 1+ 2M], forallJ,M =0,1, ---.

Thus, if the values of N*(v, ; 8) and \(v, ; 8) yield a high probability that the
Poisson random variables (J, M) satisfy the relationship M = (n — 1)J,
we may expect that with a high probability

P{FIl + 27, n — 1 + 2M]
= Fuy[l,n — 11 +2M/(n — D]/(1 + 2J) [ (J, M)} < 7,

and that the resulting ¥(v,) does not exceed ~. Such a situation is insured when
\* is small compared to N. Examples can be constructed, when \* is large com-
pared to N, in which the attained level of significance 7(v,) is substantially greater
than the value vy aimed at. It seems that better control on the level of significance
is provided by employing the randomization procedure RP I rather than a non-
randomized procedure.

When the assumption concerning the approximation to normality of the dis-
tribution of % is unwarranted, but there is a prior knowledge concerning the
magnitudes of N* and \, one can try to adjust the critical level accordingly. For
example, a first order approximation to the distribution of G,(z |1, n — 1) can
be obtained by the function:

(44) G*(z|1l,n — 1) = H(z|1,n — 1; A%(8), A(8));

where A*(8) and A(B) are the expectations under RP I of N*(v, ; ) and A(v, ; 8)
respectively. This approximation requires the prior knowledge of A*(8) and
A(B). The root of the equation G*(z|1,n — 1) = 1 — ¥, say, Gi—,(1, n — 1;
A*(8), A(8)) determined for the conditions of the null hypothesis, may serve as
an adjusted critical level. If the variances of N*(v, ; 8) and (v, ; 8) can also be
assumed, a second order approximation can be tempted. A numerical analysis
of the goodness of such approximations will be given elsewhere.

A final remark in this connection is that from a Bayesian point of view, if the
prior distribution assumed for the nuisance parameters is N(0, 7°1),0 < 7 < oo,
the uniformly most powerful invariant test of the null hypothesis, based only
on the n independent estimates of the component of & under consideration, is the
test which rejects the null hypothesis whenever the value of the F-like ratio (3.5)
exceeds F1_,[1, n — 1]. This shows that among all invariant test procedures whose
level of significance does not exceed v, and which are based only on the » inde-
pendent estimates of the component of « under consideration, the F-like ratio
compared with F1_,[1, n — 1] is an admissible test. We have mentioned twice in
the present discussion that the optimality of the individual F-tests, under the
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normality conditions, is restricted to the class of tests based only on the n in-
dependent estimates of each individual component of «. Actually, the estimates
of the different components of « are dependent, and it seems reasonable to con-
sider simultaneous test procedures, or individual test procedures that take into
account the estimates of all the S components of . In the next section we discuss
such a test. C

5. Simultaneous testing under RP I. In cases where the size of the subgroup
of pre-assigned parameters is not too large, so that the number of blocks of
treatment combination » > S = 2°) a simultaneous test procedure of the hy-
pothesis:

Hy*: « = 0, § arbitrary; versus H;*: a 0, 8 arbitrary,

is attained by the Hotelling-T* statistic in the following manner:
-~ Let {ay, -+, a,} be independent and identically distributed least-squares
estimates of e. Define the S X n matrix: 4 = (a;, az, -+ - , a,). Furthermore, let

(5.1) I?v = A(I, — (1/n)Jn)A,’

where J, = 1,1,” is an n X n matrix with all elements equal to 1. We consider
the Hotelling-T" statistic

(5.2) T = n(n — 1)y'V7y,

where y is the mean vector: y = (1/n) Y j—a,; and reject H,* whenever 77
is larger than a certain critical level.

TueoreM 5.1. Under the conditions of Theorem 2.2, the test procedure: reject
Ho* whenever T* = [(n — 1)8/(n — 8)IF1_,[S, n — 8] is asymptotically of level
of significance v; and asymptotically uniformly most powerful invariant.

REMARK. As in Section 2, the asymptoteness of the result relates to the num-
ber of alias parameters for each pre-assigned parameter.

Proor. Under the conditions of Theorem 2.2, the distribution of a; (j = 1,
.+« n) is asymptotically like that of N(e, (¢°/S)I®® + ¥.), as { — », where
$e = D i BB/ . Let V, = ("/S)I° + %, . As is known (see T. W. Anderson
[1], Chapter 5), if X;, -+, X, are independent, identically distributed like
N(u, V), of all tests of w = 0, which are invariant with respect to a non-singular
linear transformation, the above T"-test is uniformly most powerful. Furthermore,
under the assumptions of Theorem 2.2, the asymptotic distribution of T? given
by (5.2) is like that of [(n — 1)S/(n — S)]F[S, » — S]. This proves the theorem.

In the ANOVA scheme, given in [3], we indicated how one can test simultane-
ously whether n = 0. There is no special difficulty in performing such a test,
since under the null hypothesis the distribution of the proper test statisticis like
that of a central F. If this test accepts the hypothesisn = 0, while the Hotelling-7"
test rejects the hypothesis @ = 0, a test of significance of the individual compo-
nents of e can be performed by F*® (¢ = 0, .-+, 8§ — 1), defined in (3.6). If
n = 0, the distribution of F*?, under the null hypothesis, is like that of
F[1, 8(n — 1)], and the test which rejects whenever F*® = Fy_,[1, S(n — 1)]is,
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obviously, more powerful than the test based on F given in (3.5). On the other
hand, if n # 0 there are again distributional complications. Even if the conditions
of Theorem 2.2 are fulfilled, the asymptotic distribution of F*® is like that of:

(6" + SDL; 8422554 (68 + SDHXIn — 1],

where all the x™s are independent, and £ is given in (3.11). If the values of
D;(¢=0,---,8 — 1) are unknown we cannot control the level of significance
by a proper choice of a critical level. The question of devising a test procedure
more powerful than the test statistics F®, for testing the significance of indi-
vidual components of @ or some linear functions of e, is still open for further
research.
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