ON BAHADUR’S REPRESENTATION OF SAMPLE QUANTILES

By J. Kierer'
Coinell University

1. Introduction and summary. Let X; , X, - - - be independent and identically
distributed real random variables with common df F. Suppose that 0 < p < 1,
that F(&,) = p, that F is twice differentiable in a neighborhood of p, and that
F” is bounded in that neighborhood and F’(£,) > 0. Let S, be the sample df
based on (X1, ---, X.); i.e., nS,(¢) = number of X; = 2,1 = 7 < n. Let
Y,» be a sample p-quantile based on (X, -+ X,);ie, Su(Ypu—) = p =
Su(Yp.); if np is an integer, so that Y, , is not unique, it will be seen that any
measurable definition can be used in the sequel, and for the sake of definiteness
we shall take the smallest possible value. We shall write o, = [p(1 — p)]%

Let

(1.1) Bo(p) = Ypu — & + [Su(ép) — p]/F,(fp)-
Bahadur (1966) initiated the study of R.(p) and showed that
(1.2) R.(p) = O(n™*(log n)*(log log n)*)

wp 1 as n — . He also raised the question of finding the exact order of R,(p).
In the present paper we answer this by proving

TueOREM 1. For either choice of sign,
(1.3) lim supmw = F'(&)Ru(p)/12737 " o,in " (log log n)"] = 1
wp 1.

Later in this section we shall sketch the rationale behind this result, whose
proof will ocecupy most of the paper.

Let 7 be any positive number. For ¢ ¢ [—7, 7], we write
(1.4) Ua(t) = 0™F (&pra=")Bu(p + n7%),

Un = Un(0) = n™"F'(&)Ru(p),

which by assumption on F make sense for n large. Also write
(1.5) K, = n'(p — Suls))-
As the discussion later in this section shows, it is trivial that, for each b > 0,
uniformly in ™ < |k, | < b, the conditional law of U,/| k., |}, given K, = k,, is
asymptotically N(0, 1) as n — . Since K,/o, is also asymptotically N(0, 1),
it is obvious that ,
(1.6) iMoo P{U, < u} = 20,7 [7 @k Hu)¢(k/op) dic
where ® and ¢ are the standard N (0, 1) df and density. More generally, we shall
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1324 J. KIEFER

show in Section 5 that, under the same conditioning, and uniformly for &, in
a set of probability arbitrarily close to 1 according to the law of K, for each large
n, for each finite collection %, &, - - -, {»n of values in [—7, 7], the asymptotic
joint conditional df of {Un(|ka[t)/|knl), -+, Un(|kn|tm)/| kn '} is the same
as the df of {J(&), -+, J(tm)}, where {J(t), —o < t < o} is a separable
stationary Gaussian process with mean 0 and convariance function

(L.7) E{J(t)J ()} = max (1 — |4 — &, 0).

(The definition of U.(| k. |¢)/| kn I* can be made arbitrarily when k, = 0, since
P{K, = 0} — 0.) Let G be N(0, ¢,°) and independent of the J-process. Let
J*(4) = |G|'J(t/| G]). Our discussion above indicates a result we shall prove
in Section 5.

THEOREM 2. As n — o the process {U.(t), |t| < 7} approaches in law the
process {J*(t), | t]| £ 7}, whose sample paths are Lip o for all « < %, wp 1., and
sup|y <- &= Un(t) approaches sup), <, == J*(t) in law.

We shall also prove, in Section 5:

TuroREM 3. For either choice of sign, (1.3) holds if & n**F'(&,)Ra(p) is re-
placed there by sup)y < [£Ua(t)). '

Actually, this can be strengthened by letting r — « slowly with n, asin (5.4),
but this is of limited interest. (See also Remark 2 of Section 6.)

Section 6 contains other remarks on related results in the domain of Bahadur’s
considerations, including (Theorem 4) the observation that his technique yields
the strong form of the law of the iterated logarithm for order statistics, and not
just the classical form as exhibited in Equation (4) of [1], and also (Theorem 5)
the validity for sample quantiles of analogues of Strassen’s results [11] for the
cumulative sums #S,(p). Section 2 collects most of the elementary probabilistic
estimates which are needed in the proof of Theorem 1, the lower- and upper-class
parts of which are contained in Sections 3 and 4.

Before proceeding further, we reduce our considerations by the following:

LemMa 1. If Theorem 1, 2, and 3 are valid when F s the uniform df on [0, 1],
then they are valid for general F satisfying the assumptions stated at the outset of
this section.

Proor. For F satisfying the assumptions, define independent uniformly dis-
tributed random variables X1*, X,*, - - - as follows: Let Hy, H;, - - - be uniform
on [0, 1] and independent of each other and of the original X;. Let X o=
F(X:2)(1 — U;) + F(X,)U;. (If F is continuous, X* = F(X.,).) Then the
X ;* have the desired joint uniform distribution. Moreover, if B is the hypothesized
neighborhood of &, in which F is twice differentiable, and if S,* and Y . are the
sample df and sample p-quantile based on (X", -+, X,*), then Taylor’s
Theorem with remainder yields for the corresponding R,.*(p), as long as Y .. ¢ B,

R (p) =Yin—p+ 8% —p
(1.8) =F(Ypn) —p + Su(&) —p
= F' (&) (Yo — &) + F'(£)(Ypn — £)°/2 + Sul&p) — p
= F'(&)Ra(p) + F'(£) (Yo — £)°/2F (&),
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Wlhere ¢ is a chance value in B. Since Y,, ¢ B wp 1 for all large n and since
n*(Ypn — &) in fact obeys a law of the iterated logarithm, we obtain

(1.9) n[Ra*(p) — F'(&)Ru(p)] — 0 wp 1.

This yields the desired result regarding Theorem 1, and the results for Theorems
2 and 3 are obtained similarly; one uses the additional fact that n®t SUD| 4| grn—1/2
(Yprem — £pre)> — 0 wp 1, which is an easy consequence of the law of the
iterated logarithm for the sample df (see [2]), or can be proved by the techniques
of Section 5.

THROUGHOUT THIS PAPER WE HEREAFTER ASSUME F TO BE
THE UNIFORM DF ON [0, 1], UNLESS EXPLICITLY STATED TO THE
CONTRARY (POSSIBLY BY EXHIBITING THE SYMBOL F).

We now introduce some further notation. The complement of an event A will
be denoted A . In the proof of Theorem 1, v will be a valiie > 1 (large in Section
3, near 1 in Section 4). For each positive integer r, we denote by 7. the greatest
integer < v". Whenever we write ), or D, it will be understood that the sum-
mation (to ) begins at a large enough value that expressions like log log 7,
which appear in the summand are real; a similar remark applies to other expres-
sions. All “orders” refer to behavior as n — «© or r — . We abbreviate “in-
finitely often” by “i.0.” and ‘“‘almost all »”’ (i.e., all natural numbers n except
for a finite number) by “a.a.n”. We define

(1.10) ¢ = 230, (log log n)™",
ha = 2'37%,n ¥ (log log 1)},
and
To(2)= Sa(z + p) — (z +p) + 1 K.,
(1.11) T.*(x) = supogozs Ta(v),
T, () = —infogo<z Tu(v),
T.*(x) = supo<o<as | Tu(?) |.

Note that T,(0) = 0 wp 1.

We now rephrase the statement of Theorem 1 in a form that will make it
simpler to explain. Suppose for the moment that the event K, = k., > 0 occurs.
It is then clear that, F being uniform, if d, > 0, then

(1.12) Ru(p) > dw & To(0 ey + dy) < —da,
Ru(p) < —dn & Tu(n "y — dn) Z da,

except for a set of probability zero (where T, has a jump at n*k, — d,) in the
second case. (Of course, (1.12) is also valid when d, = 0). The event of this
second line of (1.12) is illustrated in Figure 1 in the case d, < n "%k, . For the case
K, = k., < 0, there are two analogous events, again given by (1.12). Referring
to the second line of (1.12) with d, = g, , write

(1.13) A.\) = (K, >0 and T.(n 'K, — N\gn) = Aga}.



1326 J. KIEFER

A (%) +X—1"7h, —
V[
sy
— A
o WA A
} | 7 he1/2 &y >
i | 7 '
‘ | //
—A
i 2
=_J P 7,:(/7'1/2k -d )
L/
v
v
7
/)
?—’(-7'_.’/2*/;
Fra. 1
Suppose we proved that
(1.14) P{4.(\)i0} =1ifN < 1,

= 0ifA > 1,

and also proved the three analogous results for the first case of (1.12) and the
two cases of K, = 0. This would then clearly prove Theorem 1. The cases when
K. = 0 can be obtained by invoking the cases when K, > 0 for the (1 — p)-
tile of the random variables 1 — X; and the fact that for A > 0 the event {K, = 0,
Tw(£Ngn) = Ngw = 01.0.} is easily seen to have probability zero by using the
Borel-Cantelli Lemma. Sections 2, 3, and 4 are devoted mainly to proving
(1.14). Any modifications which are needed to prove the analogue of (1.14)
for the other case of (1.12) are indicated, thus yielding Theorem 1.

As usual, for N a positive integer and 0 < = < 1, we denote the binomial df by

(1.15) B(z, N, 7) = 252 ($)n'(1 — o),
and we also write
(1.16) B*(A, N, ) = B(A + N, N, ).

We shall frequently use the symbols A, N, and = to refer to quantities in the
context (1.16). If N = 0, B and B* assign probability one to the value zero.

We now indicate briefly the idea behind the statement (1.14). Fix N > 0.
Then n” %k, > Ag. clearly implies

(1.17) P{A.(\) | K, = k,}
=1 — B*0ng. —, n(1 — p + n7'k,), (n k. — Aga)/(1 — p)).
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If b < k, < b, the Central Limit Theorem is applicable with g, replaced by
n **y and (with the corresponding result for K, < 0) yields (1.6). In fact, if
k, = bn’h, with b > 0, which normalization turns out to yield the crucial range
of values of K, , Lemma 2 of Section 2 implies that the normal approximation
applies both to (1.17) and to the df of K, at k., and yields

log P{A,(\) | Ky = bnhn} ~ log [I — ®(Ang./(bnka)*)]
(1.18) ~ —3[(4N?/3b)/ log log n],
log P{K, > bn'ha} ~ log [l — ®(bn'h./oy)]
~ —1[(2v°/3) log log n).

Since minyso [26°/3 + 4A?/3b] = 2\}, attained at b = N¥ it is not hard to show
from (1.18) that

(1.19) log P{4,(\)} ~ —\!log log n,

so that, whatever X > 1,

(1.20) > P{d,(\)} = » if A< 1,
< wif N> 1.

This suggests that (1.14) can be attacked by the classical approach of using the
Borel-Cantelli Lemmas for the event {A, (\) i.0.} when A > 1 and for a cor-
responding event in terms of a sequence of independent blocks of observations
(from n, + 1 to n.41) when N < 1, and by then showing that pothing much dif-
ferent happens for intermediate values of n.

It is this last aspect of the proof which requires some delicacy and slightly
different techniques from those employed in the classical case [5], [6] or in the
proof of the sample df law [2], [7]. For example, a step analogous to that of the
usual approach (as in [6]) in the case of the upper class would be to show that,
if A > 1, then y and A" > 1 and € > 0 can be chosen so that, for all large  and
ny <N = Nra,

(1.21) P{Au ., (N) [ AN Nnp<i<n 4;(0)} > e

But the intuitively obvious (1.21) seems difficult to establish in view of the com-
plexity of the condition of (1.21) compared with the analogue in the case of
partial sums or the sample df. Thus, we forego (1.21) and, roughly speaking,
prove instead the superficially stronger relation

(122) P{ U"r<n<nr+1 An()\) | Anr()\,)} > 1 - €ry

where D, ¢, < . Such relations rely heavily on the persistence in n and in x
of the sample df deviations T,(z), as made precise in some of the lemmas of
Section 2.

2. Preliminary lemmas. Because the last argument of B* in (1.17) is cus-
tomarily small in our considerations, we shall often require the Central Limit
Theorem for small tail probabilities in the context of (1.16) when N — oo,
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w— 0, Nt — «, and A’/Nx — « at a slow enough rate:
LemMmA 2. If Ay > 0,75 — 0, Ny — @, Ay’/Nry — o, and Ay’/N'my* — 0,
then, for each ¢ > 0,as N — =,

B*(—Ax, N, 7y) ~ B*(—Ax, N, ny) — B*(—Ax(1 + {), N, 7x)
(21)  ~1— B*Ax, N, 7wy ~B*(As(1 + §), N,mw) — B*(Aw , N, m)
~ ®y(—Ax/I[N7n(1 — )],
so that the logarithm of any of these behaves as
(2.2) log B*(—Ax, N, mx) ~ —Ay"/2N7y.

Proor. The standard proof in Feller [6], pp. 168-179, for the case where nx
is constant, is easily seen to apply, essentially intact, under the present assump-
tions. (It even yields the same conclusion with { replaged by ¢ such that Nzy/
Ax*¥w = o(1), but we shall not require this stronger result.) Of course, 1 — 7wy — 1
is used in (2.2).

We shall also use (2.1) in the usual way to obtain estimates for the law of
Ky, where 7y = p for all N; this entails only multiplying the right side of (2.1)
by (1 — p)™", to obtain an estimate of log P{N*Ky > Ax}.

The following lemmas use the sample df conditioning technique (as employed,
e.g., in [7]), and make use only of Chebyshev’s inequality and the fact that, given
that Ky = k > 0, the law of M[Tx(z) + z] forz > 0is B(-, M(1 — p) +
M, /(1 — p)); the corresponding unconditional law is of course B(-, M, x).
We shall not aim at sharp hypotheses or conclusions, but merely at the forms we
require. Thus, all these estimates have unconditional and various conditional
versions, of which we state only the forms actually used in the sequel. Also, under
the conditions of Lemma 3, the analogue of (2.9) with “>w” replaced by “ < —w”
in both events, is easily proved in the same way; as a corollary of these two re-
sults we then have, under the same conditions,

(2.3) P{Tu((1 — 8)a) > (1 — 38)w|Tu(a) > w, Ky =k} = 3%,
P{Tu((1 —8)a) < —(1 — 38)w|Tu(a) < —w, Ky =k} = 3,

which inequalities we shall make use of; these could have been proved directly
with “38” replaced by a smaller multiple of § by repeating the argument of the
last few lines of (2.6), and (with 2 reduced to a smaller positive value) even with
“38” replaced by “8” by using a different argument. We forego such repetition
and unneeded elegance. The results which are required for proving the analogue
of (1.14) obtained from the first half of (1.12) are proved in almost the same way,
and the form of their statements will be clear; for example, from (1.12) we see
that (2.4) will be replaced by considering negative deviationsover1 <2z = 1 4 6.

LemMA 3. Suppose0 < § < §,a > 0, Mow = 2, and that Mow’/(a + w) = 32.
Then, wp 1,

(-'2.4) P{infl_aézél TM(Za) > (1 ot 36)U)ITM(G) > w, KM = k} g %.
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Proor. Let Z be the largest value in [I — §, 1], if there is any, for which
Twu(Za—) = (1 — 36)w. Given the condition of (2.4) and also that Z = z and
Tu(za—) = (1 — 38)s < (1 — 38)w, the random function {Txu(x),0 = x < 2a}
clearly has the same law as it does under the sole condition Tu(za—) = (1 — 30)s,
since Z is the first positive value z for which Ty(2a—) =< (1 — 38)w as one de-
creases z from z = 1. Thus, since [w — (1 — 28)s/z] = dw,

P{Tw((1 — 28)a)
< (1 —30)w|Tu(a) >r,Ku =k, Z =2 Tu(za—) = (1 — 38)s}
(25) = B(M(1 — 28)a + M(1 — 38)w, Mza + M(1 — 38)s, (1 — 28)/2)
= B¥(M(1 — 38)[w — (1 — 28)s/2], Mza + M (1 — 38)s, (1 — 28)/z)
> B¥(M(1 — 38)ow, Mza + M(1 — 38)s, (1 — 28)/2) = §,
this last by Chebyshev’s mequahty usmg the fact that the arguments of the last
B* satisfy A/[Nx(1 — =)' = [Mow’/8(a + w)]!. We thus have
P{lnfl—sézélTM(Za) = (1 —_ 5)W| TM(a) > w, KM = I{)}

P{Z exists, Tu(Za—) < (1 — 38)w, Tu((1 — 28)a)
= (1 —30)w|Tula) > w, Ky = ki

T P(Tu((1 — 20)a) = (1 — 30)w | Tw(a) > w, Ku = k,

Z exists, Tu(Za—) < (1 — 3b)w}
£ P{Ty((1 — 28)a) < (1 — 38)w| Tu(a) > w, Ky = ki
4 supssw P{Tx((1 — 28)a) < (1 — 38)w | Tu(a) = 5, Ky = k}
4 supssw B(M(1 — 28)a + M(1 — 38)w, M(a + 5), (1 — 23))
4 Supsse B¥(M(1 — 28)(w — §) — Méw, M(a+ 5),(1 — 26)) =

1

3

the last by Chebyshevs inequality using (1 — 28)(3 — w) —I— ow =

(a + 8)(a+w)” bws/2, so that from (1 10) the arguments of the last B* satisfy

—A/[Nw(1 — =)} = [Mow'/8(a + w)]*. The last bound of (2.6) proves Lemma 3.
LemMa 4. If0 <8< 1,0<a =1 —p,0 < w,then, wp 1,

P{Tu(a) > w(l — 8)| Tx'(a) > w}
2% i [M/alws —a) z 2
(2.7) P{Tu(a) < —w(l — 8)| Ty (a) > w}
=% if [M/a(l 4 w)w —a) = 2
P{Tx(a) > w(l = 8)| Tu't(a) > w, Ku = k}
=3 if [M/a(l —p)lw(s —a(l —p)7) 2
Proor. Let Z' be the smallest positive value for which T Y(Z') > w, say
Ty (Z') = s > w. Then, forz < a,
P{Tw(a) > w(l — 8)|Z" =z, Tu(z) = s}
=1—BMla+w(l—28) —z—s,M(1—2z—s),(a—2)/(1—2))

(2.6)

IIA A



1330 J. KIEFER

(2.8) =1— B*(—Mws + M[ —(s — w)(1 — a) + (a — 2)wl/(1 — 2),
M1 —2z—3s),(a—2)/(1—2))
=1—B*(—Mw( —a), M(1 —2 —3s),(a —2)/(1 —2)) =2

by Chebyshev’s inequality, since the arguments of the last B Fsatisfy
—A/[N2(1 — o)) = M*a*w(s — a). This yields the first line of (2.7). The
other lines are proved analogously.

LemwmA 5. Under the conditions of Lemma 3, wp 1,

(2.9) Pfinfis<.<1 Tu(za) > (1 — 38)w | Ky = k}
Z 3P{Tu(a) > w| Ky = k},
Under the conditions of Lemma 4,

P{Tx"(a) > w}

IIA

4P{To(a) > w(1 — 3)},
(2.10) P{Ty (a) > w} = 4P{Tu(a) < —w(l — 8)},
P{Ty(a) > w|K, = k} £ 4P{Twu(a) > w(l — 8)|K, = k} wp 1.

Proor. (2.9) follows from (2.4) and P{4|C} = P{A | BC}P{B|C}. (2.10)
follows from (2.7) and P{4 | C} < P{B| C}/P{B | AC} (With C = sample space
in first two lines), just as used in the first three lines of (2.6).

3. Lower class result. In this section we shall prove the first half of (1.14).
Throughout this section N is fixed, 0 < N < 1, and we write e = 1 — \. We define
S, mforn, < n £ Ny, as the sample df based on (Xpt1, Xop42, -0y Xu);
similarly, Kn, » = (n — n.)} (p — 8n, (D)), and T, » (with or Wlthout super-
seript) is then obtained by replacing S, and K, by S,, » and K, » in (1.11). v is
any value which satisfies

¥ > 9,
(3.1) —y 4 (1 = 4e/5)(y — 1)/v > 1 — ¢
—(7/) 4+ (1 — ¢/25)(y — 1)/v > 1 — ¢/20;

it is clear that such a v exists, and the somewhat redundant form of (3.1) is
pointed toward its use in the sequel. We shall repeatedly use the fact that

]-imr—)oo nr+1/ n, = v.
We define the following events:

L:+1'= {1~ ¢/20 < Ka, o /maltn, ., < 13,

Liv = {infi_cpogo<t Tnypyy(Thny ) > o, (1 — €)},

= {|Ka,| < 20,(loglogn.)},
= (T, (hnpys) = Vu},
= {
= {

IIA IIA

(32)

1 — ¢/30 < Ku, i/ (Des — 1) b,y < 1 — /60,
1Ilf1_e/10§a:§1 Tn,.,n,.+1(xhn,-+1) > (1 - 36/10)(1 - 5/2)an+1}-

Gr 1

Gr K M
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We shall prove that the following inclusions hold for sufficiently large » (depending
only on p, A, v):

(33) LinN Liy C An, V),
(3.4) G/ N @ys C Loy,

(3.5) G N Goa C Loy,

and we shall also prove that

(3.6) @, oceurs for a.a.r, wp 1,

(3.7) G,” occurs for a.a.r, wp 1,
(38) Gy 1N Grryy  occurs i.o., wp 1.

Clearly, (1.14) follows from (3.3)—(3.8).
First, note that

LN Ly entails an+1(nr—31Knr+1 —2) > M,y

for 0 < z < ha,,,¢/20; in particular, since ¢, = 0(h,), this holds for 2 = g, , if
r is sufficiently large. Reference to (1.12) yields (3.3).
To prove (3.4), we note that

(3.9) m1Ka, s = 1 Kn, + (tepr — 1) Koy iny s - (3.9)

Under G,

(3.10)  nrtihinr,nt [Ka,| ~ |Ka,|/a5[(27/3) loglog ml' < (6/7)’,

so that the left side of (3.10) is < (7 /v)? for all large r. Under Gros1,

(311) nrbbirs (s = 1) Koy ~ (v = D/Y Ko inyn/ (s = 1) P
= [(v — 1)/ — (1 + 6)¢/60]

where 0 < 6 < 1, so that for all large r the left side is [(y — 1)/v] X
[1 — (1 4 6)¢/50]. Dividing both sides of (3.9) by 7,41k, ,, and invoking these
consequences of (3.10)—(3.11) together with the third line of (3.1) (which last
also implies that (7/v) 4 (1 — ¢/50)(y — 1)/¥ < 1), we obtain (3.4).

Next, we apply

(312) ann,. + (nr+1 - nr)Tn,.,n,+1 = nr+1Tn,+1
to (3.2) and see that (3.5) would follow from
(313)  —nat + (me — n)(1 — 3¢/10)(1 — €/2) > npa(1 — e).

Dividing all members of (3.13) by n,41 and applying the second line of (3.1), we
obtain (3.5) for all large .

As for (3.6), it is of course a consequence of the ordinary law of the iterated
lggarithm for Bernoulli random variables.

To prove (3.7), we use the second line of (2.10) with M = n,,a = hn,,,,
w = 'ygq,w1 ,and 6 = %, so that we have [M/a(1 + w)fw(s —a) = o asr— ®
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and conclude that, for all large r,
(3.14) P{G7} = P{Tu,(hu,p1) > V'gn i)

é %P{T"r(h"r+l) < —2_l'y§q”r+l}’
Applying (2.2) to B*(—A, N, =) with N = n, , 7 = hn,,r,and A = 2'1')'*n,q,,,+1 ,
so that A’/N’z* — 0 and A’/N7w ~ +'37 logr (making Lemma 2 applicable) as
T — o, we obtain, for all sufficiently large », from the first line of (3.1),
(3.15) log P{G,”} < —%logr.

Hence Y, P{G,”} < «, which by the Borel-Cantelli Lemma yields (3.7).

It remains to prove (3.8). Applying the classical form of (2.1) for 1 — B* in
the case 7, = p, N = npy — 0., Ay = (1 — ¢/30)(Npp — Np)ha,,,,
14+ ¢=(1—¢60)/(1 — ¢/30), as described in the second paragraph below
(2.2), we have
(3.16) log P{Gr.ria} ~ —(37) (v — 1)(1 — ¢/30)" log r

as r — . From (29) with M =ny —n,, 6§ = ¢10, a = hn,,,
w = (1 — €¢/2)gs,,, (so that the conditions of Lemma 3 hold for large ), we
have
(3.17) P{Gr, 11| Knyryy = K}

; %P{T"rr"r+1(h"r+l) > (1 - e/2)q7‘7+1 IKnrv"r+1 = k}
for r sufficiently large. Applying (2.2) to 1 — B* for N = (1 — p)(frys — n,)
+ (1 — nr)%ky mv = (1 — p)_lhnr.,.x Ay = (1 — 1) (1 — €/2)gu, ., (s0 that
the conditions of Lemma, 2 are satisfied ), we have, as r — o, uniformly in k satis-
fying 1 — /30 < k/(nr11 — 1) ha,,, < 1 — ¢/60,
(318) IOg P{anynr+1(hnr+1) > (1 - e/2)(17!;4.1|I{"m"r+1 = k}

~ =2(y — 1)(37)7(1 — ¢/2)"log .

From (3.16), (3.17), and (3.18), we have for r sufficiently large,
(3.19) log P{G; ,1nN Grrpt} = —(1 — ¢/30)* log 7,
so that X, P{G; 11N Grri1} = . The events {Gr,aN Grppr, 7 = 1,2, ---}
being independent, the Borel-Cantelli Lemma, yields (3.8), completing the proof
of the first half of (1.14).

4. Upper class result. In this section we prove the second half of (1.14). We
use the notation of the first paragraph of Section 3, except that now
A =14 ¢> 1and (3.1) is replaced by fixing » = v — 1 at any positive value
satisfying
n < 27377,

(4.1) 1+ sn* < (.98)2%37%,
(1 +107)(1 — )7 < (1 + ¢/2),
7 < 107
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We now define
8 =({L:27 S L <2+ 49; L = integer X 4' or
L=2" or L=2+ 4},

[1 — K.,/Lop(loglogn,)!| < 5!} where 27 <L <2+ 4t
Ta, (1 + 100)278'Lhs,) > (1 + ¢/2)ga},
CL,,, = {T.5((1 + 100")27%3'Lh,,) > Aq.} where nel,.
We shall prove that

(4.3) J, occurs for a.a.r, wp 1,

I = {nin, < n £ nppa,
Jr = {|Ka| < 20,(loglogn,)}, nel,},
H, = {|K, — Ka,| < 4n'c,(loglogn,)}, nel,},
(42) Dy ={(n —n)Tnn + (3ha,) < 27ensqn, ,nel,},
E, = {|K.,| < 27%,(loglogn,)}; A.(\) occurs for some 7 & L},
={
={

(4.4) H, occurs for a.a.r, wp 1,

(4.5) D, occurs for a.a.r, wp 1,

(4.6) E, occurs for a.a.r, wp 1,

(4.7)  By,zN Cyz occurs only finitely often wp 1, for each fixed L ¢ S,

and we shall also prove the following hold for all sufficiently large r(depending
only on p, \, 3):

(4.8) Bu,NH,NA,\) € Cp,. foreach nel,, LeS&,
(4.9) D,N(U..;, Crn) € Cu, foreach Les&,
(4.10) J.NHNE NA,N) c U,sB,, for nel,.

From (4.3), (4.4), (4.6), and (4.10), and from the finiteness of S, it then follows
that, except on a set of probability zero, A,(\) oceurs i.0. only if, for some L in S,
the event By, N H,N (U,.;, A.(\)) oceurs i.0. This oceurrence and (4.5) imply,
by (4.8)-(4.9), that By, Cy . occurs i.0. for some L & S. Thus, (4.7) yields the
desired second half of (1.14).

(4.3) is a consequence of the ordinary law of the iterated logarithm for
Bernoulli variables and the fact that log log n ~ log log n, forn ¢ I, .

To prove (44), let Z/ be the indicator of the event {X; < p}, and let
Z;=Z; — p. It is well known (e.g., [6], p. 192, equation (5.7)) that there is a
finite constant b, such that, for all a, > 0,

(4.11) P{maxer, | D_n 1 Zi| > a} < b,P{| X jer, Zs| > ai}.
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Putting o, = 2n'o,(n, loglogn,)! and using the classical form of (2.1)..as de-
scribed in the second paragr%ph below (2.2) with N = n.qu — n,, 7v = p,
Ay = a,, and the fact that n™* < n,*forn ¢ I, , we have '

(4.12) log P{maxper, n* |2 11 Zj| > on'o,(log log n,)
' < —2(1 4+ o(1)) log 7.
Hence, by the Borel-Cantelli Lemma,
(4.13)  maxpe, 0| Don 11 Zi| £ 2nlop(loglog n,)? for a.a.r, wp 1.
Clearly,
(4.14) K, —K,=n>02,—nt 22 7,
| = 7 X Zi + Kul(n/n)! — 1.

Since 0 < 1 — (n,/n)* < n for n eI, and all large r, we conclude from (4.13),
(4.14), the validity of (4.3) with I, replaced by {n.}, and the fourth line of (4.1)
(which implies n < ') that (4.4) holds.

We turn to the proof of (4.5). If D, occurs, let » be the first integer n ¢ I, for
which the inequality defining D, fails to hold, and let Z be the smallest positive
value for which

(4.15) (v — )T, (3Zhs,) = 27Ny, .
Now, for all large r, uniformly in n ¢ I, and z ¢ (0, 1],
(4.16) P{(nr1 — 1) Ty y1(32kha,) < —4 'ensn, | Dr v = n,Z = 2}
= BY(—47'engn,— , (nr1 — m), 32ha,) =< 3,

by Chebyshev’s inequality and the fact that the arguments of B* in (4.16) satisfy
A’/Nw — o with r, uniformly. (If n = n,41 , the probability in (4.16) is zero.)
Consideration of (4.15) together with the event complementary to that of
(4.16) yields, for large r,

(417) P{ (nr—H - nr)T;t,-,n,.H (3hn,) > 4—161%(]",_ |DT} g %

and hence, first using the familiar argument used to prove (2.10), and then using
the first line of (2.10) itself with § = %,

log P{D,} < log[4P{(nm1 — 1) Tx, n,py (Bha,) > 4 enngn,}]
(4.18) < log [(16/9){1 — B*(87'en,gs, , s — ms, 3hn,)}]
~ — én 273 logr,

the last coming from an application of (2.2). Thus, (4.5) follows from the first
line of (4.1) and the Borel-Cantelli Lemma, for { D,}.
To prove (4.6), we first note that for large r the events

(4.19) Q = {T%, (27(1 + 8n')om, *(loglog n,)?) < gu,}
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satisfy, by (2.10) with § = .01 and by (2.2),

(4.20) log P{Q,} < —(.98)2837%(1 + 8') " logr,

so that the second line of (4.1) and the Borel-Cantelli Lemma for {@,} yield
(4.21) Q, oécﬁrs for a.a.r, wp 1.

Note that E, N H, entails |[K.| < 27(1 + 811 )o,(log log n,)* for n e I, , so that
by (1.12) and n~* < n,”* we see that B, N H, N A.(\) entails either

(4.22) 7.7 (27 (1 + Sn*)a—pnf%(log log 1)} > M
orelse (if 0 < K, < M %g,)

However, Q. N D, entails, forn e I,,
(4.24) T,527N 1 + 8o (loglogn,)!) < (1 + ¢/2)(n/n)gn, < M,

so that (4.5) and (4.21) imply that, wp 1, the event (4.22) occurs for only
finitely many 7. The event (4.23), although it involves a negative argument, is
even easier to handle since ¢, is small compared with the argument of T,  in
(4.22); for example, one can consider the random variables 1 — X, as described
below (1.14), and use the obvious analogues of (4.5) and (4.19) ; we conclude
that, wp 1, (4.23) also occurs for only finitely many n. This last is thus true of
E,NH,NA,(\), and by (4.4) this yields (4.6).

As for (4.7), by the classical form of (2.1) for 1 — B* (described in the second
paragraph below (2.2)) with 7y = p, N = n, , Ay = Lo,(n,log log n)f[1 — 7,
¢ +1=[1+71/11 — '], we have

(4.25) log P{By,} ~ —27' %1 — 7%)? log 7.

On the other hand, uniformly for |1 — k/Lc,(log log n)l < 7', we have, from
(2.2) and the third line of (2.10) with1 — & = (1 + ¢/4)/(1 + ¢/2), for r large,

log P{C.,.| Kn, = k}
(4.26) < log [#{1 — B*((1 + ¢/4)ngn, , n(1 — p) + 'k,
(1 — p)7(1 + 109))(3)'Lhn,)}]
~ —L7(1 + 107)7 (1 + ¢/4)*(3) ! log .

Hence, writing L = L(1 — 7*) and ¢} = (1 + ¢/2)(1 — #')(1 + 10¢") 7, so that
¥ > 1 by the third line of (4.1), we have, for large r,

(4.27) —log P{B.r N Crz}/logr > 271" + (2¢/3) L7
> mingso 270" + (2¢/3)% 7] = ¥ > 1.

The Borel-Cantelli Lemma now yields (4.7).
Turning to (4.8), we see that By, N H, entails, for n e I,
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(428)  n'K, < n7'0,(log log m)'[(1 4+ )L + 44'] < (1 + 109")273'Lh,
since n > n, and L = %; and similarly, it entails, for large r,
(4.29) n'Kn = Nga > v (1 — 109")27%3 Lhs, — Nga > 0

by the fourth line of (4.2) and the fact that ¢, = o(h,,). Hence, (1.12), (4.28),
and (4.29) yield (4.8).

As for (4.9), since 3 > (1 + 107))27%3*L for L < 2 + 4¢' (by the fourth line of
(4.1)), the occurrence of D, N Cy » for some n ¢ I, entails

(4.30) T8 (1 4 1002783 Lh,) > nhgn — 27 enqn,
> (1+ G/Z)nran ’

for large 7, since ng, is increasing for n = 3. This is (4.9).

Finally, if n eI, then A,(\)N E,,N H, implies K,, = 27'¢,(loglogn,)?,
since 47 < 27 'by the last line of (4.1); on the other hand, J, N H, implies
K., < (2 + 41")o,(log log n,)*. This proves (4.10)and completes the proof of the
second half of (1.14).

6. Other proofs. We turn first to the proof of Theorem 3. The lower class
result is of course implied by Theorem 1. We shall not prove the upper class
result in detail, since the proof is very much like that of Section 4 for Theorem 1;
instead, we shall merely indicate why only minor modifications in the latter proof
are needed. As before, we assume the X; are uniformly distributed. Denote by
K.(p) and T.(z, p) the random variables defined in (1.5) and (1.11). Then,
clearly,

(5.1) Ku(p + n7%) = Ku.(p) — n'Tu(n™!, p),
To(z,p + n7%) = Tu(x + n7% p) — Tu(nl, p)

Hence, the second half of (1.12) implies that R.(p + n %) < —\g if and only
if (except for a set of zero probability) .

(5.2) MNw £ Tu(n 7 Ko(p +07%) —Ago,p +27%)
= Tu(n% + n7'Ku(p) — Ta(n™, ) — Nga, p) — Tu(n¥, p).

Now, the techniques used earlier can easily be employed to prove that, for
c > (27)%,

(5.3) P{T,*(n7'r) > en *(loglogn)? i.0.} = 0.

Since n~**(log logn)! = 0(ga), the proof that, for A > 1, wp 1 there are only
finitely many n for which (5.2) ocecurs for some ¢ (depending on n and the sample
sequence) in [0, 7] essentially reduces to the upper class proof for Theorem 1, if
one takes note of the fact that it is a uniform behavior of T', over an interval (e.g.,
in (4.7)) which is actually proved in Section 4, and not just (1.12). In fact, it is
not, very difficult to see that one can even replace = in the above by any non-
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decreasing sequence {7,} satisfying
(5.4) 7 = o( (log log n)?),

since (5.3) is then still satisfied with ¢ replaced by 2.}, and one thus obtains
T.*(n*.) = o(ga) wp 1, as well as ¢ = o(K,) for the crucial range of K, in
(5.2); thus, Tn(nﬂ*t, p) can still be added to both the first and last expression of
(5.2) without appreciably changing the expression Ag, on the left. Negative
values of K,.(p + n ') or of ¢ are treated similarly.

We turn now to the proof of Theorem 2. As before, by Lemma, 1 we can and do
assume the X; uniform. For fixed value k, of K, = K,(p), we shall for brevity
treat in detail only the case m = 2,4 = 0, & > 0, and write |k.| &z = s (in the
notation just above (1.7)); it will be clear how larger values of m and arbitrary
values of the ¢; can be treated by a repetition of our steps. We shall also consider
only the case k, > 0, since the complementary case is handled in the same
way.

Let uo and u; be fixed real numbers. By (1.12) and (5.2) with —\g, replaced
by n~**u, , we see that, given that K,(p) = k., the event U.(s) < u is equiva-
jent to

4

(5.5) T”(n_%(s + kn) — Tn(n_’}s: p) + " ,0) — Ta(n _%8, p) > —n" My,
The event U,(0) < up is of course
(56) Tn(n—%kn + n_3/4u0 ) P) > —n—3l4u° .

Using our earlier techniques (as in the reduction of (5.2) using (5.3)), we see
easily that, the probability limits being conditional on K, = k, ,

plimy,.q, n3'4[Tn(n~%(s + k) — To(n7s, p) +n ", p)
(5.7) — Tu(n™ (s + ka), p)] = 0,
PliMow 2 To(n ¥k + 07U, p) — Tu(n ks, p)] = 0,

uniformly for b~ < k, < b, for each b > 0. Hence, the limiting conditional prob-
ability of the event {U,(s) < ui, Un(0) < uo} is that of the inequalities

(5.8) —M T (07 (s + k), p) — Tu(n™¥s, p)] < us,
— T (0 Moy p) < wo,

providing these last limiting probabilities are continuous in uo, u1, which will
turn out to be the case. But the two random variables on the left sides of the
inequalities (5.8) are, by the Central Limit Theorem, asymptotically condition-
ally jointly normal (uniformly in b~ < k. < b) with means 0, variances k, , and
covariance max (k, — s, 0). Thus, U,(0)/k,} and U,(kuts)/k.! have conditional
limiting law equal to that described for J(0) and J(¢) above (1.7). The general
approach of finite-dimensional conditional laws of the U,-process to the finite-
dimensional laws of the J-process is obtained similarly.
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Next, we show that, for each ¢ > 0,
(5.9)  lime,o im0 SUP|pr_p| ém—me'lP{sup,¢|<en3’4 |R.(p" + n_*t)
— Ra(p')| > ¢} = 0.

From this it follows that, writing B. = {j:|j| < 7/¢,j = integer}, by choosing e
sufficiently small one can make

(5'10) P{Suplﬂg‘r =+ Rn(p + n—%T) — SUpjes, = Rn(p -+ ’n,_%je) > n~3/4c}

as close to zero as desired for all large n. Since B, is finite, the proof that
supjs <- Un(t) — supje<- J¥(1) in law follows at once from the convergence of
finite-dimensional laws proved above, in the same manner that the analogous
sample df deviation results follow from such convergence and the smallness of the
analogue of (5.10) in [3] and [8]. Convergence in law of f(U,) to f(J*) for func-
tionals f on the space of functions on [—, 7] continuous except for finitely many
finite jumps, and such that f is continuous in the uniform topology wp 1 accord-
ing to the law of J*, is then proved in the same way by approximating such func-
tionals in the manner of Donsker [3], page 281, so that the result for the approxi-
mating functional can be obtained from the result for sup,.;, &= U,(¢) for various
intervals L.

By (1.1), relation (5.9) will be proved if we prove each of the two statements
obtained from it by replacing R,(x) by (i) S.(x) — z and by (ii) Y., — z. For
(i), we thus consider
(5.11) P{T.*(en™? p') > n~%}.

('The corresponding expression with e replaced by —e is treated similarly.) As
n — w, the expression [M /a(1 + w)w(s — a) of (2.7), with § = %, approaches
¢/2¢'. Hence for all e < ¢*/20 we can apply the first two lines of (2.10) and obtain,

for all n > N, (where N, is independent of e as long as e < ¢*/20), that the ex-
pression (5.11) is no greater than

$P{|Tu(en™, p)| > n™"M}
(5.12) = #{B*(—nfc—, n, en?) + 1 — B*(n¥c, n, en”?)}
~ §3(—c/¢)
uniformly for p’ in any closed interval excluding 0 and 1, as n — o, this last by
the Central Limit Theorem with error term. Since lim..o € '®( —c/ ¢) = 0, the

result for (i) is complete.
As for (ii), consider first the expression

(5.13) P{supocice |Yp'+n"*t,n — Yyl > n_3l4cl Ypn =9 8.(y) =p+n76},

where 0 < 6 < 1 accounts for excess of S,(y) over p due to the jump at y. A
moment’s reflection shows that under the conditioning of (5.13), the event

(5.14) (T (n e + 0%, y) < ™% — n™
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entails the complement of the main event in (5.13). The event (5.14) is very
similar to the complement of the event of (5.11), except that we must now compute
the cond1t1onal probability under the condition of (5.13), for y in a small ne1gh-
borhood of p” of probability approaching 1 with n, e.g., for [y — p ‘| < n* One
obtains without difficulty, for the comiplement of (5 14), an analogue of (5.12).
One must then consider (5.13) with —¢ replacing ¢, and there is no essential
difference. Thus, (5.9) is established.

Finally we show that the J * sample paths are, wp 1, Lip & for all & < % by
showing this for the paths of the J-process. From (1.7) we have J(¢ + h) — J(t)
distributed as N (0, 2 |h|), so that for m a positive integer we have

(5.15) E|X(t + h) — X(O)" = (2m)!|h|"/m!

From Logve (1960), page 519, we conclude that the J-paths are, wp 1,
Lip (m — 1)/2m for every m > 0. This completes the ptoof of Theorem 2. See
also Remark 5 of Section 6.

6. Further results and remarks:

1. In view of the asymptotic normahty of U,/|K.|! discussed below (1.5) (or
that of the process U(|Ka|t)/ JK,,I discussed just above (1.7), or its more sym-
metric variant U(|K.(p + n °t)|t)/|Ka(p + n ~#)|), one may be led to inquire
about the analogue of Theorem 1 or 3 for this process. The process resulting from
this normalization of U by division by the chance variable |K,|* seems much less
natural and interesting to the author than does Bahadur’s U. Much of the tech-
nique of Section 3 and 4 can still be applied to the altered problem; the values of
K, near 0, and their oscillation with n, now cause extra difficulties.

2. Of much greater interest than the result of Theorem 3 would be the analogue
for supocp<i == R,,(p), for simplicity when the X; are uniform (or for
SUP—p<t<i—p Un(n¥t), to which one can apply an analogue of Lemma 1 if
inf,., F'(x) > 0 on an interval J for which P{X;& J} = 1). Here the methods we
have used herein do not even yield a weak law, analogous to supjy < [4=Un(2)]
approaching in law supj <, [+J *(1)]. (In particular, if supecp<t caRa(p) = O(1)
in probability, then a separable process whose finite-dimensional distributions are
the limiting ones for ¢,R.( - ), is the process which has sample function identically
0, wp 1.) Some bounds on the law of sup, &= R.(p) have, however, been obtained.
For example it is exactly of order (logn)* in probability. We shall return to this
topic in another paper.

Much simpler is the consideration of R.(p) or the U, processes corresponding
to a fixed finite collection of values p, which are seen from Section 1 to be asymp-
totically independent. Moreover, Theorem 3 immediately yields its analogues for
maxima of these quantities.

3. Bahadur has mentioned in [1] that the law of the iterated logarithm (L.I.L.)
for sample quantiles follows at once from his estimate on R, . In fact, much more is
true: not only can one obtain in this way a classical form of the L.I.L. (Equation
(4) of [1]), which can also be obtained directly but not as quickly by modifica-
tions of the standard proof for sums of Bernoulli random variables (as in [6]),
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but also by using Bahadur’s elegant device one can obtain at once the much more
difficult strong form [5] from that which delimits the upper and lower classes for
increasing sequences {c,} of positive values in the Bernoulli case as

(6.1)  Danlce ™ = 0 o1 = P{n}(8.(5) — p) > ohta 0.},
< w0 &0 = P{ni(Sa(t) — p) > opa i0).

For, writing ¢,” = min (¢, , 10(log log n)l), one has {c,’} monotone and (by the

ordinary L.I.L. for S,.(Ep)) in the same class as {c.}. By Feller 5], &’ & 1/c, is

in the same class as {c,'}, asis therefore {c, =+ o(log log n) %} and hence (again

by the ordinary L.I.L. for S.(£,) ) {¢. = Yo(log logn)™ B But (1.2) or (1.3) yields

|n*F'(.E,,)Rn( p)| < to(log log n)"* for almost all 7, wp 1. Hence, we obtain
TuroreM 4. For {c.} positive and nondecreasing,

(6.2) Yanlcae ™ = 0 o1 = P{£n'F'(&)(Ypn — £) > 0560 10,
< 0 @0 = P{E£nF (&) (Yon — &) > oy, 0.}

4. Atpresent a strong form of Theorem 1, analogous to (6.2), is unknown. The
methods used herein give reasonably sharp probabilistic bounds of the type
usually required, but the approach of [5] for cumulative sums, especially in the
case of the lower class, will require some delicacy to be carried over to the present
problem.

5. The conclusion of Theorem 2 regarding J*-paths being Lip « for all
a < 1 wp 1 suggests that one should be able to proceed in the elegant manner of
Lamperti [9] to the convergence of Theorem 2 by working in the Lip « space,
replacing S, by the correspondmg piecewise-linear continuous function S, (say)
so that the resulting U, is in Lip a. Unfortunately, this prescription cannot be
carried out because Prokhorov’s condition for the U, to lie, with high probability
in a common compact set in the Lip 8/« space,

(6.3) E|Ud(p +n7') — Uu(p)|* = C I

with C, a, 8 independent of n, cannot be verified. This is true even if one attempts
only the classical sample df results (such as Kolmogorov-Smirnov) which con-
sider S, rather than U, in this manner.

Incidentally, replacing S, by S, changes S, by at most 1/n at each point and
also, with high probablhty, changes Y, by little, smce the largest sample spac-
ing in the uniform case is well-known to be of order n™ log nwp 1. Thus, Theorems
1, 2, and 3 still hold if S, is replaced everywhere by 8., and one sees also the
vahdlty of our remark in Section 1 concerning the irrelevancy to our results of
the manner of definition of Y, ., when there is ambiguity due to np being an
integer.

6. It would be interesting to investigate the efficacy of statistical procedures
based on R.(p), supocy<i Ba(p), and other variants of Bahadur’s statistic; the
“cancellation” of much of the information in Y, . and S,(%,), and the resulting
‘smaller order of R.(p), make one wonder whether there are many meaningful
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applications. As a trivial example, if X, , X, - -+, X, are independent and sym-
metrically distributed about 0, one could use (3 — S.(0))/Y},. to estimate the
probability density function at 0, but this is not very efficient. See Section 3
of [1a] for Bahadur’s use of R.(p) to reduce asymptotic consideration of certain
nonlinear statistics to that of linear ones.

7. Let 9®@(n) = n(p — Su(£p))/0p and 1®P(n) = nF'(£,)(Ypn — £5)/0p, and
extend these to n”(¢) for positive real ¢ by linear interpolation between successive
integer arguments. Write 7,""(£) = (2 log log n)™/*;‘”(n#). The beautiful results
of Strassen [11] include n® as a special case. Since our Theorem 1 or (1.2) implies
that

lim-«(2T log log T)_msuptér I 2®) — 9@(¢) | =0wpl,

we obtain .

TuroreM 5. Strassen’s Theorems 2 and 3 hold with n® (his 5) replaced by n®.

Consequently, the results of Section 3 of [11] hold with n®(n) (his S.) replaced
by 7®(n).
The second part of Theorem 5 follows from the way in which Strassen’s Theorems
2 and 3 and elementary integrability or moment considerations are used in the
proofs of his Section 3. In particular, his paragraphs (i)—(vi), the Corollary to
his Theorem 3, and his equations (3), (4), (11) are valid for n®(n), as are any
other results corresponding to ones for n®(n) obtained from his Theorems 2 and 3
by such methods. Bahadur has informed the author that Bickel independently
suggested that direct study of the n®(n) process might yield such results as the
L.I.L. for Y,.» . I have not considered here direct study of the »®-process start-
ing from scratch, since the indirect approach using the labors of Bahadur and
Strassen yields our Theorem 5 so easily, and since results like those of [11] have
not yielded the strong form (6.1)-(6.2) of the L.I.L. One can also obtain most
of the analogues of Strassen’s Section 3 by applying Bahadur’s bound directly
there without recourse to Theorems 2 and 3 of [11].

8. The author’s attention has recently been called to an abstract of Eicker [4]
concerning Bahadur’s bound (1.2) and the fact that it cannot be improved using
only the Borel-Cantelli Lemma as in [1] (to be contrasted with the present ap-
proach which yields (1.3) by using the n,). Eicker states that he conditions on
the value of Y., rather than on K, or S,(£,) as herein, but it seems unlikely that
one would achieve any shortening of the present proof from the use of that
conditioning.

The author is indebted to Roger Farrell for helpful discussions.
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