A REMARK ON SEQUENTIAL DISCRIMINATION!

By Davip A. FREEDMAN
University of California, Berkeley

1. Introduction. You are observing data gathered sequentially. The data is
governed by one of a countable number of hypotheses. When all the data is in,
these hypotheses are completely distinguishable. At some stage, depending only
on data you have in hand, you want to stop and decide which hypothesis is cor-
rect, with the probability of error arbitrarily small. You can do this if and only
if, for each hypothesis, there is a test based on a bounded amount of data which
distinguishes that hypothesis from the set of all the others, with the probability
of error arbitrarily small. The object of this note is to state and prove this theo-
rem. (Since countable additivity does not simplify the problem, it will not be
assumed, except as noted.)

Here is a special case of the theorem. A coin is to be tossed independently and
repeatedly. The probability of heads is unknown, but is known to lie in a counta-
ble set ®. You can stop, and decide what the parameter is with arbitrarily high
probability, if and only if each point of O is isolated (that is, there is an interval
around it free of other points of ).

2. Statement of theorem. Let Q be a set. Forn = 1, 2, - - - let @, be a field

of subsets of @, with @ € @ < -+ . Let @ = Uj= @,, a field. Let II be a
countable set of finitely additive probabilities P on @. A stopping time 7 on € is
a function taking the values 1,2, ---, o, with {r = n} e @, forn = 1,2, --- .

Let @, be the field of all subsets 4 of Q such that A n {+ = n} e @, forn =
1,2, - - - . Unfortunately, @, is not in general a subfield of @. Define Py{r < o}
as limy»o P{7 £ n} and P4«(A4) as im,-e P(A n {7 < n}) for 4 €@, .

Consider the following two conditions:

(I) For any e > 0, there is a stopping time 7 = 7., and there are disjoint
sets Ap € @, for P e I, with Py{r < o} = 1 and P«(Ap) > 1 — eforall P eIl

(II) For any P eI and € > 0, there is a set A = 45, € @, such that P(4) =
1 — ecand Q(A) < eforall Q eI — {P}.

TuroreMm 1. Conditions I and II are equivalent.

Condition I was introduced for an example by H. Robbins. I learned it from
D. Blackwell. After seeing a draft of this paper, Robbins informed me that he
had previously obtained Theorems 1 and 4.

The results of this paper can be viewed as extending some previous work of
Hoeffding and Wolfowitz (1958).

3. Proof of Theorem 1. The first step is to prove (I) = (II). Fix P ¢ II and
¢ > 0. Find a stopping time 7 and disjoint sets Aq ¢ @, with Q{7 < o} =1
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and Qx(Ae) = 1 — %efor all @ ¢ II. Find n so large that P[Adrn {1 < n}] =
1 —eFor Q #P,

Qdrn{r =nj] =1 — Qu(4e) = ¢/2.

The second step is to prove (II) = (I). Fix ¢ > 0, and choose a sequence ¢; > 0
with > 246 =< e Let Py, Py, --- be a sequence of elements of II, in which
each element of II occurs infinitely often. Let Ny = 0. Fork = 1, 2, ---, find
aninteger N, > Ny and a set Ay € Gy, , with Py(A4;) =2 1 — ¢ and Q(4;) £ «
forallQ eIl — {Py}. Let 7 = 0 onQ — Ui 4Ax,and let 7 = Ny on (@ — 4;)
n---n(Q— Axq) n Ay . Plainly, 7 is a stopping time. Moreover Pyf7r < «} =1
for PeIl:if P = Py, then P(1 < Ni) = P(A4;) 21 — ¢ — 1. For P e 11, let
A P) be the least k with P, = P. Let

Ap ={r = Nxw} = Aoy n (@ — Aym1) 0 -+- n (@ — 4y).

Plainly, as P variesover II, the A » are disjoint and 4 € @, . (In addition, A5 £ @).
For k < N(P), Py # P, so

P(Ap)z P(Arxe) — P(Arxpy—1) — -+ — P(4y)
2l —arm—ara1— " —a
21-2%i21—e

4. Special cases. For Theorem 2, suppose that each @, is finitely generated.
Then any pairwise disjoint sequence of sets in @ is empty from some time on, so
there is no distinction between finite and countable additivity. Let o(@®@) be the
smallest o-field of subsets of & which includes @. Any probability P on @ extends
uniquely to a countably additive probability P on ¢(®). Give the probabilities
on @ the setwise convergence topology, as follows: P, — Piff P,(A) — P(A) for
each 4 ¢ @. The set of probabilities is now compact and metrizable. Consider
the following condition:

(III) For any P ¢ II, there is a set A = Ap € ¢(@), with P(4) = 1 and
Q(A) = 0 for all @ in the closure of I — {P}.

In the present situation,

TaeoreMm 2. Condition (I1) is equivalent to condition (III).

Proor. (II) = (III). Fix P ¢ II and 8, > 0 with 8, — 0. Let 8,z > 0 and
D kdur = 6, . There is a stopping time 7 = 7, and an A.; € @, with P(4dn) =
1 — 6u and Q(Anx) =< 84 for all Q@ e II — {P}. There is a positive integer N =
Nnk and a set Bnk & Qn Wlth Bnk [ Ank and P(Bnk) g 1 — 23nk . But Q(Bnk) é
dui for all @ e II — { P}, so for all @ € K, the closure of IT — {P}. Let B, = U B .
Then P(B,) = 1 and Q(B,) =< é,forall Q ¢ K. Let B =,B. . Then P(B) =1
and Q(B) = 0 for all Q ¢ K.

(ITII) = (II). Fix P ¢ 1 and ¢ > 0. Find 4 ¢ ¢(@) with P(4) = 1
and @(A4) = 0 for all @ in the closure K of II — {P}. There is a decreasing se-
quence A, € @ with (5= 4, C 4 and P(4,) = 1 — e for all n. As n increases,
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the continuous function @ — Q(A,) decreases pointwise to 0 on the compact
set K, so there is an n with Q(4,) = efor all @ ¢ K, completing the proof.

If each @, is the o-field generated by a countable partition, and each P ¢ II
is countably additive, the situation is similar. Condition (II) should be modified
by topologizing the countably additive subprobabilities on @ so P; — Piff
P;(A) — P(A) for each atom A of each o-field @, . The countably additive sub-
probabilities are compact, so the argument remains about the same.

Let Q be the set of sequences of 0 and 1, and @, the field of subsets of Q de-
pending only on the first n coordinates. For each 6 ¢ [0, 1], let Py be the proba-
bility on @ for which the coordinates are independent, 1 with probability 6,
0 with probability 1 — 6. Let ® be a countable subset of [0, 1], with the usual
topology.

TureoREM 3. Condition I holds for {Pe:6 ¢ ©} iff each point of © s isolated.

Proor. The map 8 — Py is 8 homeomorphism. If §, — 6 in ©, then Py, — Py,
and (III) fails. The set of sequences of 0 and 1 where the relative frequency of
1 is 6 has Py-measure 1, and P,-measure 0 for all « # 6. If each point of O is
isolated, (III) holds, completing the proof.

This reasoning can be extended as follows: Let % be a set and = a o-field of
subsets of &. Topologize the countably additive probabilities P on Z as follows:
a generalized sequence P, converges to the limit Piff P,(A) — P(A4) for all
A £ Z. Let Q be the set of all X-sequences, with the product o-field, and let G, be
the field generated by the measurable rectangles depending only on the first n
coordinates. For a countably additive probability ¢ on Z, let Py be the power
probability on the product o-field of Q. Let ® be a countable set of countably
additive probabilities on =.

TrrorEM 4. Condition (1) holds for {Py:0 ¢ O} iff each point of © s tsolated.

Proor. Suppose 6 ¢ O is isolated from all other « ¢ 9. There is a positive integer
k, a positive real number 6, and =-sets Ay, - -+ , Ax, such that for alla ¢ ® — {6},
for some j = j(a) with1 < j S k, |0(4;) — a(4;)| = §. Let By be the set of
%-sequences where, among the first N coordinates, the relative frequency of
visits to A; is between 6(A;) — %6 and 0(A;) + 6 forally = 1, .-, k. Fix
e > 0. Use Chebychev’s inequality to verify that for large N, Po(By) = 1 — e
and P.(By) < eforalla e ® — {6}.

B. A variation. Let % be a compact metric, and @ the set of X-sequences,
with the product structure. Let @. be the o-field of Borel subsets of @ depending
only on the first n coordinates. Let II be a countable set of countably additive
probabilities on ©. Consider the following two conditions:

(I*) For any e > 0, there is a stopping time 7 = 7., with {r = n} open,
and there are disjoint open sets Ap e @, for P e II, with P{r < «} = 1 and
P(A4p) =21 — eforall P eIl

(II1*) For any P e1I, there is a Borel set A = Ap, with P(A) = 1 and
Q(A) = 0 for all Q in the weak* closure of II — {P}.

TrEoREM 5. Conditions (I*) and (III*) are equivalent.

Proor. Argue as in Theorems 1 and 2.
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6. Examples. Let Q be the set of sequences of 0 and 1, and @, the field of sets
determined by the first n coordinates. Let II be a countable family of probabilities
on @, satisfying condition (I). A natural method for constructing 7 and A; is
the following: Let u be a countably additive (prior) probability on II, with
u{P} > 0 for all PeIl. Let 1 <-a(P) < 1 for all P eIl For weQ, let w, be
the set of all ' &, which agree with « on the first n coordinates. Compute the
(posterior) probability .. on II as

pnf P} = w{P}P(wn)/ D qem i {QQ(wn).

Let 7 be the least n if any such that, for some P ¢ 10, u, .{P} > a(P), and let
Ap be the set of w with p.y.{P} > «[P]. There may always be a u for which
this procedure works, but

Exawmprr I. There is a Il = {Py, Py, - - -} satisfying (I) and a ufor which this
procedure fails, namely:
(1) for each j, with P;-probability 1, u.,.{P;} < 1 for all n;

(2) forany e, Bin (0,1),forall N = K(e, ), for Py-almost all w: u, of P)} > o
before w, .{ Py} > B.

ConsTRUCTION. Py puts mass ¢,> 0 on the sequence whose first n coordinates
are 0, and whose remaining coordinates are all 1. Here Y ,°¢, = 1. Forn = 1,
with respect to P, , the first n coordinates are 0 with probability 1, and the re-
maining coordinates are independent and identically distributed, being 0 with
probability 6, and 1 with probability 1 — 6, . Here 0 < 6, < 1, and each point
of {6,} is isolated. The prior u puts mass p, > 0 on P, , with Y 0 u, = 1. Let

éﬂ = Qn + Qn41 + - 3 ﬁn = un + Mn41 + - ) and pn = #loln_1+#202n_2+
“++ =4 Un—6r . Choose ¢n, On, pn SO

and

(4) Gn/Bn — .

For instance, let 6, < %, u, = 277", and ¢, = 1/[n(n + 1)] for all n. Then
Go = 1/0, fn = 27", < (n — 1)27"7
VertricaTIoN. Plainly, (III) and (1) hold. To verify (2), suppose 1 < m =

n = N. For Py-almost all w, the first N coordinates of w are 0. For such an w,
(5) tnof Po} = poln/(podn + fn =+ pn)

and ,

(6) pmol Pa} = pw/(podm + fm + Bm)-

Use (3) and (4) to find n so large that the right side of (5) is more than «. Now

choose K = n so large that for all m = 1,---, n and all N = K, the right

side of (6) is no more than 8.
* Another plausible method is the following: For each P ¢ II, compute the likeli-
hood ratios P(w,)/Q(ws). Fix numbers 1 < K(P) < . Stop when for the first
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time, for some P, P(w,)/Q(w,) > K(P) for all Q eIl — {P}, and decide on
that P. Blackwell showed me an example where this method fails too.

ExampiLi 2. There is a 1T satisfying condition (I), such that for some @ ¢ I,
forany weQandn = 1,2, .-, there is a P & Il with Q(wa)/P(wn) = 1.

Noration. @ is the set of sequences of 0, 1, 2, and @, is the field of sets deter-
mined by the first n coordinates. @ is the probability on @ for which the co-
ordinates are independent and identically distributed, being 0 with probability
1 and 1 with probability 2. Let T be the set of finite non-empty sequences of 0
and 1; let |¢| be the length of ¢ ¢ .

ConstrucTION. Let P, , a probability on Q, assign mass 277 to the sequence
consisting of ¢ followed by all 2’s, and let P, assign the remaining mass 1 — 271°!
to the sequence which consists of |¢] 2’s followed by o followed by all 2’s. Then
I is {Q, P,:0 € Z}. The verification is easy and is omitted.

At one time, I thought that (III) might be equivalent to saying that each P
in II was orthogonal to each @ in the closure of II — {P}. This is false, as Black-
well showed by

ExampiLe 3. There is a set IT which does not satisfy (III), although each
P ¢11 is orthogonal to each Q ¢ closure II — {P}.

ConstrucTiON. Use the notation of Example 2. Let @, assign mass 1 to the
sequence o followed by all 2’s. Then = = {Q, Q,:¢ ¢ Z}. The verification is easy.

Finally, in view of Theorems 2 and 4, it is reasonable to ask whether, in the
countably additive case, (I) is equivalent to this condition: each P ¢ II is dis-
tinguishable from all the countably additive probabilities in the closure of
II — {P}, with respect to the topology of setwise convergence on @. This too is
false, as indicated by the discussion following Theorem 2.

ExampLi 4. There is a set II of countably additive probabilities which does
not satisfy (I), although for each P £1I there is an A € ¢(@) with P(4) = 1
and Q(4) = 0, for all countably additive Q in the closure of I — {P} relative
to the topology of setwise convergence on G.

CoNSTRUCTION.  is the set of sequences of positive integers. @, is the o-field
of subsets depending only on the first n coordinates. For n = 1, 2, -+ with
respect to the probability P, on @, the coordinates are independent the first
coordinate is 1 with probability % and n with probability % ; each other coordinate
is 1 with probability £ + 1/(n + 2) and 2 with probability # — 1/(n + 2).
With respect to the probability Py on @, the coordinates are independent; the
first coordinate is 1, and each other coordinate is 1 with probability 3 and 2 with
probability 1. Finally, II = {P,, Py, ---}.

VERIFICATION. Any subset of IT is closed under setwise convergence, and any
pair of elements of II are orthogonal. But P, cannot be separated in the sense of
condition (IT) from {Py, P., ---}.
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