A PERFECT MEASURABLE SPACE THAT IS NOT A LUSIN SPACE

By R. B. DARST AND R. E. ZINK¹

Purdue University

In connection with his study [1] of the measure-theoretic foundation for probability theory, Blackwell has introduced the notion of a Lusin space; i.e., a measurable space (Ω, \mathbf{B}) such that: (a) \mathbf{B} is a separable σ -algebra and (b) for every function f, real-valued and measurable (\mathbf{B}), the range of f is an analytic set. In the place cited, Blackwell observed that every probability measure P defined on \mathbf{B} converts the Lusin space (Ω, \mathbf{B}) into a perfect probability space (Ω, \mathbf{B}, P) and asked whether the Lusin spaces be the only measurable spaces having this property. In order to settle this question, there are presented below a separable σ -algebra \mathbf{B} of subsets of a set Ω and a real-valued, measurable (\mathbf{B}) function f such that: (i) if P be any probability measure on \mathbf{B} , then (Ω, \mathbf{B}, P) is perfect, and (ii) the range of f is not an analytic set.

Let \mathbf{B}_0 be the class of all Borel subsets of the unit interval, and let Ω be an uncountable, universal null set contained in [0, 1]: i.e., if ν be any nonatomic probability measure on \mathbf{B}_0 , then $\nu^*(\Omega) = 0$. (To conclude the existence of sets of this kind, it seems to be necessary to assume the continuum hypothesis, see, for example [3], 432–440.) Because an uncountable analytic set contains a perfect set and as a result, supports a nonatomic probability measure, Ω is necessarily nonanalytic. Let $\mathbf{B} = \mathbf{B}_0 \cap \Omega$.

Suppose that P is a probability measure on \mathbf{B} . For each B in \mathbf{B}_0 , let $\mu(B) = P(B \cap \Omega)$. The set function thus engendered is obviously a measure on \mathbf{B}_0 . Let μ_a and μ_c be the atomic and continuous parts of this measure. Because $\mu_c^*(\Omega) = 0$, it follows that μ_c is trivial, so that μ is totally atomic. Now the atoms of μ are singletons, and, by virtue of the definition of the measure, each of these must be a subset of Ω . Denote by X_{μ} the union of μ 's atoms.

Let $g: \Omega \to R$ be measurable(\mathbf{B}). If $g^{-1}(A)$ belongs to \mathbf{B} , then $B = \{x \in A : g^{-1}(x) \cap X_{\mu} \neq \emptyset\}$ is a countable (Borel) subset of A, and $\mu(g^{-1}(B)) = \mu(g^{-1}(A))$; thus, $(\Omega, \mathbf{B}, \mu)$ is perfect.

On the other hand, let $f:\Omega \to R$ be the restriction to Ω of the identity function on [0, 1]. Certainly f is measurable(\mathbf{B}), but $f[\Omega]$ is nonanalytic.

REFERENCES

- [1] DAVID BLACKWELL (1956). On a class of probability spaces. Proc. Third Berkeley Symp. Math. Statist. Prob. 2 1-6 Univ. of California Press.
- [2] GOPINATH KALLIANPUR (1959). A note on perfect probability. Ann. Math. Statist. 30 169-172.
- [3] Casimir Kuratowski (1958). Topologie, 1 Quatr. Ed, Warszaw.

Received 12 June 1967.

¹ The authors are partially supported by a National Science Foundation grant.