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A DECOMPOSITION FOR L'-BOUNDED MARTINGALES!

By Ricuarp F. Gunpy
Rutgers——'The State Unaversity

1. Introduction. We exhibit a decomposition for an L!-bounded martingale
that allows us to obtain bounds for the distributions of various random variables
defined in terms of the martingale. The decomposition, which is of some interest
in itself, was devised as a tool to obtain direct proofs of certain inequalities due
to D. L. Burkholder [1]. Burkholder’s proofs are based on an elegant but indirect
and rather difficult technique for establishing maximal inequalities developed by
him in an earlier paper [2]. The decomposition permits us to estimate the relevant
probabilities directly, and its presentation is self-contained to the extent that
nothing beyond the standard lore of martingale theory is required.

2. The martingale transform inequalities. Let f = (fi, fo, - - -) denote a se-
quence of random variables defined on a probability space (2, ¥, P), where the
random variable f, is measurable with respect to a sub-field §,., F. & Fui1,
n=1.Leto = (¢1, ¢, - ) be the f-increment sequence, so that f» = 2 o1 @k,
n 2 1. Denote by ||fll, = supk ||fi]l,, where ||fills, 1 £ p £ « is the usual
L,norm of the random variable f, . The letter C = constant, not always the
same from line to line. Random variable sequences are added in the natural way:
freo=U0G+a,fot+g, )

We are interested in a class of quasi-linear mappings from sequences of random
variables to random variables. This class, which we call “class ®”, is described
below. For the moment, however, we list its most prominent members

(a) £ = supa fals

(b) 8u(f) = (Zia o))}

() 8(f) = limnsw Salf).

The following theorem concerning these mappings is due to D. L. Burkholder

[1].
TuaeoreMm 2.1 (Theorem 8 of [11). If f s a martingale, then

P(S(f) > N) = Cliflly»

and

P(f* > \) £ CISUN I/

Jor all X > 0.

From the inequalities of Theorem 2.1 and the Marcinkiewicz interpolation
theorem, one may deduce the following:

TaeoreMm 2.2 (Theorem 9 of [1]). Let 1 < p < . There are positive real num-
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bers Cp and C, such that if f is a martingale, then

CollSaNlls = Ifll> £ C IS (N1l

foralln = 1. .

The inequality in Theorem 2.2 was proved for special cases by Paley, and
Marcinkiewicz and Zygmund. Paley [5] proved it for martingales derived from
Walsh-Fourier series. In this context, it plays a fundamental role as a substitute
for the conjugate function norm inequalities, available for trigonometric series.
The results of Marcinkiewicz and Zygmund have been used to obtain generaliza-
tions of Kolmogorov’s strong law of large numbers, and more recently, Chow [3]
has used Theorem 2.2 to the same end.

Burkholder proves Theorem 2.1 as a consequence of the following result.

TrareorEM 2.3 (Theorem 6 of [1]). If f and g are martingales relative to the same
increasing sequence of o-fields and S.(g) = S.(f),n = 1, then

P(g* > \) = Cllfll/x

forall N > 0.
In the present approach, we obtain Theorem 2.1 and a somewhat less general
form of Theorem 2.3 from the decomposition and the properties of class ® map-

pings.

3. A decomposition theorem and the class ®. Our main result is the following
decomposition theorem.

TueoreM 3.1. Letf be an L'-bounded martingale. Corresponding to any X > 0 the
martingale f may be decomposed into three martingales a, b, d, so that f = a + b + d.

(i) The martingale a = (a1, @Gz, -+ ), Gz = Sor s i is L'-bounded, ||a|; <
C|Ifll. and the increment sequence o = (ou, oz, -+ ) 1s such that P(a* #0) <
Clf/n.

(ii) The mariingaleb = (b1, by, -+ ), bn = Z;’;l B , is absolutely convergent,
[ 25 18l Il = [l -

(iii) The martingale d = (dy, da, -+ ), dn = Sor .y 8 , 18 uniformly bounded,
ld]le < O, lldl < Clfllx, and [ld]s* < CNIfllx -

The proof of the decomposition theorem is postponed until later. We now show
how the decomposition may be used to obtain inequalities for a certain class of
random variables.

The mappings f* and S(f) have a few common features which seem to deter-
mine the kind of inequalities that one can prove. We abstract these features and
list them under the title “class ®.” This definition seems justified if only to focus
on the essential character of subsequent arguments.

DerFINITION. A mapping T is said to be of class ® if (i) its domain is a collection
of random variable sequences that is closed under addition; (ii) its range is a
collection of random variables such that:

, 1. T is quasi-linear, i.e. |T(f + ¢)| £ C(|Tf] + |Tgl).

2. P(|Tf| # 0) < CP(f* # 0).
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3. The mapping T satisfies the following norm inequalities:

(a) 1Tfll: < Clfllz,
(b) it f = (fi,fe, -+ ) where fy = D i1 ¢, then

1Tl .01 208 lew] s -

The mappings f* and S(f) belong to class ® when f is a martingale. Consider
T(f) = f* = sup |f.|. Requirements 1 and 2 are obviously satisfied. Requirement
3a is Kolmogorov’s maximal inequality for L*-bounded martingales, and require-
ment 3b is obviously satisfied.

Consider T(f) = S(f) = (2_ra¢’)!. Requirements 1, 2, and 3a are easily
checked. Requirements 3b is satisfied since ) sior < (2 e leoi])? implies
I8Nl = Cll 225 |l [l1 -

For further examples, let v = (v, v;, - - - ) be a sequence of transforms, i.e. v,
is measurable with respect to F,—;, n = 1, such that »* < ¢ < «. Let f be an
L'-bounded martingale and define the transform g = (91, g2, ' -+ ) by setting
gn = iy vegr . Here again, T(f) = ¢* and T(f) = S(g) are class & mappings.

PRroPOSITION. Let f be an L'-bounded martingale and T a mapping belonging to
class ®. Then

P(ITfI > ) = Cllfll/\

This Proposition follows from Theorem 3.1 and the properties 1-3 of class ®.
Write f = a + b + d, so that |Tf| < C(|Ta| + |Tb| + |Td|). Then

P(|Tf| > \) £ P(|Ta| > \/3C) 4+ P(|Tb| > \/3C) + P(|Td| > \/3C),

so that it suffices to show that each term on the right hand side of this inequality
is bounded above by C||f|1/A.
First
P(|Tal > \) = P(|Ta| % 0) < CP(a* 5 0) = C||f]l/A

by property 2 of class ® and (i) of Theorem 3.1.
Second,

P(|Tb| > N) = C|lfll/A

by the Chebychev inequality, property 3b of class &, and (ii) of Theorem 3.1.

Third,

P(|Td| > \) = Cldlls’/N* = ClIfl/A

by the Chebychev inequality, property 3a of the class ®, and (iii) of Theorem 3.1.

In summary, all class ® mappings of L'-bounded martingales are weak type
(1, 1) (see [6], page 111). In particular, if g = (g1, gz, - - ) is a transform of
f by v with v* < C, then

P(g" > \) = CIfll/™

Therefore we obtain Theorem 2.3 under the condition that ¢ is a transform of f.
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Also
P(S(f) > ») = Clfllu»
so that one half of Theorem 2.1 is proved. For the other inequality, we observe,

following Burkholder ([1], Proof of Theorem 2.) that by Khinchin’s inequality
for Rademacher functions r(¢), k = 1,

| 2% re(to)erlls = CISH) |a

for some ty, 0 < to < 1. Let v = (r1(to), r2(fo), - - - ); then f is the transform of
g= (01,02, ), G = > w1 me(to)er under v, and again by the properties of
class ® mappings and Theorem 3.1,

P(f* > 2) = Cligl/x = IS/
This completes the proof of Theorem 2.1.

4. Proof of Theorem 3.1. We may assume that the martingale f is nonnegative
since by the Krickeberg decomposition theorem ([4] page 144) every L'-bounded
martingale f may be written as the sum of two nonnegative martingales, f =
T —f, with [l £ |Ifll. . Welet I(-) denote the indicator function of the set

in parentheses.
Define the following two stopping times: First, let

r = inf{n:f, > N.

Now recall that f, = 251 ¢, and write e, = ¢, J(r = n). Note that ¢, = 0.
The second stopping timg

s =inf{n: D roE(ey|Fe) > N\
and finally, ¢ = min (, s). Then
P(t< o) S P(r< o) + P(s < »)
= [Ifells + llerllad/N
= Cllfll/.

Let f* be the martingale stopped at ¢ and @ = f — f; thena = (a1, a2, - -+ )
where @, = 2 paar = Jmael(t < k).

Clearly, |lall; = 2||f|l and P(a™* # 0) < P(t < ©) = C||flls/M. Therefore, the
martingale a satisfies requirement (i) of Theorem 3.1.

Now let us examine the martingale f*; the typical term f,' = > 1w el (t = k).
Since I(t = k) = I(r = k)I(s = k), we may write el (1 = k) = (v¢ + &)
I(s = k), whereyx = ol (r > k) and ¢ = oI (r = k). Notice that for k > 1,

E(vi|Frea) = E(ve — @l (r Z k) | Fom1) = —E(e | Faa).

Therefore, we may write the martingale f," = Stalve + e)(s=k),n =1,
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as the sum of two martingales
dn = Zkzl (v + E(e | Fa1))I(s Z k), n

v

1,
and
Zk-l (& — E(ek | Fea)I(s = k), n = 1.

We now show that b = (b1 ,bo, -+ )andd = (d1,dz, - - - ) have the prescribed
properties (ii) and (iii) of Theorem 3.1.

The sum g1 Bk, where 8 = & — E(e |Fx1)I(s = k) is absolutely con-
vergent since

Sl 22 Xiha=2fed(t < =) S2[fI1 < =) =2l
Therefore, the martingale b satisfies property (ii).

Now we show that the martingale d, = Z,Ll o, n = 1, where &, = (v +
E(er | F41))I(s = k) satisfies property (iii).

In fact,

|2 iy = IZk ol (r > k)| S, nzl,

and
0= 2iaB(alF)l(s 2 k) £ 2D E(an| %) =2
for alln = 1. Therefore, ||d|l» = 2). Also, ||Zk_1 Mellr = ||l and

| 21 ECex | o)l £ Cllfll
so that
[ X0 ells < 11225 (v + E(a | $2a)) (s 2 B) | = Clifla

for all n = 1. Finally,
12 als’ = J125alf S oan [ 125 al = Ol

so that property (iii) is satisfied. This completes the proof of Theorem 3.1.
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