PREFERENCE-BASED DEFINITIONS OF SUBJECTIVE PROBABILITY'

By PetrER C. FISHBURN
Advanced Research Depa;'tnwnt, Research Analysis Corporation

1. Introduction. Two main approaches have been used in defining subjective
(personal) probability. In the intuitive approach, used by Koopman [13], [14],
Kraft, Pratt, and Seidenberg [15], Scott [22], Good [9], Villegas [26], and to some
extent by de Finetti [6], the axioms apply a comparative probability relation “is
not more probable than” to a set of events or propositions.

The second main approach bases the axioms on a comparative preference-
indifference relation < (““is not preferred to’”): representatives include Ramsey
[20], Savage [21], Suppes [23], Davidson and Suppes [3], Anscombe and Aumann
[2], and Pratt, Raiffa, and Schlaifer [19]. Each axiomatization in this approach
permits the derivation of a probability measure and a utility function that com-
bines with the probabilities to yield a subjective expected utility model consistent
with <.

This paper presents two related axiomatizations, each of which leads to a
unique probability distribution on a set of » states in the context of an expected
utility model. (The extension to more general sets of states is not pursued here.)
The method used in each axiomatization involves three steps.

SteP 1. Axioms are first given to obtain an expected-utility model in which the
utilities are holistic (involving all n states) and the probabilities are associated
with events that may have no direct connection with the n states.

STEP 2. An additional axiom, when necessary, is then used to render each
holistic utility equal to a sum of state-dependent utilities: symbolically, © = u; +
+++ 4+ U, , where u is the holistic utility function and u; is a utility function
associated with the 7th state, s;.

Step 3. Each u; is defined on the same set in a given theory. The assumption
that each u; (for nonnull s,) has the same ordering on this set then leads to the
definition of the subjective state probabilities and an expected utility model over
the states.

Each preference-based axiomatization of subjective probability-utility has its
own special characteristics and, depending upon the critic of the moment, its
own merits and demerits. Ramsey [20], Suppes [23], and Davidson and Suppes
[3] hypothesize an even-chance event (pr. =14) on the basis of <, use this to
scale utilities, then use the utilities to measure (other) subjective probabilities.
Our second axiomatization, based on Debreu’s even-chance theory [4], [5], uses
this idea. It also assumes an infinite set of consequences, which ties in closely with
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Ramsey and Suppes: Davidson and Suppes use a finite set of consequences as-
sumed to be equally spaced in utility.

Pratt, Raiffa, and Schlaifer [19] employ a canonical experiment of equally-
likely outcomes for scaling utilities and subjective probabilities. The canonical
experiment is an operational measurement device. In a related manner Anscombe
and Aumann [2] use “known” probabilities, associated with the outcomes of
symmetric gambling devices such as roulette wheels, to. measure utilities via the
von Neumann-Morgenstern expected utility theory. The subjective probabilities
for the states (typified by the outcomes of a horse race) are then derived from
the utilities. '

Our first axiomatization also uses the von Neumann-Morgenstern theory,
applying it to n-tuples of probability distributions. This application is presented
in Section 3 following a brief summary of the basic theory in the next section.

After comparing our two theories with other theories (Sections 4 and 6) we
comment briefly on two prominent concerns of the preference-based approach to
defining subjective probabilities in the decision-under-uncertainty context: the
question of open and pure axiomatizations (Section 7) and the problem of con-
stant acts (Section 8).

2. The von Neumann-Morgenstern theory: outline. A mizture set is a set
@ = {4, B, C, ---} and an operation a4 + (1 — «)B associating an element of
@ with each « €[0, 1] and each ordered pair (4, B) ¢ @’ such that if 4, Be @
and «, 8 € [0, 1] then

1.14 + 0B = 4,

2.a4 + (1 —a)B = (1 —a)B+ a4,

3. afBA 4+ (1 —B)B] + (1 — @)B = apd + (1 — aB)B.

This is identical to the definition given by Herstein and Milnor [10]. Properties
1, 2, and 3 imply that a4 + (1 — a)A = A and that «[84 + (1 — B8) Bl +
(1—a)yd+ QA —v)Bl=[aB+ (1 —a)v]l4 +[1 — af — (1 — ) ¥]B. Both
results are useful in proving Theorem 1: Luce and Suppes [18], p. 288, give a proof
of the latter result.

With < a binary relation on @, let A < B = [A < B and not B < 4], and
A~B=[A < Band B < A]. < on @ is a weak order if it is transitive and con-
nected (or complete).

Axiom 0 (Structure). G s a@ mixture set.

Axtom 1 (Order). < on @ is a weak order.

Axtom 2 (Independence for Convex Combinations). If 4, B, C ¢ @, a £ (0, 1)
and A < Bithenad + (1 — a)C < aB + (1 — a)C.

Axiom 3 (Archimedean).If A,B,C e @, A < Band B < Cthenad + (1 — )
C < Band B < B4 + (1 — B)C for some a, B & (0, 1).

These axioms are fairly standard. We also require, for the proof of Theorem 1,
that A ~ B and a €0, 1] imply a4 + (1 — a)C ~ aB + (1 — a)C: Jensen
[11] proves that this is a consequence of Axioms 0, 1, 2, and 3. With the given
results the proof of Theorem 1 is essentially that given by von Neumann and
Morgenstern [27], Appendix, Savage [21], Chapter 5, and others.
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TueorEM 1. Given Axiom 0, Axioms 1, 2, and 3 hold if and only if there is a
real-valued function w on @ such that

(1) A < B ifandonlyif uw(d) = w(B), forall A,BeQ@;
(2) u(ed + (1 — a)B) = au(Ad) + (1 — a)u(B), forall A,Be@ and
ael0,1].

If w and v on @ each satisfy (1) and (2) then there are numbers a, b with a > 0
such that

(3) v(A) = au(A) +b forall A Q.

3. Distribution product sets. Throughout, S = {si, ---, s.} is the set of n
states and X is a set of consequences. A probability distribution on a set is
stmple if some finite subset has probability 1 under the distribution.

Let ® be the set of all simple probability distributions on X and let 3¢ = ®".
Each P ¢ 3¢ is an n-tuple of distributions of the form P = (Py, -+, P,). P; in
(Py, -+, P,) is associated with s;, the interpretation being that if P e 3C is
selected and s; is the true state then the resulting consequence in X will be chosen
using P; .

We define aP + (1 — «)Q in the natural scalar-vector manner as oP +
(1 - a)Q = (aP1+ (1 - Ot)Ql, ,OtPn—l— (]. - a)Qn).aPi—I- (1 - OL)Ql
is the usual convex combination of probability distributions. Axiom 0 is easily
seen to hold when 3¢ = @.

With @ = 3 the theory of Section 2 is directly applicable to 3C: the axioms
apply to n-tuples of probability distributions. In this setting Axiom 2 seems
reasonable provided that the states are formulated consistent with the notion
that exactly one is in fact the true state (or obtains). In a different context, when
7 denotes time and each P; in (Py, ---, P,) selects an z; ¢ X, resulting in a
vector consequence (z; , - - - , &) over the n time periods, simple examples show
that Axiom 2 has little rational appeal. [Similar remarks apply for Axiom 5 in
this section and Axiom 5% in Section 5.]

With @ = 3¢, Step 2 of Section 1 requires no new axioms.

TaEOREM 2. Axioms 1, 2, and 3 with @ = 3¢ = ®R" ¢mply that, with v on 3C
satisfying (1) and (2), there are real-valued functions uy , - -+ , U, on ® such that

(4) w(Py, -, Py) = 2 iztui(P;) forall (Py,---,P,) e,
and when (4) holds, for each ©

(6) wuiaR + (1 — @)R') = aul(R) + (1 — a)u(R') forall R, R e,
acl0, 1].
If u and the u; satisfy (1), (2) and (4), and if real-valued functions v on 3¢ and

vion R for i =1, ---,n satisfy (1), (2), and (4) then there are numbers a,
bi, -, b, witha > 0 such that (3) holds withb = b, + -+ + b, and

(6) v(R) = au;(R) +b; forall Re®R;i=1,---,n.
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Proor. Given (1) and (2) let P* = (Py, -+, Py) €3¢ be fixed and define
U(P;) = u(Po, -+ ,Po,P;, Py, -+ ,Py) — uw(P)(n — 1)/n for all P;e®,
i = 1,---,n Summed over ¢ this gives D> ;u:s(P:;) = 2 ;u(Ps, -+, Po,
P, Py, ,Py) = (n — L)u(P"). But (1/n)P + [(n — 1)/n]P’ = 3, (1/n)
(Poy+++yPo,P;,Py,-+-,Py) when P = (Py, -, P,), since the two convex
combinations are identical. Hence, by (1), the two convex combinations have
equal utilities; application of (2) to each utility then gives w(P) = D_;u(Po,
<o yPy,P;, Py, -+ ,Py) — (n — 1)u(P®. By definition, the right side of this
equals ) ; ui(P;), so that w(P) = D_;ui(P;).

To verify (5) let P = (Py, -+ ,Po,R, Py, -+ ,Py) and Q = (Py, --- , Py,
R, Py, -, Py). Then, by (4), u(aP + (1 — @)Q) = 3_pus(Po) + ui(eR +
(1 — a)R’), and by (2) and (4) u(aP + (1 — )Q) = D5 ui(Po) + aui(R)
+ (1 — a)u;(R'), which together give u;(aR 4+ (1 — a)R') = aus(R) +
(1 — a)uy(R). .

For the final part of the theorem, let u, %, --- ,u, and v, v1, - -+ , v, both
satisfy (1), (2), and (4). By Theorem 1 there are numbers ¢ > 0 and b such that
(3) holds. With P, ¢ @ fixed, let b; = v;(Py) — au;(Py), so that by (3) and (4),
Dbi= 2w (Po) — aX u; (Po) = v(P") — au(P’) = b. We also have v(Ps,
et 7P07R7 PO; o 7P0) - v(PO) = a,[u(Po, et 7P07R7 PO; cte ’PO) -
U(PY)] from (3), which by (4) converts to Vi(R) — V; (Po) = alui(R) ui(Py)]
or v;(R) = au;(R) + b;.[]

This brings us to Step 3, for which the following axioms and definitions are
used.

Axiom 4 (Nontriviality). P < Q for some P, Q ¢ 3C.

DrermviTion 1 (Order for ®). If R, R ¢ ®, then R < R’ if and only if (R, - - ,
R) < (R,, tee 7R,))where (R, ,R), (RI, T ’R,) € 3.

Derimnirion 2. (Null States). s; ¢ S 2s null #f and only if P ~ Q for every P,
Q £ 3C for which P; = Q; for each j # 1.

Axiom 5 (Monotonicity). If P = (Py,--- ,P;4,R, Piya, -+ ,P,) and
P = (P, ,Piy,R,Piys, -+ ,P) arein 3, then P < P f R < R/,
and P < P' if R < R’ and s; is nonnull.

Axiom 4 helps to insure a unique probability distribution on the states. With
the other axioms at hand, Axiom 5 provides each u; for non-null s; with the same
ordering: if s; and s; are non-null, then u;(R) =< w:(R’) if and only if u;(R) <
u;(R’) when R, R ¢ ®.

TurorEM 3. If 4 on @ = 3C is any real-valued function satisfying (1) and (2),
and if Azxioms 4 and 5 hold, then, letting u(R) = w(R, --- , R) for each R ¢ ®,
there is a unique real-valued function = on S such that

(7) w(Py, -, P,) = Dtga(s)u(P;) forall (Py,---,P,) ek,
(8) 7(s) = 0 foreach se8, and Dty w(s:) =1,

and, under these conditions, w(s) = 0 if and only if s is null.
. Proor. Given w on 3 satisfying (1) and (2), and Axioms 4 and 5, let P’ =
(Po, --+ , Py) £3¢Cbefixed. Since (1) and (2) imply Axioms 1, 2, and 3 [Theorem
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1], there are u; functions on ® satisfying (4) [Theorem 2]. Let « and the u; be
transformed according to (3) and (6) so that w(P°) = 0 and u;(P,) = 0 for each
4. If s; is null, set 7(s;) = 0, so that in (7) 7(s:;)u(R) = 0 for all R £ ®, corre-
sponding to u; = 0 which follows from u;(Ps) = 0, Definition 2, and (4).

Next, let I = {7 | s; is not null}.“Axiom 4 insures that I is not empty. If 7 ¢ I,
then Deﬁmtlon 1, Ax10m 5, (1) and (4) yield wi(R) < w;(R') if and only if
R < R/, for all R R’ ¢ ®. Hence each u; for 7 ¢ I satisfies a property similar to
(1) with the same ordering for each 7, and, by (5) of Theorem 2, each u; satisfies
the same expectation property. With & ¢ I fixed it then follows from the last
part of Theorem 1 that, for each ¢ ¢ I, there are numbers a; > 0 and ¢; such that
ui(R) = aip(R) + c;for all R ¢ ® where ¢ = w;, and &, = 1, ¢, = 0. Since u;(Po)
= w(Py) = 0 by construction, ¢; = 0 for each ¢ eI and therefore u;(R) =

a.o(R) for all < ¢ I. Hence by (4), u(P) = D ier ap(P;) for all P e 3¢. Letting
w(si) = ai/ s a; for each i e I and u(R) = (D21 a:)o(R) for all R € ®&, we then
obtain u(P) = Z 1r(s1)u(P ) for all P ¢ 3C along with = (s) = 0, Doim(ss) =1,
and hence u(R , ,R) = u(R) foreach R ¢ ®. If v satlsﬁes (1) and (2), then
by Theorem 1, » = au + b, @ > 0, so that if u(P) = S r(s)u(Py), 2 w(s:) =
1, then »(P) = Y w(s:)v(Py).

Let % and = satisfy (1), (2) (7), and (8) and let Axioms 4 and 5 hold. Since
I is not empty, u(R) < u(R') and hence R < R’ for some R, R e®. If v and
x also satisfy (1), (2), (7) and (8), then, by Theorem 1, v = au + b, a > 0
and by (6) of Theorem 2 there are numbers b, --- ,bn , i + oo b, =0
such that ='(s,)o(R) = aqr(sz)u(R) + b, foral Re®, 7 =1, -+ ,n. These
equatlons then give au(R)[qr (s;) — w(8:)] = by — br'(s4), Whlch smce u(R) <
u(R') for some R, R’ ¢ ®, requires that T (sz) — w(ss) = bi — br'(s:) = 0.
This holds for any s; ¢ S and therefore 7' = . Finally, if s; is null and P =
(Py,- - ,Piy, R, Pips, - n) and P = (P, - ,Pia,R, Pz, -,

P,), then, by Definition 2, P ~ P , which by (1) and (4) converts to w(s,)u(R)
= 7(s;)u(R'), which requires 1r(s,) = 0 since w(R) < u(R') for some R, R ¢ &.
Conversely, if w(s;) = 0, then (4) and (1) imply that s; is null. ]

The w(s;) are the (subjective) state probabilities. In the foregoing X is
arbitrary with at least two elements (Axiom 4) and  need not be bounded if X
contains an infinite number of elements. Our second axiomatization, in Section 5,
requires X to be uncountable.

The basic subjective expected utility model for the n-state case involves a set
F of acts (functions on S to X), with f(s) the consequence assigned by f ¢ F to
s& 8. The model is

9) f<g dandonlyif 2iam(sdu(f(s:)) = 2iam(s:u(g(s)),

for allf, g € F. (9) results from (1) and (7) by identifying f withP = (Py, ---,
P,) in which P;(f(s;)) = 1 for each 7, and by identifying g with Q = (Q1, ---,
Q.) where Q:(g(s:)) = 1 for each 7.

.+ 4. Discussion. Our definition of < on ® on the basis of < on 3C is typical. It
corresponds to Savage’s D2 and our definition of null states corresponds to
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Savage’s D3: Axiom 4 is like Savage’s P5 and Axiom 5 is like his sure-thing
principle, P2 and P3. There is nothing in the theory of Section 3 that corresponds
directly to Savage’s axiom for comparability of events (subsets of S), P4. This
is due to the different approaches used and not to any specific desire to avoid an
axiom like P4. Savage applies < to F throughout his axioms [including P4, where
< between events is defined in terms of < between acts], where F is the set of
(all?) functions on S to X, similar to the definition given above except that
Savage’s axioms (notably P5 and P6) require S to be infinite. As he notes (pp.
38-39) his axioms imply that S can be partitioned into arbitrarily many equally-
likely events. Because of this he is able to derive his subjective expected utility
model

(10)  f<g Fandonlyif [u(f(s))dP(s) £ Ju(g(s))dP(s)

for all f, g ¢ F (with P the individual’s finitely-additive probability measure on
the set of all events), without resorting to some extrasituational device such as a
well-balanced roulette wheel or canonical experiment. [Savage proves that (10)
holds when f and ¢ are bounded acts, where f is bounded if P(a =< u(f(s) ) <
b) = 1 for some numbers @ and b. He and I have discovered that his postulates
imply that consequence utilities are bounded: consequently all acts are bounded
and (10) holds for all f, g £ F. This result will be proved in a forthcoming edition
of his book and relates to results proved in Fishburn [8].]

Our ® and 3¢ in Section 3 correspond respectively to ® and 3C as used by
Anscombe and Aumann: for them, ® is the set of all “roulette lotteries” with
prizes in X, and 3¢ is the set of all “horse lotteries.”” In our terms, they apply the
Luce-Raiffa [17] version of the von Neumann-Morgenstern theory to ® and to
®*, where ®* is the set of all simple probability distributions on 3¢. Then they
apply axioms similar to Axiom 4 to ® and to ®”* and interconnect ® and & with
their Assumption 1, which is essentially the first part of Axiom 5. (They do not
define null states.) With these axioms, plus another applying to &, they derive
the state probabilities for finite S from the von Neumann-Morgenstern utility
functions on ® and ®*.

As the authors note, the novelty in the Anscombe-Aumann theory lies in the
double application of the von Neumann-Morgenstern theory. Whatever novelty
there is in our first axiomatization is due to the application of the von Neumann-
Morgenstern theory to n-tuples of probability distributions.

6. An even-chance axiomatization. Our second axiomatization begins with
Debreu’s even-chance theory of utility [5] which applies < to F X F, then adds a
non-triviality axiom and another axiom to complete Steps 2 and 3. In this section
we view F as the set X" of all n-tuples (1, - - - , *.), Z; € X for each ¢, with f(s;)
= z; whenf = (21, - ,2,). With F = X" we interpret (f, f) ¢ F* as an alter-
native resulting in f with certainty, and interpret (f, ¢’) € F*, f # g, as an alter
native resulting in act f or g (not both) with equal probability: (f, g) ~ (g,f) is

»implied by Axiom 2%,

Debreu’s even-chance theory for the present context is summarized by the

following four axioms and Theorem 1%,
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Axiom 0 (Structure). (X, 3) 4s a connected and separable topological space.

Axiom 1% (Order). < on F* is a weak order.

Axiom 2% (Cancellation, Even-Chance). If (f, g) < (f', ¢') and (f, ¢*) <
(f*, 9) then (¢*, ) < (¢, 1%).

Axtom 3" (Archimedean-continuity). {(f, ¢) | (f, ¢) € F*, (f, 9) < (', ¢)} and
()| (5, 9) e %, (7', g) < (f, )} are open sets (in the product topology ") for
each (f, g') e F".

Turorem 1* (Debreu [5]). Axioms 0%, 1%, 2%, and 3% imply that there is a con-
tinuous, real-valued function w on F* such that

(11) (f,9) < (b k) if and onlyof u(f,g) < u(h, k), forall f,g,hkePF,
(12) u(f, 9) = 3u(f, f) + sulg,g9) forall f,gefF,

and if v also is a real-valued function on F* satisfying® (11) and (12) then v is
continuous and there are numbers a > 0 and b such that

(13) o(f,9) = au(f,g) +b forall fgeF.

Theorem 1% corresponds to Theorem 1 and (11), (12), and (13) correspond
respectively to (1), (2), and (3).

To complete the derivation we use the following axioms and definitions. In
Definition 1* and later, & is the constant act in F assigning x ¢ X to each s ¢ S.

Axiom 4% (Non-triviality). (f, f) < (g, g) for some f, g € F.

DeriNtrioN 1% (Order for X*). If z, y, 2, w ¢ X then (z,y) < (2, w) if and only
if (z,9) L (3 w).

DerimNrrion 2% (Null States). s; e S is null if and only if (f, g) ~ (h, k) when-
ever {f(s), g(s)} = {h(s), k(s)} for all s = s;.

Axtom 5% (Monotonicity). If {f(s), g(s)} = {h(s), k(s)} for all s % s; then
(f,9) L (B k) of (f(s:), 9(s:) ) L (h(s:), k(s:) ), and (f,9) < (h, k) of (f(s),
g(ss) ) < (h(s:), k(s;) ) and s; is nonnull.

For Step 2, the next theorem corresponds to Theorem 2 with (14), (15), and
(16) the obvious counterparts to (4), (5), and (6).

TueoreM 2¥. Azioms 0%, 1%, 2%, 3%, and 5™ imply that, with w on F* continuous

and satisfying (11) and (12), there are real-valued functions wy, -+ , un on X
such that
(14) u(f, 9) = 2l wi(f(s2), g(s2) ) forall (f,g) e F*,

and, under these conditions, each u, ts continuous and
(15)  wiz,y) = jui(w, @) + sui(y,y) forall =, yeX; t=1,,n.

If u (continuous) and the u; satisfy (11), (12), and (14), and real-valued functions
v (continuous) on F* and v; on X* fori = 1, --- ,n satisfy (11), (12), and (14)
then there are numbers a > 0,by, -+ - , b, , such that (13) holds withb = by + - - -
+# b, and

(16) vi(z,y) = oui(z,y) +b; forall (z,y)eX5i=1,---,n
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Proor. Let the cited axioms hold with 4 (continuous) satisfying (11) and (12).
Ifz,y,2,we X and {x, y} = {2, w}, then, by Axiom 1* [(f, g) ~ (f, ¢)] or Axiom
2°[(f, 9) ~ (9, )], (& §) ~ (2 ): hence, by Definition 1*, (z, y) ~ (2, w).
This result and the first part of Axiom 5* imply that, if {f(s), g(s)} = {h(s),
k(s)} for all s 8, then (f, g) ~ (h, k). Letting u(f) = u(f, f), it then follows
from Fishburn [7], pp. 42-43, that there are real-valued functions w; on X for
¢ =1, ,n such that u(f) = D ;wi(f(s,)) for all fe F. Let ui(z, y) =
3wi(z) + Jwi(y) for all z, y ¢ X. Using (12) we then have u(f, g) = %> : wi(f
(s)) + 3 22wi(g(s)) = 2sui(f(s:), g(s:)), which is (14).

Let u’ on X* be defined as follows. Let F.* = {(f, g) | f(s;) = g(s;) = = for
allj # 4}, wherez, & X isfixed, and let w:’ (f(s:), g(s:) ) = u(f, g) for (f, g) e F.
Then (see, e.g., Kelley [12], pp. 102-103) u. is a continuous function on X? since
u is continuous on the product space F”. If (14) holds, then wu:(f(s;), g(s:)) =
w (£(83), 9(8:)) — D ies ui(@o , o), S0 that u; is also continuous on X2

Verifications of (15) and (16) are similar to those for (5) and (6) respec-
tively. []

TraeorEM 3. If u is any continuous, real-valued function on F* satisfying (11)
and (12), and if Azioms 0%, 4%, and 5% hold, then letting w(z, y) = u(&, §) for all
(z, y) € X°, there is a unique real-valued function = on S such that

a7n o, g) = Ziam(s)ulf(s), g(s:) ) forall (f,g) e F
w(s) Z 0 foreach se8, and D rw(s;) =1,

and, under these conditions, w(s) = 0 if and only if s is null.

We note that the model (9) results from (11) and (17) on letting u(z) =
u(z, ).

Proor. Since the conditions of the first two lines of the theorem imply Axioms
1% 2%, and 3* these axioms were not listed in its statement. With Theorems 1*
and 2 at our disposal, let % on F* and the u; on X% continuous and satisfying
(11), (12), and (14), be transformed according to (13) and (16) so that u(Z,
Zo) = u(o, ) = 0,7 =1,--- n If s;is null, then u; = 0, so that we set
7(s;) = 0 when s; is null.

Next, let I = {7 s; is not null}, which is not empty by Axiom 4. If ¢ & I, then
Definition 1%, Axiom 5%, (11) and (14) yield us(z, y) < wi(z, w) if and only if
(z,y) < (2 w) for all z, y, 2, w ¢ X. Hence each u; for ¢ ¢ I satisfies the same
order-preserving property for the same weak order on X, and, by (15), each u;
for ¢ ¢ I satisfies the same expectation property, analogous to (12) for u on F>
In addition, analogues of Axiom 2* and 3* also apply to X” for each ¢ ¢ I: if
(z,9) < (&, 4) and (2, y*) < (2%, y), then (4%, 2) < (¥, ") since (z, ) <
(2, w) if and only if ui(z, x) + ui(y, y) = ui(z,2) + w(w,w); {(2,9) | (z,9) <
(', y)} and {(z, y) | (2, ¥') < (=, y)} are open subsets of X [in the product
topology 3] since u; on X” is continuous and u;(X, X) is an interval of reals by
continuity and the connectedness of (X7, 5°), the latter from Axiom 0. It then
follows by analogy to Theorem 1* that, for each ¢ el (with ¢eI), there are
numbers a; > 0 and ¢; such that u.(z, y) = aw(z, y) + ¢ for all (z,y) e X7,
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where ¢ = u; and a; = 1, ¢; = 0. Since u;(z0, o) = 0 by construction, ¢; = 0
for each 7 ¢ I and therefore u;(z, y) = asw(z, y) for all ¢ ¢ I. Substituting into
(14), this gives u(f, g) = 21 aw(f(s:), g(s:)) for all (f, g) € F*, which converts
to (17) and (8) on letting 7(s;) = a;/ Y ra:foreachi e I and u(z,y) = (D1 as)
o(z, y) for all (z,y) e X° Since > #(s;) = 1, u(f,f) = u(z,z) whenf(s) =z
for all se 8. If v(f, 9) = au(f, g) + b for all (f, g) € F*, (17) then converts to
v(f, 9) = 22 w(s:)v(f(5:), 9(s)).

The uniqueness proof for « is like that used for Theorem 3. []

6. Further Discussion. In the first axiomatization, the structural properties
which (along with the preference axioms) led to the fact that the u; were related
by increasing linear transformations were the closure under convex combinations
and related properties of mixture sets (Axiom 0) and the fact that the u; were
defined on the same set ®. The even-chance axiomatization used F = X" and,
instead of convex closure, relied on topological properties (Axiom 0% con-
tinuity) to connect the u;(on X*) by increasing linear transformations. In both
cases, this connection between the u; for non-null s; was our key to defining the
unique state probabilities for the finite set S.

There is a close relation between Ramsey’s original ideas [20] and our even-
chance theory, which may be viewed as one reasonable transliteration of his
basic ideas, supplemented by Debreu’s insights. Suppes’ theory [23] is also
strongly motivated by Ramsey and is in many ways closer to Ramsey’s theory
than is ours. Both Ramsey and Suppes obtain a theorem similar to Theorem 1*
(minus continuity) on a purely algebraic rather than topological basis. Ramsey
does not explicitly spell out all the details leading to the model u(f) = >
w(s;)u(f(s;) ). Suppes is more complete in this respect and, in fact, goes beyond
the finite-states model to the consideration of an arbitrary number of states, ob-
taining an expected-utility model under a finitely additive probability measure
on S, asin (10). (Suppes’ axiomatization is offered as an alternative to Savage’s,
which Suppes feels to contain several weak points not present in his theory.
Suppes is also critical of some of the features of his own theory, and many of his
comments apply to our axiomatizations. The reader may consult Suppes [23],
[24] for further discussion.)

For finite S, our second axiomatization is stronger (less general) than is Suppes’.
That is, our assumptions imply all eleven of Suppes’ axioms (A.1 through A.11),
and then some. His first five axioms are essentially equivalent to our Axioms 1*
and 2%, with one notable difference: we apply < to X" X X" whereas Suppes
applies < to D X D with D € X". His Axiom A.8 requires that all constant acts
be in D, and A.6, A.7, A.10, and A.11, all involving <, specify other restrictions
on D, A.11 being his midpoint axiom [f, g € D imply that there is an h ¢ D such
that, for every se 8, (f(s), g(s) ) ~ (h(s), h(s))]. Our system contains no
direct analogues of these latter four axioms although each is a consequence of
our theory: in terms of structure, we use D = X" and Axioms 0* and 3* com-
pared to Suppes’ A.6, A.7, A.8, A.10, and A.11. Suppes has no explicit counter-
part to Axiom 4* (non-triviality) and does not use Savage’s notion of a null
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state (or event). His resulting subjective probabilities are not necessarily unique
but he notes that, for finite S, “various conditions which guarantee uniqueness
are easy to give.” [23], p. 68.

Suppes’ other axiom, A.9, compares with the first part of Axiom 5*. In our
terms, A.9reads:if (f(s), g(s)) X (h(s),k(s)) for eachs ¢ S, then (f,g) < (h, k).
The first part of Axiom 5* reads: if {f(s), g(s)} = {h(s), k(s)} for all s # s; and
(F(si), 9(s:)) L (h(s:), k(s:)), then (f, g) < (h, k). Granting (f, g) ~ (f,9) ~
(g, f) in all cases, we showed in the proof of Theorem 2* that {f(s), g(s)} =
{h(s), k(s)} implies (f(s), g(s)) ~ (h(s), k(s)). The first part of Axiom 5* is
an immediate consequence of this and A.9. Similarly, Axiom 5* and the transi-
tivity of < imply A.9, with one reservation. To show this, suppose (f(s), g(s)) <
(h(s), k(s)) for each s e S. Then, by repeated applications of Axiom 5% and
transitivity we obtain, with acts written as n-tuples of consequences, ([f(s1) , - -,
F(8n1), f(su)], lg(s1), -++ 5 9(8a1), g(sa)]) < ([f(81) 5 -+ ’f(sn—l), h(sa)],
[g(s1), + 5 9(8a1), k(8a)]) < (f(s1) 5 =+ v 5 f(8n2), h(sn—1)7 h(sa)l, lg(s1) 5 -+ -,
9(8n—2), k(su1), B(sa)]) < -+ < ([f(s1), h(s2) , =+, B(sa)], [g(s1), B(s2) 5 -+,
E(sa)]) < ([R(s1), -+, h(sa)], B(s1), -+ ,k(ss)]). For this demonstration it
is of course necessary to assume that all acts involved are contained in D, which
is not necessarily so in Suppes’ scheme.

7. On open axiomatizations. Following Luce and Suppes [18], p. 269, we define
an axiomatization for the subjective expected-utility model (9) or (10) as

a. finitely open (open) with respect to S if the axioms apply to any finite (finite
or infinite) number n of states, n = 2;

b. open with respect to X if X can be of any size (= 2);

c. open with respect to F if, with any allowable S and X, F can be any subset of
the set of all functions on S to X, with at least two elements;

d. open in form if, for any (8, X, F) admissible under the axioms, the axioms
hold for every nontrivial numerical realization of (9) or (10) as the case may be
when < is defined on the basis of (9) or (10);

e. pure if each preference axiom can be stated using < between pairs of ele-
ments in F only.

Savage’s theory is open with respect to X and is the only pure theory cited in
this paper. Because it requires an infinite S and arbitrarily large (finite) parti-
tions of S into equally-likely events it is neither open with respect to S nor open
in form.

No theory cited here is open with respect to F: most require all constant acts
to bein F.

The theories of Suppes and Davidson-Suppes and our second axiomatization
are similar in that they use the special probability % for scaling utilities, which
renders them not pure. They are finitely open in S but not X (Davidson-Suppes
take X finite: the others require X infinite) and are not open in form because of
special conditions on u. Suppes’ theory is the only one cited in this paper (ex-

“cluding Ramsey) that is open with respect to S.
The other three theories (our first, Anscombe-Aumann, Pratt-Raiffa-Schlaifer)
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are similar in that they use a continuum of “known” probabilities as a measure-
ment device, which renders them not pure. They are finitely open in S, open in
X (X finite is sometimes used but is not essential), and open in form.

No theory cited here is open in form and pure, which raises a series of ques-
tions. For example, are there axiomatizations for (9) that are finitely open in S,
open in form, and pure when F = X"? If so, is any open in X? What about
FCX%---

Having raised these questions I can say little more about the first than to note
that it has a positive answer, although the axiomatization I have in mind assumes
that X has two elements only. This axiomatization amountsto a modified version
of the Kraft-Pratt-Seidenberg [15] or Scott [22] theory for the existence of a
probability measure on a finite set (using F = {z, y}" in place of the set of events),
or to an application of the theory of additive conjoint measurement for finite
sets, developed by Adams [1], Scott [22], and Tversky [25]. With n = 2 states
the axioms are

A0'. X has two elements and F = X"

Al'.f < gorg < fwhenf geF.

A2’- If m > 1; fi, - 7fm’gla 7gm8F; fl(si)) )fm(si) s a per-
mutation of gi(si) , -+, gm(si) Jori=1,--- ,n;f; Lgiforyg=1,---,
m — 1:then gn < fum.

A3 For somez,y e X, & < goryg < &.

A Ifz,y e X and T < § then & <L fforalfefx y}"

These axioms are a slight modification of Scott’s axioms (p. 246), and, using
Scott’s result, they imply (9) where with X = {x, y}, u(z) < u(y) if # < @, or
u(y) <wu(z)ify < Z. Inmost numerical realizations of (9) for this case = will not
be unique. The axiomatization given here is pure since the preference axioms
apply < to F throughout.

It is not at all clear to me at this time if and how the above axiomatization can
be modified so as to remain pure, finitely open in S, open in form, and open (or
finitely open) with respect to X when F = X". In the next section we comment
on a pure axiomatization for (9) when F is a particular type of subset of X".

8. Constant acts. In considering constant acts I will confine the discussion to
consequences that are possible under some available act and shall let X; be the
set of such consequences when (under the hypothesis that) s; is the true state.
With n states, F is therefore a subset of the product set [ [7— X . Alternatively,
F is a subset of X", with X = U7, X; . To define consequence utilities and state
probabilities in a meaningful way it is convenient, if not necessary, to assume
that all constant acts are in F. This implicitly assumes that constant acts are
logically and psychologically relevant (if not in fact available) and explicitly
implies that X; = X; for all 7, jin {1, --- ,n}.

The difficulty with constant acts arises from their logical intractibility in many
decision situations, especially those in which specific aspects of the states enter
into the formulation of consequences. Imagine, if you will, a court trial with two
states: “Mr. Accused committed the crime he is on trial for” and “Mr. Accused
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did not commit the crime he is on trial for.” From the judge’s viewpoint one
consequence could be “Sentence Mr. Accused, who committed the erime he is on
trial for, to ten years in prison.” To suppose that there is a constant act with
this consequence as the constant leads us to say that Mr. Accused, who committed
the crime he is on trial for, did not commit the crime he is on trial for. If we try
to avoid constant acts as such in this case and instead try to compare conse-
quences directly we face the psychologically interesting possibility of asking
the judge to compare preferentially two consequences such as “‘Sentence Mr.
Accused, who commited the crime he is on trial for, to five years in prison” and
“Acquit Mr. Accused, who did not commit the crime he is on trial for.” The
judge might very will find these two consequences incomparable and decline to
make any direct preference-indifference judgment between them.

In this brief example X; n X; = & when 7 # j. When this holds and X =
u X is finite, there is a pure axiomatization for (9) that is open in form, but the
7 (s;) for this case should not be viewed as subjective probabilities. To be specific,
the theory of additive conjoint measurement noted in Section 7 says that the
pure axioms Al” and A2’ hold when F € ][] X is finite if and only if there are
real-valued functions %, : -+ ,u, on Xy, + -+, X, respectively such that

(18) f<g ifandonlyif D i w(f(s:)) S 2 ui(g(ss)),

forallf,geF. Let w(s1) , - -+, w(s.) be any sequence of positive numbers that
sum to one. Then, with X;n X; = & when ¢ # j, define 4 on X by u(z) =
u,(x)/7(s;) when z &£ X;. (9) is thus obtained from (18) but adds nothing to
the content of (18). Because the 7(s;) are arbitrary we would not think of them
as subjective probabilities.

This example and previous discussion indicate that, in order to coherently
view the w(s;) in (9) as subjective probabilities, it is essential to have conse-
quences that can occur under more than one state (consequences contained in
more than one X;). This does not require constant acts: it does require a suf-
ficiently rich overlap of the X; . For example, in our first axiomatization, which
is based on the Anscombe-Aumann notion of horse lotteries, we do not require
constant acts but do assume that X; = X for all 2, 5. Moreover, it appears that a
modification of our first axiomatization brought about by assuming only a
minimal overlap and linkage among the X; can result in (9) with unique state
probabilities. I hope to comment further on this and related ideas at another
time.

9. Acknowledgments. I am indebted to Professor L. J. Savage and the referee
for valuable advice on the material in this paper.

REFERENCES

[1] Apams, E. W. (1965). Elements of a theory of inexact measurement. Philos. Sci. 32
205-228,
[2] ANscoMBE, F. J. and AumaNN, R. J. (1963). A definition of subjective probability. Ann.
’ Math. Statist. 34 199-205.



PREFERENCE-BASED DEFINITIONS OF SUBJECTIVE PROBABILITY 1617

[3] Davipson, D. and SuprEs, P. (1956). A finitistic axiomatization of subjective probability
and utility. Econometrica 24 264-275.

[4] DEBREU, G. (1959). Cardinal utility for even-chance mixtures of pairs of sure prospects.
Rev. Econ. Studies 26 174-177.

[5] DeBREU, G. (1960). Topological methods in cardinal utility theory. In K. J. Arrow, 8.
Karlin, and P. Suppes (Eds.), Mathematical Methods in the Social Sciences, 1959.
Stanford University Press. 16-26.

[6] pE FinETTI, B. (1937). La prévision: ses lois logiques, ses sources subjectives. Ann. Inst.
H. Poincaré T 1-68. (Translated by H. E. Kyburg, Jr., in [16].)

[7] FisaBURN, P. C. (1965). Independence in utility theory with whole product sets. Opera-
tions Res. 13 28-45.

[8] FisaBurN, P. C. (1967). Bounded expected utility. Ann. Math. Statist. 38 1054-1067.

[9] Goop, 1. J. (1950). Probability and the Weighing of Evidence. Griffin, London.

[10] HerstEIN, I. N. and MILNOR, J. (1953). An axiomatic approach to measure utility.
Econometrica 21 291-297.

[11] JensEN, N. E. (1967). An introduction to Bernoullian utility theory. I. Utility func-
tions. Swedish J. of Economics.

[12] KELLEY, J. L. (1955). General Topology. Van Nostrand, Princeton.

[13] KoormaN, B. O. (1940). The axioms and algebra of intuitive probability. Ann. Math.
41 269-292.

[14] KoopmaN, B. O. (1941). Intuitive probability and sequences. Ann. Math. 42 169-187.

[15] KraFT, C. H., PrATT, J. W. and SEIDENBERG, A. (1959). Intuitive probability on finite
sets. Ann. Math. Statisi. 30 408-419.

[16] KyBUra, H. E. and SMOKLER, H. E. (Eds.) (1964). Studies in Subjective Probability.
Wiley, New York.

[17] Lucg, R. D. and Rarrra, H. (1957). Games and Decisions. Wiley, New York.

[18] Lucsg, R. D. and Suppes, P. (1965). Preference, utility, and subjective probability. In
R. D. Luce, R. R. Buss, and E. Garanter (Eds.), Handbook of Mathematical
Psychology 3. Wiley, New York. 249-410.

[19] PraTT, J. W., RA1FFa, H. and SCHLAIFER, R. (1964). The foundations of decision under
uncertainty: an elementary exposition. J. Amer. Staiist. Assoc. 69 353-375.

[20] RamsEy, F. P. (1931). Truth and probability. The Foundations of Mathematics and Other
Logical Essays. Routledge and Kegan Paul, London. 156-198. (Reprinted in [16].)

[21] SavaeE, L. J. (1954). The Foundations of Statistics. Wiley, New York.

[22] Scort, D. (1964). Measurement structures and linear inequalities. J. Math. Psychol. 1
233-247.

[23] SuppEs, P. (1955). The role of subjective probability and utility in decision-making.
Proc. Third Berkeley Symp. Math. Statist. Prob. b 61-73. Univ. of California Press.

[24] SuprEs, P. (1960). Some open problems in the foundations of subjective probability.
In R. E. MacsaowL (Ed.), Information and Decision Processes. McGraw-Hill, New
York. 162-169.

[25] TvERSKY, A. (1964). Finite additive structures. Mickigan Math. Psychol. Prog. MMPP
64-6. Univ. of Michigan.

[26] ViLLEGas, C. (1964). On qualitative probability o-algebras. Ann. Math. Statist. 35
1787-1796.

[27] voN NEUMANN, J. and MORGENSTERN, O. (1947). Theory of Games and Economic Be-
havior, 2nd. ed. Princeton Univ. Press.



