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1. Introduction. The technique of varying probability sampling was partially
generalized by Horvitz and Thompson (1952), who furnished an unbiased esti-
mator of the population total. Their estimator, which we shall call the H.T.
estimator for brevity, is in fact applicable in a very general set-up and turned out
to be an admissible estimator. Godambe (1955) generalized the concepts of
sampling design and linear estimators. The important negative result that
emerged from his investigation is the nonexistence of a uniformly minimum
variance (umv, for brevity) estimator among homogeneous linear unbiased
estimators of the population total. While Godambe supposed this to be true for
all sampling designs, there are nontrivial exceptions to this result which are com-
pletely characterized by the author (1966a) as ‘uni-cluster designs.”® These,
however, have the serious drawback that unbiased variance estimators do not
exist for them. Barring therefore these unicluster designs, we have only some
negative results, of which Basu’s (1958) result concerning the inadmissibility of
estimators that depend on the order or repetitions of units in a sample, is the
important one. Koop? (1957) and Prabhu Ajgaoukar (1962) proved the non-
existence of a umvue even in certain subclasses of linear unbiased estimators.
Roy and Chakravorty (1962) proposed the additional criterion of linear in-
variance but even this did not give a umvue. Godambe (1955) and Hajek (1959)
followed the Bayesian approach to the problem and obtained ‘‘best strategies”
for some important practical situations when a particular type of auxiliary
informiation is available. In all other situations the problem of an ‘optimum®
estimator still remains unsolved.

In Section 3 of this paper we propose a new criterion which we name Ayper-
admissibility (h-admissibility for short). This criterion gave a unique optimum
estimator which is the H.T. estimator, in a very wide class of unbiased estimators
and for all non-unicluster designs. Even for unicluster designs the H.T. estimator
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622 T. V. HANURAV

forms the effective component of any h-admissible estimator. In Section 7 we
discuss the consequent final reduction of the central problem of estimation.

After these results were obtained by the author [ef. Hanurav (1965)] Godambe
and Joshi (1965) and Joshi [(1965a) and (1965b)] published some new results
and these are also discussed in the sequel.

2. Definitions and preliminaries. For a full exposition of the basic concepts
involved, we refer to Godambe (1955) and Hanurav (1966a). Here we shall give
only a brief outline.

A simple finite population (‘finite population’ for brevity) AU consists of a
known number N of distinguishable units U;(1 £ 7 £ N). A sample ‘s’ from U
is a finite ordered sequence of units, not necessarily distinet, from . S, the col-
lection of all possible samples, is the basic sample space. A probability measure P
on S defines a general sampling design (‘design’ for brevity) D(U, S, P). Where
only a single population is under consideration as in this paper, we often refer to
D(q, S, P) as D(S, P) or simply as the ‘design P.” Any design P is equivalent
to a unit drawing mechanism biuniquely [Hanurav (1962) and (1966a)].

Let Y be a real-valued variable defined over U, taking the value Y; on
Ui(1 24 = N).ThevectorY = (Y;, ---, Yy) is treated as a parameter in R".
Single-valued functions f(Y) of Y are parametric functions of which the most
important is the population total

(2.1) Y =2V

A statistic T defined over S is a single-valued funetion of the YY-values of only those
units that appear in ‘s.” Tautologically, T is an estimator of f(Y) if itis used to esti-
mate f(Y). The pair (P, T') is called a sampling strategy (or simply ‘strategy’)
and is denoted by H(P, T). The problem is to choose an ‘optimum’ strategy,
optimality being defined in a reasonable way. The concepts of cost function C(H)
and loss function §( H) now enter into the picture. For a meaningful interpreta-
tion, we should choose from the class of all strategies with C(H) < Cy, a given
budget, those that minimize §( H). The inequality C(H) < C, can be replaced
without loss of generality, by the equation C(H) = C, [Hanurav (1966a)].
Throughout this paper we shall take the mean-square error (mse) to be our loss
function.

For a sample s, v, , the effective size of s, denotes the number of ‘distinet’ units
in s. For a given design P

(22) V(P) = Zsts VaPs

is the expected effective sample size in P. In a number of situations in practice
C(H) depends on H only through P and can be approximated by »( P) by a proper
choice of origin and scale of measurement of the cost; and in some situations
where this is not so, as for example in stratified or multistage sampling, it can be
“reduced to this form by a proper splitting up of the problem. We can thus investi-
gate the problem of choosing optimum strategy Ho( Py, To) from the class 3¢(»)
of strategies H(P, T') satisfying »(P) = », a given number. The problem can be
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broken up into two steps: first we shall find optimum 7”s for a given P and then
choose the optimum of these optimum estimators for P varying over the above
class. We shall consider in detail only the first of these in this paper and comment
briefly on the second step towards the end. We shall also confine our attention to
the particular parametric function Y defined by (2.1). The problem of estimation
of any polynomial parametric function can be reduced to this case by a suitable
definition of a new variable or population or both [Hanurav (1966a)].
A general linear estimator (gle, for brevity) is of the form

THT, = K, + D ies Boi¥ 3},

where K, and ,; do not depend on Y and the sum in the bracesis over all ‘distinct’
units U; belonging to the sample. If K, = 0 in the above, we have a ghle (‘h’ for
homogeneous). If further the estimator is unbiased for ¥ we have a glue or a
ghlue (u for unbiasedness) as the case may be. Higher order polynomial esti-
mators are defined similarly. A general polynomial estimator of nth degree (gne)
is of the form

T = T(0)+T(l)+"‘+T(n),

where T, is a homogeneous polynomial of degree » (which may vanish identi-
cally for some or all s) in its arguments which are the Y-values of only those units
that occur in s; and T, has degree n for at least one sample s for which P, > 0.
A gne which is unbiased for Y is termed as a gnue.
Let’

5(P) be the class of all estimators of Y,
£(P) be the class of all gle’s of Y,
£Lo(P) be the class of all ghle’s of Y,
M.(P) be the class of all gne’s of Y,

and M(P) = Uy 9, (P), the class of all polynomial estimators. Further let
3%(P), £*(P), £ (P), M,*(P) and 9*(P) denote the corresponding classes
of unbiased estimators.

In the literature on this subject attention is mainly focussed on £,*(P), and
variance is taken to be the loss function. The condition of unbiasedness is relaxed
in some cases (like ratio-estimators and regression estimators) for obtaining
simpler estimators but only when we are satisfied that the biases of the estimators
are negligible. While the criterion of unbiasedness has a pertinent interpretation
in theory as well as in practice, the same cannot be said of the condition of
linearity imposed on the estimator, at any rate not so from the purely theoretical
point of view. We shall comment further on this aspect later in Section 5 and refer
the reader for more discussion, to Godambe and Joshi (1965) and Hanurav
(1966a).

Even restricting to £0°(P) does not settle our problem. Godambe (1955)
proved that there does not exist a ‘best’ (i.e. uniformly minimum variance esti-
mator—uniformly for all Y £ R¥) in £,*(P) for any P. There however exist de-
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signs P, termed unicluster designs, for which this is not true [Hanurav (1966a)].
But these designs are undesirable from another important consideration viz. the
estimability of the variance of any unbiased estimator of Y.

Two courses are open to progress towards the choice of an optimum estimator.
We can either restrict ourselves to some subclasses of £0"(P) by means of ad-
ditional (yet meaningful) criteria, or weaken our criterion of uniform minimiza-
tion of the variance (umv) as the criterion of optimality. Along the former course
Koop (1957) and Prabhu Ajgaonkar (1962) restricted themselves to some sub-
classes of £0°(P) for the sake of simplicity; Roy and Chakravorty (1960) con-
sidered the subclass of linearly invarient estimators. These methods did not yield
a umv estimator in these subclasses. Roy and Chakravorty restricted themselves
further to ‘regular estimators’ and obtained a best in the class of all ‘balanced
designs’. However their restrictions are unnatural and severe. Along the other
approach Godambe (1955) and Hajek (1959) took up the Bayesian approach
and proved the existence of optimum estimators in £o *(P) (and in fact the
existence of optimum designs P too) for a very special, though important, case
of the availability of a suitable auxiliary information. For further problems that
arise in this connection cf. Hanurav (1966b). Aggarwal (1959) introduced
minimax eriterion and obtained a class of optimum estimators in the class 3(P)
but this criterion is not a meaningful one in our context. [cf. Godambe and Joshi
(1965)]1.

Along the second course we consider the criterion of admissibility which is
weaker than the umv criterion. In a class @(P) of estimators, a member T of
@(P) is admissible, with respect to a given loss function 8, if there does not exist a
T» ¢ @(P) for which

8(T,y) = &(Th), a.s. (P)

(i.e. except for a set of samples with P-measure equal to zero) and for all Y & RY,
inequality holding for at least one Y. Obviously admissibility is the minimum to
be demanded from an estimator.

A subelass @,(P) C e(P) is said to be complete in €(P), with respect to the loss
function 8, iff every member of €(P) — €;(P) is inadmissible. A subclass Co(P)
is said to be the minimal complete class in €(P) iff every member of Co(P) is ad-
missible in @(P). Our aim is to obtain a small enough minimal complete class and
ideally to get one consisting of a single member.

The criterion of adm1s31bﬂ1ty succeeded in eliminating a number of members of
£o (P)—and in fact in £*(P)—but the complete class of estimators left, evenin
£0*(P), is too wide to satisfy us. Two samples s; and s, are effectively equivalent—
in symbols s ~ s;,—iff every unit belonging to s belongs to s; and conversely.
Basu (1958) introduced the fruitful concept of sufficiency in this theory, and
proved.

TuroreM (2.1). (Basu) Given a deszgn P in which Y is estimable, if T is an
unbiased estimator of Y, then the estimator T* defined by

T* = an~c TsoPso/ Zso e Py, of Zso~c P,>0

= 0, otherwise,
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(where the sums occurring are over all samples sy effectively equivalent to s) is also
unbiased for Y and for any convex loss function &

8(T*) < 5(T), forall YeR",
with the strict tnequality holding for at least one value of Y iff
P{Sl ~ 8, Tsl # T32} > 0.

In fact the above theorem remains true if Y is replaced by any estimable para-
metric function. It follows that 7' is an inadmissible estimator in any class of un-
biased estimators containing the corresponding 7™ also, unless

(2.3) as~u=T,=T,,, a.s. (P).

Though Basu restricted himself to simple classes of designs like those arising
out of simple random sampling and the customary probability proportional to size
sampling, his result remains true with no modifications in the proof for any
general sampling design. This is evident from the works of Roy and Chakravorty
(1960) and of Takeuchi (1961). It may be mentioned that H4jek (1959), inde-
pendently, makes a passing remark conjecturing Theorem (2.1). Pathak had
systematically applied Basu’s theorem to a number of examples. However, his
(1964) ‘expository’ account of this main idea of ‘considerable potential value’
(wrongly accredited to him by some workers—for example cf. Chernoff (1965)
and other reviews) where he attempted to formalise the result did not throw any
further light on the problem as he postulates the sufficiency of the relevant sta-
tistic—a result proved by Basu (cf. H4jek (1965) and Hanurav (1966a)).

Before we pass on to our main result in Section 3 we give some results that are
needed in the sequel. For proofs and discussion of these we refer to Hanurav
(1966a).

Given a design P, the first and second order inclusion probabilities 7;’s and
mi’s are defined by

7i = 7(P) = 2 uniPs,

Tij = 7|'ij<P) = ZsDi.iPu’
for1 = 7 j < N. (In the above, the first sum is over all samples that contain
U ; and the second is over all samples that contain U; and U;.) A set of necessary
and sufficient conditions for the estimability of ¥ (i.e. for the nonemptiness of
5%(P)) is that (Godambe, 1955)
(2.4) m >0, for 1=7=N.
When (2.4) holds good and 7™ is an unbiased estimator of Y, a set of necessary
and sufficient conditions for the estimability of V(T™) is that [Hanurav (1966a)]

(25) 7r,-,->0, for léi;éjéN.
When (2.4) holds good, the Horvitz and Thompson (1952) estimator of Y is
(2.6) Par = Diea Yi/mi,

where the sum is over all disténct units U; belonging to s.



626 T. V. HANURAV

DerintTION. A design P is a unicluster design iff any two samples with positive
probabilities are either disjoint (i.e. have no common unit) or are effectively
equivalent i.e.

(2.7) sins =, or s ~s, as. (P).

The above terminology is derived from the fact that these designs are effec-
tively equivalent to designs obtained by dividing the population into clusters of
units and then choosing just one cluster from among them.

In Section 3 we introduce a new criterion of optimality for estimators and prove
the existence of a unique optimum estimator of Y in <*(P), for any non-uni-
cluster design. For the unicluster designs we give a complete characterization of
all optimum estimators.

3. The criterion of hyper-admissibility and the main theorem. We recall the
definition of admissibility. In a class @(P) of unbiased estimators of Y, Ty ¢ @, (P)
is admissible iff

(3.1) T.ee(P) implies that there exists Y® = YO(Ty, T,) ¢ RY
such that V(T1)|y@ < V(T:)|yo

where the variances are evaluated at the point Y, which, possibly, depends on
T; and T, . It is clear that if we restrict the parameter space to some given sub-
sets, an estimator T’y which is admissible for the whole parameter-space may cease
to be admissible in the restricted parameter space.

Let R¥™ be any principle hypersurface (phs) in R". There are (}) such phs’s
of dimension 7, for 1 = r < N, and in all there are (2" — 1) phs’s the totality
of which we denote by &"~

DerinrTioN (3.1). In a class @(P) of unbiased estnnators of Y, Tye@(P) is
hyper-admissible (h-admissible, for brevity ) iff it is admissible when the parameter
Y is restricted to the ‘interior’ of any phs R¥~ of ®&"~. (By the interior of phs
R"™ we shall mean all those points of the phs that do not lie in any phs of smaller
dimension that lies entirely in R"".)

Thus T, € @(P) is h-admissible iff

(32) T.eC(P),R" e®" implies that there exists
Y = Y/(Ty, T:) e R"™ such that V(T1)|y < V(T2)ly’

where BY~ denotes the interior of RY".

Evidently h-admissibility is a stronger requirement than admissibility but is
weaker than the umv criterion.

TueoreM (3.1). For any nonunicluster design P that satisfies (2.4), (so that Y s
estimable) the class 9M*(P) contains a unique hyperadmissible estimator which is
given by Yar of (2 6).

Proor. Let m* be a member of 9 *(P), which is k-admissible, in 91 *(P). For
each s, m,” is a polynomial in its arguments (which are the Y-values of the units
oceurring in s), of degree 7, , say.



SAMPLING FINITE POPULATIONS 627
Since m™ is h-admissible it is, in particular, admissible. From Theorem (2.1)
it then follows that
s~ 8 = ma, = ms,, as. (P)
and hence in particular
(3.3) Tey = Tsy, if St~ 8, as. (P).

Even though S may contain an infinite number of samples with positive proba-
bilities, since there are only a finite number (2 — 1) of equivalence classes of
samples, from (3.3), 7, is essentially bounded for s varying over S. Let then

SUPses s = 7, a.8. (P),
and
(34) m*=T% +7° 4+ ... + 79 as (P),

where 7', is a homogeneous polynomial of degree ¢ in its arguments (which are
the Y-values of the units belonging to s). In (3.4) T may be identically zero
for some or all samples for 1 < ¢ < r — 1, but, for at least one sample s with
positive probability we shall have T, # 0.
Let
Ts(O) — Ks,

Ts(l) = Zies BsiY'i )
T3(2) = Zies BsiiY'i2 + Z Zi#fé‘s 3s'in'in 4
Ts(s) = Zi&:s 3siiiYi3 + Z Zi#fes Bsi'ini2YJ' + Z Z Zi#f#k“ B"iﬂ‘Y’:Y"Yk

ete., where the coefficients 8’s do not depend on Y. (3.5) gives the most general
form of m™ (which is admissible in 9 *(P)). Since

Em*) =Y, forall YeR",

(3.5)

it follows that
(3.6) E(T,) =Y and E(T?®) =0, for q# 1.

‘Since m™ is hyperadmissible it is, in particular, admissible on each of the co-
ordinate axes.of R". For any given ¢ (1 < 7 < N), considering the ¢th coordinate
axis on which ¥; = 0, forj # ¢, m," reduces to

(3.7)  m () = Ky + Bui¥i + BV & + -+ + Boii¥d, if Usies
- K,, if Uizs.
If
S = Siu Si*

where
Si= {s:Uies},
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it follows that for m™ to be admissible on the sth axis, it is necessary that a.s. [P]
we have, identically for all values of ¥,
mi(d) =mb, if s,sel:
and
(3.8) mi(d) = m¥, if s, 868"

To see this we generate new samples s’ and a new design D’(U’, 8, P') from the
original design as follows: AU’ is the population consisting of the original unit U’
and a null-unit Uy, for which Yy4; is known to be equal to zero; from any sample
s e S we generate a new sample s by replacing every unit oceurring in s, other
than the U;, by Uwy1 and retaining U as such if it oceurs in s; for the new prob-
ability measure P’ we set P, = P, where s is the original sample from which s is
generated. We note that the behaviour of any estimator m™ on the éth coordinate
axis is that of the estimator m:"* defined by

me* = m,*(3),

over D'(U’, §’, P’). The desired result now follows from Theorem (2.1) by noting
that the classes S;' and (S)* now represent classes of effectively equivalent
samples of au’.

From (3.7) and (3.8) we have

(3.9) m*(5) = Ki(3) + Bi¥i + Bu¥ & + -+ + i YT, if seS;
= Ky(1), if seS,

where K;(7), Ks(<) and the 8’s do not depend on s (or any Y). From (3.6) we
have

E(m,*(5)) = Y,
and hence from (3.9)
Ki(9)mi + Ko(2)(1 — w) = 0, Bimi =1

and Bimr: = Buims = +++ = Bi...smi = 0. Since Y is estimable over D(u, S, P),
we have =; > 0, so that a.s. (P),
(310) : ﬁ“‘ = ﬁi = 1!'1'_1 and

Bsii = Beizi = = Beiei = 0,

for all samples s £ S; . (For all other samples these 8’s vanish by the definition of

a statistic.)
Since ¢ is arbitrary, (3.10) is in fact true for 1 < 7 < N.
To show that

, Ki(i) = Ky(i) = 0, for 1Si<N

we invoke our hypothesis that P is a nonunicluster design. It is easy to see that
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this implies that there exist at least one pair (¢, ') such that
(3.11) 0< mop < wor.
From (3.9) we see that for all samples s with P, > 0,
K, = Ky(7), if se;
= Ky(7), if se8:*
and similarly
K, = Ki(j), if se;
= Kx(j), if seS;*.

The left hand side of (3.11) implies that there is a sample s ¢ 88;, for which
P, > 0, which gives, from the above,

Ki(7) = Ki(9).

However, the right hand side of (3.11) implies that there is at least one sample
s & 8;8;%, for which P, > 0, and this gives -

Ki(2) = Ki(j),
and hence finally we see that there exists a j for which
Ki(j) = Ka(j).
This implies that
K, = K, say,as. (P),
and from (3.6) now follows that
(3.12) K,=0, as (P).

We now consider the admissibility of m™ in the interior of the (3, j) plane, for a
pair of numbers (7, 7). Setting Y, = 0 for ¢ ¢, j, and from (3.10) and (3.12), we
see that in this region m™ reduces to

m*(4,5) = Yi/mi + YVi/mi + BusYi¥; + (BoiiiVY;

‘ + BoiiiYYi) + oo, for se&S:S;
(8.13) = Y/m:, for seS:8;*
= Y,/7;, for se8:*S;
= 0, for seS*S;*.

Arguing as before we see that the classes S5S;, S4S;%, 8:*S; and 8:*S;* of samples,
form a partition of S into classes of effectively equivalent samples and that the
admissibility of m* in the interior of the (4, ) plane demands that m™*(4, 7) be
constant over these equivalence classes, except possibly for samples of total
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P-measure zero. This condition is met with for the later three equivalence classes.
If 7;; = 0 so that P(S,;8;) = 0 then the condition is trivially satisfied over the
first equivalence class also. If ;; > 0, then the requirement is met with iff the 8
coefficients attached to the terms of the form Y.,Y,’ and Y'Y, ,fors <t < r — 1,
that occur in the first member on the right of (3.13), remain independent of s
for s € 8:S;, a.s. [P]. This, together with (3.6) and the assumption that = > 0,
yields, as in (3.10), that all these 8 coefficients vanish identically—and this is
true for any pair (4, j). Thus

(3.14) Beis = Boiij = Boisij = +++ = Boivis = 0, as. (P),

forl =7#j=<N.

Arguing similarly for the interiors of the higher order hyperplanes it can be
shown that all the 8 coefficients occurring in 7®, T®, ..., T of m™* vanish
identically and we have

m*:{m,* = Zin Yi/"ri}

as the only possible i-admissible estimator in 9n*(P). This is the Horvitz and
Thompson (H.T.) estimator Ygr, given by (2.6).

That in fact (2.6) is h-admissible in 9*(P) can be seen thus:

The derived estimators m*(), m*(3, j) ete. defined above are each the cor-
responding H.T. estimators of the totals of the corresponding subpopulations, and
defined over the respective reduced sampling designs and with the corresponding
shrunken parameter spaces. It was shown earlier by Godambe (1960) and Roy
and Chakravorty (1960) that for any populatlon a’ of N’ units and any design
D'(u’, 8, P') in which the total of U’ is estlmable, the correspondmg H.T.
estimator Ym- of the population total Y’ of U’ is admissible in £ (P ). Their
proofs can be easily extended to prove the admissibility of Ym- in Me*(P'). (In
fact recently Godambe and Joshi (1965) extended this to 3*(P’) itself.) Though
these proofs showed the admissibility of P5y in the whole parameter space R —
and in fact by exhibiting, corresponding to any other estimator ¥, a point Y’ on
one of the coordinate axes, at which V( Par) < V(¥ )~they can be trivially
modified to prove the admissibility of Pgr in the interior of RY . The easiest way
to see this is by noting that the function V( Par) — V(¥’) is analytic in its N’
arguments. so that its negativeness at Y’ implies the negativeness throughout a

elghborhood of Y’ which certainly contains points belonging to the interior
of R

Thus the derived estimators m,*(%), m,*(4, j) of (2.6) not only satisfy (2.3)
of Theorem (2.1), which is necessary for their admissibility, but are in fact ad-
missible in their corresponding classes of 9*’s and in the interiors of the cor-
responding parameter spaces. Since this is all that is required for the h-admis-

. sibility of (2.6) we conclude that (2.6) is the unique h-admissible estimator
in M*(P).
This completes the proof of our theorem.
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REMARKS:

(1) Referring to the representation (3.4) of any admissible estlmator m* of
In*(P), we see that the nonuniclusterness of P and the admissibility of m™ on the
coordinate axes implies that Ty = 0; admissibility on the axes alone implied that
T: = Ygur; admissibility in the interiors of the axes and planes implied that
Ty = 0 ete.

(2) Though we proved that the estimator (2.6) is admissible in the interior
of every principal hyperplane of R", the proof can easily be modified to show that
(2.6) is admissible in the interior of every signed quadrant of every principal
hyperplane obtained by restricting the nonzero coordinates that occur, to any
combination of positive and negative signs. In particular this implies the h-ad-
missibility of (2.6) when Y is restricted to nonnegative values for all its N

coordinates.

(3) It is easy to satlsfy ourselves that (2. 6) is admissible in the interior of
every hyperplane. (i.e., in our termmology, in the subset of RY obtained by
fixing the values of some of the ¥.’s to be any quantltles, not necessarily equal
to zero) and that indeed (2.6) is the only member of 9*(P) with this property.

4. Justification of the criterion of h-admxssxbxhty Given a design P, when
the conditions (2.4) hold good, so that 91*(P) is non-empty, it can be seen that
every linear parametric function (lpf, for brevity)

(4.1) L(Y) = X1 LY

is estimable. In fact if 7' is any member of 91C*(P) then an unbiased estimator of
L(Y) is obtained by replacing the Y.s occurring in T by the corresponding
LY 7s. Any unbiased estimator T of Y, i.e., any given sequence of 3 coefficients,
can therefore be looked upon not merely as an estimator of ¥ but as a method of
estimation to unbiasedly estimate all Ipf’s.

In practical sample surveys often one is interested in estimating not only Y
but also of a number of Ipf’s of the type (4.1). For example, totals and means of
several subpopulations and contrasts between these totals and means are very
often of interest in stratified and multistage sampling designs. Even when a
prior stratification is not done a post-stratification of the population may arise
and one may need a breakdown of the gross estimate for these strata. It is
natural to make the minimum demand that any estimator considered should be
admissible. If then one builds up these estimates from the original estimator T
by the method described above then the demand is met with, if T is chosen to be
a h-admissible estimator. As it is difficult to envisage beforehand all the lpf’s
that will be of interest to us, it is a safe precaution to have T as a h-admissible
estimator in which case the derived estimator of any lpf will remain admissible.
The crux of the matter is that in the estimation of lpf the form (4.1) in which
some of the L; are known in advance to be zero, the parameter space of relevance
should no longer be the whole space R¥ and admissibility in the whole of R"
is no consolation. On the other hand, since (4.1) remains unchanged for any
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values of those Y/’s for which the L/s in (4.1) vanish, what is required is that for
any fixed set of values of these Y’s the estimator should remain admissible in
the subset of B" obtained by fixing these coordinates. From remark (3) of the
previous section it is clear ‘that only a h-admissible estimator will satisfy this
condition and the choice of any other estimator for ¥ will necessitate a fresh
construction of a new estimator if some Ipf other than Y also becomes of interest
at a later date, which indeed is very undesirable, especially from the point of
view of large scale mechanized computations. These considerations lie at the
bottom of the mathematical criterion given in Section 3.

There is also an interesting interplay between the equivalence of samples of a
design D(, S, P) and the problem of estimation of a given Ipf, > L;Y;. Samples
of D which are not effectively equivalent for the estimation of ¥ may become so
for the estimation of L(Y), if they contain some or all of only those units U,
for which L; # 0. Thus the effective equivalence of samples is not an intrinsic
property of the design but is contingent upon the parametric function of interest
to-us, unless all Ipf’s are of possible interest to us.

6. The unicluster designs. As seen from Theorem 3.1, the unicluster designs
P,, form an exceptional class. A complete characterization of admissible and
h-admissible estimators in 9 *(P,.) for these designs is given in the following:

Tueorem (5.1). For any unicluster design P,. = P, say, which satisfies (2.4)
any estimator T ¢ M*(P) is admissible iff T is of the form
(5.1) T:AT, = K, + i Yi/7i)
where KJ's are constants (i.e., independent of Y) satisfying
(52) () K,, =K,,, of ss~s;and

(11) z.seSKsPa = 0.

Further, every T satisfying (5.1) and (5.2) is h-admissible.

Proor. As proved in Theorem (3.1) any admissible estimator T & 9 *(P)
can be represented by (3.4) and (3.5) and the unbiasedness of 7' implies (3.6).
We shall first prove that for unicluster designs these imply the stronger relations

(5.3) T@ =0, for 1<qg=r.
To prove that T® = 0, if possible let the contrary be true so that there exists a
sample s, with P, > 0 such that
(54) (a) Bei # 0, for some ¢, forwhich U;es  or
_(b) Bsij # 0, forsome (7,7), forwhich U;, Ujes.

If, for example, (a) holds good then for any other sample s” with P, > 0 if we
have U;e s also, then the uniclusterness of P implies, from (2.7) that s" ~ s.
In this case the admissibility of 7' implies, from Theorem (2.1), that 7, = T\
and in particular that 8. = By . Thus the coefficient of Y7 in E(T®) equals
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only B m;, which can vanish (as it should from (5.3)), from (2.4), iff B,:; = O.
If no such s’ exists then evidently B, =, is the coefficient of Y2 in E(T?)
hence also By = 0. Thus in either case B, = 0. If (b) of (5.4) holds good then
a similar reason holds for the coefficient of Y.Y; in E(T®) and we shall have
Bsij = 0. Thus we have a contradiction and hence

(5.5) T =0

and the proof for 7®, T®, ... | T® is exactly similar.
From the first equation of (3.6) we have

(5.6) Deo1B8Pe =1, forl <4 < N.

For any fixed < since w; > 0, there exists a s, such that P,, > 0 and U;¢es.
For any other sample s such that P, > 0 and U; ¢ s, the uniclusteredness of P
implies that s~ s in which case the admissibility of 7' in 9*(P) implies that
Bsi = Bsyi. From (5.6) we then have

Za:iﬂu}Ps = ﬂsoiZsDiPs = ﬁsoi‘ll'i = 1

so that

Bei = mi ', i Use s,
which proves that ,
(5.7) TP = 3 i Yi/mi.

This shows that any admissible member of 9*(P) is necessarily of the form
given in Theorem (5.1). To prove that every such estimator is in fact admissible
we need only compare estimators satisfying (5.1) and (5.2). Observe that since
the design P is a unicluster one, U, U; ¢ s for some s (for which P, > 0) implies
that they always occur together in any sample, so that =; = =;. Hence (5.1)
can in fact be written as

T:{Ts =K, + Ziss Y,'/W(S) = K, + Zs/‘ll'(S), Sa'y}
where
(5.8) 71'(3) = Zs'~s Ps' and Z, = Zics Yz'-

If Ty and T be any two estimators of the form (5.8) and (5.2), which therefore
differ only in their K,’s, we have

V(T1) — V(T.) = E(T®) — E(TS)
(5.9) = D ws (Ki, — K3.,,)P,
— D s (K — Ki0)Z,/7(s)- P,
=2 (Ki. — K3)w(s) — X (Kue — Ksu)Ze,

where the sums )’ are over one member each of the classes of effectively equiva-
lent samples, since K,’s are and Z,’s have to remain constant over these classes.
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It is now evident that for any given set of K;,’s and K,,’s which satisfy (5.2)
and K, % K,, for at least some samples s (with P, > 0), (5.9) can be made
positive or negative by a proper choice of Z.’s. Since, however, Z, and Z,,
contain sums over disjoint sets.of Y’s for s; ~ s, this implies that (5.9) can
be made positive or negative by a proper choice of Y /s and this proves that every
estimator of the form (5.1) and (5.2) is in fact admissible in 9*(P) and con-
versely.

From the proof of Theorem (3.1) and the remark (1) of Section 3 it is clear
that every estimator of the form (5.1) and (5.2) is in fact h-admissible.

This completes the proof of our theorem.

REMARKS.

(1) For any unicluster design it is easy to see, from the definition, that there
exists at least one pair (7, j) such that m; = 0 unless of course the design is a
trivial one in which every sample (with positive probability) contains every
unit of the population (in which case the design is effectively equivalent to
complete census). From (2.5) it then follows that in any nontrivial unicluster
design, V(¥) is not estimable for any unbiased estimator ¥ of Y. This is a serious
drawback in practice where one does not relish to be totally in the dark regarding
the precision of the estimate ¥ of ¥ that he makes.

(2) It is interesting to note that while under the criterion of umv it is unfor-
tunate that the undesirable unicluster designs are the only designs for which
there exists an unambiguous ‘best’ in £,* yet, under the criterion of h-admissi-
bility, fortunately, these are precisely the designs barring which there exists an
unambiguous best in even a wider class 9n*,

6. Some general comments. Since the ‘optimality’ of (2.6) is established in
the class 91C*(P) of polynomial unbiased estimators which is wider than £,*(P)
it is only proper to justify the widening of the area of search. We have accepted
the mean square error as the loss function as is customary as also because the
ultimate choice has to be arbitrary in some way if we are to have worthwhile
results. The customary criterion of unbiasedness is also accepted for its intuitive
content, statistical interpretability in theory as well as in practice and also for
the sake of mathematical simplicity. Regarding the restriction of linearity the
only justification is mathematical simplicity. One further justification often
advanced by some workers is based on the considerations of dimensionality. If
Y s are the measurements of some physical characteristic like income or area,
the use of a nonlinear estimator of Y is, according to these authors, incompatible
with the dimensionalities. This is purely a nonmathematical reason and once
the units of measurement are chosen the Y;’s are to be regarded as pure numbers
and the problem of estimation should be looked upon solely as a mathematical
one. If, in fact, this argument is to be regarded as very sacred then it has to be
carried to its further logical consequence that the estimator of Y should be a
“ linearly invariant one; i.e., it should remain independent of the origin and choice
of the unit of measurement. Though in some situations we have a natural choice
of origin and unit of measurement, there are a number of situations in practice
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in which the unit of measurement is purely arbitrary and in some of these cases
the origin of measurement is also arbitrary. For the theory to cover all these
important cases, the argument based on dimensionality demands the choice of
only linearly invariant estimators. However, barring some of the simplest es-
timators, none of the estimators used in practice are linearly invariant estimators.
To this class belong almost all the estimators used in the various unequal prob-
ability sampling methods. Even for equal probability sampling (with or without
replacement) the well-known ‘difference-estimator’

Vair = Ng + k(£ — X),

(where X is an auxiliary characteristic, £ and 7 are the sample means, X is the
known population mean of X and % is any constant) does not satisfy even the
compatibility of dimensions if % and Y are two entirely different characteristics
as is often the case in practice.

The above argument shows that restriction to the class £0*(P) of homogeneous
linear unbiased estimators of Y stems purely from considerations of theoretical
convenience, unless one proves that from the point of view of some loss function
like the variance, the class £0*(P) is complete in a wider class like, say m*(P),
that includes nonlinear unbiased estimators also. We are not aware of any such
result. In fact Godambe and Joshi (1965) give an example of a design P (for
N = 3) and a member of M*(P) = £*(P), for which there does not exist a
member of £*(P), which has uniformly smaller variance. To indicate more
general results in this direction we shall digress for a discussion on the sufficiency
of the “effective sample”. For further discussion of this aspect we refer to Hanurav
(1966a), where a detailed bibliographical discussion is also given.

Given a design P and a sample

§= (Ui, Us, -, Uin(a))
on each of whose units Y is observed, we have the ‘sampley’
(61) (s) Y) = {(Uil ) Yil); (Uiz ) Yiz); ) (Ui»(a) ) Y’in(a))}

which denotes the totality of the observations made. If the set of ‘distinct’
units belonging to s and their corresponding Y-values are given in any order
whatsoever, say for the sake of definiteness, in the increasing order of the indices
of the units that occur, we have the ‘effective sampley’ denoted by

(6-2) (81 Y)d = {(Uil ) Yi1)7 (Ufz ) Yiz)) ) (ija ) ija)}'
The basic sample space S gives rise to the ‘basic sampley space’
(6.3) (8,%Y) = {(s5,Y):se8, YeR"}.

The given design P on S now generates a N-parameter family ®y of probability
distributions on (S, ) defined by

(6.4) Py (s, Y) = Py, if ¥y = YO, forl <k < n(s)
= 0, otherwise,
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for any given point Y of R. With this terminology it is seen [Takeuchi
(1961)] that the effective sampley is a sufficient statistic for the family ®@y.
It is, however, not a complete sufficient statistic. To see thislet w = (U, Us, Us)
and let

81 = (U1, Uz); 8= (U, Us); s3=(Us, Uh);
S4=(U2, Ul); 85=(U3, Uz) and Ss=(U1, U3)

Let P be defined as P,, = %, for 1 £ %k = 6, and P, = 0, for all other samples
se 8. Consider the statistic 7' defined by

T, =T, =Y’ — Y,
Tsz = Tsﬁ = Y22 - Y32,‘
Ty = Ty = Vi — Y7,

and T, = 0, for all other s & S. Clearly T is a function of (s, Y)s alone, T’ &£ 0
and E(T) = 0, for all Y £ R", which shows that (s, Y)as is not complete and the
existence of a umv unblased estimator is not guaranteed.

However, what is more interesting to note is that (s, Y)a is not just a sufficient
statistics for Py but is in fact the minimal sufficient statistics so that a statistic
which is unbiased for ¥ and which depends on (s, Y) only through (s, Y)a
fully, cannot be lmproved upon by Rao-Blackwellisation. It is now easy to
construct members of 9 *(P) — £0*(P) that are thus not obviously inadmissible.
If T, is any member of £*(P), which is a function of (s, Y)s alone then, in the
above example, the estimator T, = T, + T is one such. In general, given any
non-unicluster design P we have at least two samples s and s, with P,, > 0,
P,, > 0 which are neither dlSJOIIlt so that for some 1, Uie 81, U; € 83, nor are
effectively equivalent. If T is any member of £o *(P), which is a function of
(s, Y)a, then T™ defined by

T’:g = T:el = Tsl + Y12/7I'(81), fOI’ S~ &,
T’,': = Tf, =T, — Yi¥/x(s2), for si~ sz,
and T*=T,, for all other s ¢ S,

(where 1r(s) is as defined in (5.8)), is a member of 9M*(P) — £,*(P) which is
admissible, showing that £o*(P) is not complete in IM*(P) for any non-umclus-
ter design P. For unicluster des1gns though £*(P) is not complete in 9M*(P),
the slightly enlarged class £%(P) is complete in 91 *(P) as shown in Theorem
(5.1).

It may be noted and is easily verified that for a unicluster design P the class
IM,*(P), which consists of all polynomial unbiased estimators of ¥ with the
~ ‘constant part’ K, in each estimator set to zero, contains just one estimator viz
“the H.T. estimator which is therefore the best. If the definition of an estimator is
slightly modified to exclude the ‘constant part’ (which is a randomized component
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that has nothing to do with the parameter) then it follows that for a unicluster
design there do not exist nontrivial zero functions of the effective sampley (which
as observed above is not the case with nonunicluster designs) which therefore
forms a complete sufficient statistic thus guaranteeing the existence of a umvue
as indeed it has.

From the above discussion it should be apparent that there does not seem to
be any theoretical justification for restricting ourselves to £,*(P) only, for the
estimation of Y. In the above we have taken M *(P), which is much wider than
£0*(P) to be our area of search for an optimum estimator. Even though this also
is a less ambitious plan than searching the entire class 3*(P) we can content
ourselves with it firstly because we have just one optimum estimator in 9*(P)
and secondly because 910 *(P) is dense in the important class €*(P) of continuous
unbiased estimators of Y.

From the fact that the effective sampley (s, Y)q is the minimal sufficient sta-
tistic a plausible conjecture of the author is that any function f( (s, Y)4) which
depends on (s, Y)a fully (i.e., is not independent of any of the arguments that
oceur in (s, Y)a) is an admissible unbiased estimator of E(f) so that the class
3.%(f) of all such functions f for which E(f) = Y constitute the minimal complete
class in 3*(P). The validity or otherwise of this conjecture in a general set-up
seems to be an open problem of considerable interest but it seems like to be true
at least in our present set-up. The example of Godambe a,nd Joshi (1965), page
1712, does not, therefore, provide a valid counter-example Because the functlon f
chosen by them does not depend on (s, Y)q fully. By letting 8(s*, Us) = 8(s%, Uy)
= B(s8, Uz) = 0, as they did in their example, they have in fact made sa,mples
that were hitherto not effectively equivalent as effectively equivalent samples
but let their estimator to vary over such samples in which case the statistic
obviously gives an inadmissible estimator.

We shall now compare our results with the recent results of Godambe and
Joshi (1965) and Joshi (1965a, b). Godambe and Joshi proved the admissibility
of the H.T. estimator Y gy in 3*(P) when R is the parameter space. They further
remarked (ef. remark (4.1) of their paper) that ¥gr is admissible in 3*(P) even
when the parameter space is restricted to any interval round the origin of R".
This, however, only implies that given any estimator 7' ¢ 3 *(P) other than Par
there is a dense set of points Y around the origin of R" at Whlch V(¥ar) < V(T).
If parameter spaces like intervals, defined by a; = V: = ai,(1 £ i< N), where
a’s and a/’s are some constants, are of any interest to us those that are of real
interest are those for which a; > 0, a; > 0 and one is rarely interested in the
behaviour of an estimator around the origin of R". However, it is easy to see
that no estimator can be admissible even in the smaller class £,*(P) in all
intervals of the parameter space that are of the form a; < Y; < ai where
a; > 0, a > 0. For, if there is one such, say T, then corresponding to any fixed
point Y(°) of R” for which Y > 0, for all 1, we can choose a sequence of mtervals
of the above type which converge to Y:© leen any other estimator 7T & £o (P)
we should then have V(To) < V(Ty) at Y, in view of the continuity of
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V(Ts) — V(T:) in all its arguments. Since Y® is arbitrary this implies that
V(T,) £ V(T,), for all Y in the interior of the positive quadrant of R" and since
T, is any member of £,*(P) this clearly is impossible.

While the results of these authors are more general in one direction (viz con-
sideration of the bigger class 3*(P) as against our 9*(P)) and point out some
of the good properties of the H.T. estimator, they are less conclusive than ours
as their considerations did not preclude any other estimator from possessing
those good properties. In fact it seems very likely that our main result, ie.;
Theorem (3.1) will remain true if 9L*(P) is replaced by the larger class 3%(P)
but we shall not bother to attempt this generalization as there are no competing
estimators left, save the H.T. estimator, after the first round of competition.

Relaxing the criterion of unbiasedness and restricting to £0*(P) these authors
proved that even for v-invariant designs, i.e., for which

(6.5) v(s) = », as.[P]

there are a large number of admissible estimators, though again the H.T. es-
timator too is one among them. Thus the relaxation of the criterion of unbiased-
ness does not help us to pin down a unique optimum estimator. Besides, as yet,
there is not enough mathematical justification to restrict ourselves to v-invariant
designs alone. More discussion on this aspect is given in the next section.

7. Final reduction and further problems. We shall now pick up our discussion
of Section 2. The central problem is to choose an ‘optimum’ strategy Ho(Po, T)
from the class 3¢(») of all strategies H(P, T') for which

(7.1) v(P) =,

where » is a given positive number. Since unicluster designs have a serious
drawback as explained in Remark (1) of Section 5, we shall confine our atten-
tion to the non-unicluster designs only. Restricting T in H(P, T) to m*(P)
and accepting the criteria of unbiasedness and h-admissibility (wrt to variance
as the loss function) we then have accomplished the first step of the problem viz,
the choice of an optimum T, = To(P), for any fixed P which is not unicluster
design and which satisfies (2.4). This optimum To(P) is the Yar(P) of (2.6).
We can thus proceed with the second step which is the choice of ‘optimum’ P,
from among those P’s satisfying (7.1).

If uniform minimum variance is taken to be the criterion of optimality now,
for any two designs Py and P; belonging to the class ®(v) of designs satisfying
(7.1), P, is superior to Py, (Py > P:, in symbols) iff

(7.2) V( YHT(Pl)) = V( YHT(Pz)), forall Y ¢ RN.
For the variance of Par(P) we have
(78) V(Pax(P)) = Xra¥/mi + 22V (YYi/wajmy — ¥°

so that (7.2) requires
2 YH(x(P))t — (7 P2))7Y)
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(74) + 2 2 YV i{wii(Py) /wd Pr)wi(P1) — wii(Pa)/mi P)mi( Pa)}
<0, forallYeR".

A set of necessary conditions for (7.4) to hold good are

(7.5) wi(P1) = wi(Py), for 14N

and since

(7.6) 227{(P1) = v(Py) = v = u(Ps) = 2 miPy)

from (7.5) and (7.6), a set of necessary conditions for (7.4) to hold good are
(7.7) wi(Py) = m(Ps), for 1 =7 = N.

Thus it is clear that an optimum P, does not exist in ®(») unless there is an
‘optimum’ set of 7;(Py)’s. Such an optimum set does not exist under the criterion
of uniform minimum variance alone.

When an optimum P, does not exist in ®(») it is of interest to characterize
fully the minimum complete class, ®*(») say, of designs in ®(»). At this stage
it is convenient to break up the problem into two steps. Firstly for a fixed set
= = (m,m, -+, my) of m’s which satisfy 0 < =; < 1 and X m; = » we may
investigate for the optimum Py, in the class ®= of designs for which =;(P) = =,
and then proceed to find the optimum set of /s through some other criteria of
optimality.

In a given class ®x an optimum P, = exists iff for any other P; = & ®=

(78) 222 o Yi¥Vi/mri{mii(Pox) — mii(Pi=)} < 0, for all Y & R”.

If attention is restricted to Y’s, for which Y; = 0, for all ¢, which case is in fact of
main interest in sample survey theory, then a set of sufficient conditions for
(7.8) to hold good are

(7.9) 7ii(Poz) < mij(P1z), for 1 <4#=j=<N.

Even if an optimum Py » does not exist in ®= one can still proceed to find the
minimal complete class in ®= . Whether or not a restriction to »-invariant designs
is justified can now be examined through this approach. Recalling a basic rela-
tion between ;s and »,’s for any sampling design (Hanurav 1962b) we have

(7.10) ? 2wy = (v — 1) + V(n,)

where V(»,) is the variance of v,. Observing further that 1 < », < N,
we have

(7.11) v(p— 1) +0(1—0) £ 22w < (N —»)(»r—1)

where § = v — [v] is the fractional part of ». If, given any design P; « ¢ ®x,
for which ) > 7i;(Py,z) exceeds the bound given on the left of (7.11), we can
find a Py = £ ®= for which (7.9) holds good and Y, > m3;( Po,=) equals the bound
on the left of (7.11) then this provides a complete justification (under the
present criterion) to restrict ourselves to designs for which V(»,) is minimum.
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In particular, when » is an integer this provides a valid justification to restrict
ourselves to v-invariant designs. However, whether the above given result is
true or false is still an open problem which seems to be of considerable interest.

We may remark here that Theorem (7.1) of Godambe and Joshi (1965) does
not provide enough justification to restrict ourselves to »-invariant designs, when
v is an integer. Their theorem shows that given any »-variant design P; =z ¢ ®=,
there does not exist a non-v-invariant design Pz x &€ ®= for which V( IA’HT(P“,))
< V(Yur(Piz)), for all Y & RY. This will only imply that »-invariant designs
are admissible in ®x for any given set of =.’s, but what is needed is something
stronger viz. that they constitute the minimum complete class in ®=x, for any =.

The problem can be solved to some extent if the criterion for the selection of
optimum P, in ®(v) is slightly diluted. We have seen above that under the
criterion of uniform minimum variance no set of optimum =’s exist so that even
if optimum Py =’s can be found in ®=’s, there still remains the problem of optimum
choice of =. When nothing is known, a priori, of the values Y /s, there is no reason
why the 7/’s should be unequal, if we stick to our cost function as »(P). Unequal
values for the r’s are justified generally when, a priori, we have guesses about
the Y’s. The situation in practice is that we have the valuesx = (z1, 22, -+ , 2w)
of an auxiliary positive variate & which is correlated with . The a priori guesses
of Y’s can be formulated in many cases in terms of a priori distribution  which
satisfies

(i) &(Yi| i) = Bai
(7.12) (ii) V(Yi|xi) = o
and (iii) Covy (Y;, Y; I zi, %) =0

for 1 £ i % j < N, where g and ¢’s are unknown positive constants. If the
criterion for the selection of optimum Py, = is diluted by demanding 6-optimality
only, i.e.,

(7.13) &V (Yar(Pox)) < &V(Yar(Piz)),
foralp =0, o720, x=0,

then from an earlier result of the author (cf. theorem of Hanurav (1962¢)) it
follows that in the class ®=(», z) of designs for which

(7.14) mi = vxi/x, for 1= N
the class ®=*(v, ) of designs for which V(»,) is minimum, form the minimal
complete class. In particular, when » is an integer, this minimal complete class

is a class of y-invariant designs. If » is an integer and the ¢”s occurring in (ii)
of (7.12) can be expressed as

+ (7.15) ol = ozl
then from an earlier result of Godambe (1955) we have the =.’s given by (7.14)
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as the 6-optimum set of 7.’s, so that the problem is completely solved. [It may
be remarked that Godambe proves that in the class of all strategies H(P, T'),
for which (i) »(s) = », a.s. [P] and (ii) T € £o*(P) any strategy which satisfies
(a) 7 P) = v-zs/z and (b) T = Yur(P), is -optimum where 6 is a prior dis-
tribution satisfying (7.12) and (7.15). However, from his proof it can be easily
seen that (1) above can be replaced by the weaker condition Sa{P) = »
and then the condition »(s) = », a.s. [P] follows as a necessary condition, in
addition to (a) and (b) above, to be satisfied by the optimum P. Thus the
v-invariance need not be stipulated in the hypothesis but follows as a con-
sequence of the optimality of the designs. Note, incidentally, that this result
does not need the criterion of h-admissibility but the estimator is restricted to
oBo*(P )’s.] .

Tt can be verified that if (7.15) does not hold good, then even if the ¢.”’s can
be expressed as

(7.16) ci=dz’, =0

which, incidentally, is a common situation met with in practice (with v usually
lying between 1 and 2) then no 6-optimum set of =/’s exist if v 2. When (7.15)
holds good the author (Hanurav (1966b)) has considered the problem for» = 2
in detail and obtained an optimum P, in ®(») which possesses many more de-
sirable properties and can be reasonably termed as ‘fully optimum.’ Later
(Hanurav (1966¢)) he extended the result to cover general integral values of ».
Tt is of interest to pursue the problem further when the a priori distribution does
not satisfy (7.15) or when it does not satisfy even (7.12).
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