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ADMISSIBILITY OF THE SAMPLE MEAN AS ESTIMATE OF THE MEAN
OF A FINITE POPULATION

By V. M. JosH1

Maharashira Government, Bombay

1. Introduction. In previous papers, the sample mean (1965-IT), and later a
ratio estimate (1965-IV, Section 5), were shown, with the squared error as the
loss function, to be admissible as estimates of the population mean, whatever
be the sampling design. The validity of these results was however restricted by
the assumption of one particular loss function, thus raising the question whether
these estimates remain admissible for other, equally valid, loss functions. In
this paper, the restriction on the loss function is removed and the admissibility
of the ratio estimate, (which includes the sample mean as a particular case)
is shown to hold generally for any loss function, which satisfies certain mild
conditions, which would be satisfied by almost any loss function assumed in
practice. :

2. Notation and definitions. U denotes the population consisting of units
Ur, Uz, -, Uy ; with unit u;, is associated a variate value z;,72 = 1,2, --- , N;
z = (41,2, - -+, Zy) denotes a point in the sample space Ry; a sample s denotes
a subset of U; S denotes the set of all possible samples s; a probability function
p is defined on 8, such that

p(s) 20 forall s, and Desp(s) = 1.

Following Godambe and Joshi (1965-I), the pair (S, p) is called the sampling
design. A sample s is drawn from S according to p. Then we define,

DEerFiNITION 2.1. An estimate e(s, z) is a real function e defined on § x Ry,
which depends on z, through only those z; for which u:e s.

The above definitions of sampling design and estimate are wide enough to
cover all sampling procedures and classes of estimates; for a brief account we
refer to Godambe and Joshi (1965-1), Section 5.

Let V(¢) be the loss function, where ¢ is the absolute value of the difference
between the estimate and the true value. We assume that V(¢) is non-decreasing
and that it satisfies one more condition, which for convenience will be formu-
lated Iater (in (29)).

Let Ty be the population mean, i.e.

(1) TN((E) = ]V_1 i‘v=1w¢'.

With the loss function V(t), we define admissibility of estimates of T'x(z).
For a given sampling design d, let S be the subset of S, consisting of all those
.samples for which p(s) > 0. Then,
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ADMISSIBILITY OF THE SAMPLE MEAN 607

DEerFinITION 2.2. An estimate e(s, z) is admissible for the population mean
Tw(z) in (1), if there exists no estimate ¢'(s, z), such that,

(2) Zuap(s)V(|e' (s, 2) — Tw(@)]) £ Luap(s)V(le(s, 2) — Tw(@)])

for all z ¢ Ry, the strict inequality in (2) holding for at least one z ¢ Ry .

We also define a weaker version of admissibility by,

DerFINITION 2.3. An estimate e(s, x) is weakly admissible for T'x(z), if there
exists no estimate €'(s, z), such that the inequality (2) is satisfied for almost all
(Lebesgue measure) x £ Ry, the strict inequality in (2) holding on a non-null
subset of Ry .

To distinguish the admissibility, defined by Definition 2.2 from weak admissi-
bility, the former will be called strict admissibility. The above definitions of
weak and strict admissibility are a simple generalization of the definitions given
in a previous paper (1965-I11), Theorems 3.1 and 5.1, with the squared error as
loss function.

3-1. A Bayes solution. As the sample mean is a particular case of the ratio
estimate, we shall prove the result for the latter. Let theny; > 0,7 = 1,2, --- , N,
be arbitrary positive numbers. We write < ¢ s for short, for u; € s. Then let,

y(s) = Z'iesyi, Y = Z‘y=1yi,
(3) T = (y(s))_lZissxi, Xe=Y"2Vias,
X = (Y —y()) 7 Xipmi,  &(s,z) = YN'z,.

We shall show that the ratio estimate &(s, ), is strictly admissible (Definition
2.2) for the population mean. Note that the estimate &(s, «) reduces to the sample
mean, if all the y;,7 = 1,2, ---, N, are equated to unity, and the whole of the
following proof holds for the sample mean, if this substitution is made throughout.

As a first step towards proving the result, we prove

TrrorREM 3.1. The estimate &(s, x) in (3), is weakly admissible (Definition 2.3)
for the population mean.

OUTLINE OF THE PROOF. As the proof is rather long we first give its broad
outline. Suppose the theorem is false; then there exists an estimate e(s, z),
such that on substituting &(s, z) for e(s, z) in the right hand side, the inequality
(2) holds a.e. in Ry, with the strict inequality holding on a non-null set. We
next consider a prior probability distribution on Ry, such that all the z.,
i =1,2 ---, N, are distributed independently, and normally, with mean
9y; and variance y;, and 6 is distributed with mean zero and variance 7". We
then work out the estimate which is a Bayes solution wrt the above prior dis-
tribution. It is shown that the reduction in risk (expected loss) of the Bayes
estimate as compared to &(s, z) is O(+"). Next, let E be the subset of Ry,
on which for at least one s ¢ §, h(s, z) = €'(s, z) — &(s, z) # 0. It is shown that
if E 1s not a null set, then there exists a subset of Ry, on which the integral
wrt the assumed prior density, of the loss due to &(s, x), falls short of the cor-
responding integral for ¢'(s, z) by a quantity O(+™'). By the minimizing property
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of the Bayes solution, the excess of the integral over the rest of the sample
space is O(7"). Hence for all sufficiently large 7, the risk of &(s, =) becomes less
than that of €'(s, z). But Definition 2.3 implies that the risk of ¢'(s, ) must be
less. The assumption that E is a non-null set thus leads to a contradiction. Hence
E must be a null set. From this the result follows. The argument is closely parallel
to that in a previous paper (1967). We now give the detailed proof. -

Proor. Suppose the theorem is false; then by Definition 2.3 there exists an
estimate e*(s, z) such that

(4) 2Zeap(s)V(le*(s, ) — Tw(2)]) £ Lsp()V(|e(s, 2) — Tu(x)])

for almost all x € Ry, the strict inequality holding on a non-null set.
Put,

(5) e*(s, ) = YN7'(s, x).
Then, since by (1) and (3),
(6) TN((E) = YN_IXN,

2 s () V(YN (s, 2) — Xu|) £ Zap(s)V(YN'e(s, z) — X)),

in which, the strict inequality holds on a non-null subset of Ry .

We now consider a prior distribution on Ry, such that all the z;, ¢ = 1, 2,
.-+, N, are distributed independently, identically and normally with mean
60y; , and variance y;, and 6 is distributed normally with mean zero and variance
7*. We determine the estimate YN 'b(s, x) which is a Bayes solution with respect
to the assumed prior distribution. Let E. denote the expectation with respect to
the prior distribution, and for a given sample s, let B, , denote the risk of the
Bayes estimate YN 'b(s, ). Then,

(7 B.. = E,V(YN7'b(s, z) — Xa|).

It is easily verified that &, and X y_n(, are sufficient for 6. Hence for given 0 the
frequency function on Ry, can be expressed in the form

(8) f(z,0) = L1-Lop(Z: — 0)-¢(Xy-niw — ),
where,
p(Z — 8) = [y(s)/2x] -exp [—3y(s)(z. — 0)’),
U Xnnw — 0) = (¥ — y(s5))/2n) exp [=3(Y — 4(8))(Xn-niw — )],
Ly = Lz:,ies| %,
Ly = Lizi, i 25| Xn-ne)
Hence, integrating wrt the prior distribution, we have from (7),
(9) B, = (2m)7H 7 ["pexp (—0%3772) db [yl LoVo(s, ) p(Z, — 0)
QX yonny— 0) de
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where dz is written for short for ] [ dx; and V(s, x) for
V(YN7'b(s, z) — Xu|).

By interchanging the order of integration with respect to § and z, which is
permissible by Fubini’s theorem, as the integrand is non-negative for all x and
0, we have

(10) B., = (20)7%7 [y Lo+ Lo dz [25 Vi(s, @) -p(& — 6)

“¢(Xn-nwy — 6) exp (—36°7") db
Let,
(11) g = 1+ (y(s)-)7, =14 ()7

Then after some simple algebraic reduction, as shown in a previous paper
[(1967), equations 23 through 27, read with section 6] we have

(12) (2n) 7 p(&: — 0)-¢(Xnenw — 0) exp (—36r") = Fy-Fy-Fy
where,
Fy = (2n) g7 exp (—32.°(79.) ™),
Fy = [(¥ — y(8))/2xYglly(s) -g.]

cexp {—4Y — y()W(8)ge( Y9) " [Xonir — s T},
Fy = [Yg/2a] exp { —3Yglly(s)Es + [¥ — y(8)) X w0l ¥Yg) ™ — O]},

We now substitute the right hand side of (12) in (10) and integrate out wrt
6. F'3 is the only factor which involves 6, and its integral = 1. Thus (10) reduces to

(13) Br,s= fRNVb(S, x)’Ll‘Lz’Fl'dex.

Now by an orthogonal transformation of co-ordinates in the [N — n(s)]-dimen-
sional space of the variates z;, ¢ £ s, we obtain that Xy, , is independent of
the other (N — n(s) — 1) transformed variates. Let 2" denote the group of the
remaining (N — n(s) — 1) transformed variables. Then for each fixed X y_n) ,
(14) [Lyda’ = [Lizi,igs| Xnnw]dz’ = 1.

Let R, denote the space of the variates x;, 7 ¢ s, and Ry_n() the space of the
remaining variates z;, ¢ £s. Now by (3),

(15) Xy = 975+ (¥ = y()7 T

Hence in the right hand side of (13), the argument of the function
Vs = V(|b(s,2) — Xx|) is independent of the variables ’. Hence on integrating
out wrt " and using (14), we have from (13),

v

( 16) B‘r.s = J.R,,(s) Ll‘Fl dz, J.i’eo Vb(s, x) -Fy dXN—n(s) ,

where R, is the space of the variables ;, ¢ ¢ s and dz, is short for [] .. dz, .
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We next determine the estimate b(s, z), which for given z;, 7 £ s minimizes
the inner integral in the right hand side of (16). By (15) and (11),
Xy —b(s,2) = (¥ — y(s)Y [ Rowr — Fog”]

+ &(Yg:) Y — y(s) + y(s)-gd — b(s, z)
= (Y — ()Y [Xvano — &g ] + [Bggs " — b(s, @)

Hence in the inner integral in the right hand side of (16),

(17) YN7'[Xy — b(s, z)]
= (Y — y($))N " Xnnir — g1 + YN [8gg. " — b(s, 2)].

Now transform the variable X y_n¢) by putting,
(18) t = (Y = y())N ' [Xnonr — %ogu ]
Let I, denote the inner integral in (16), and in (17) let,
(19) YN7'b(s, ©) — &.gg9. '] = h(s, z) = h for short.
It is easily seen that by the transformation (18), I, is reduced to,
(20) I, = (K/2r)! [2.V(|t — h|) exp (—3K£") dt

where, K = N (¥ — y(s)) 'y(s)g:(¥g) ™"
We shall show that the right hand side of (20) is minimized for A = 0. Put

I = [2.V(|t — h|) exp (—1K¢") dt
(21) and,
Io = [2.V(Jt]) exp (—1Kt") dt.
Suppose & > 0. Then,
(22) I = [Y2V(|t — h|) exp (—3K) dt + [m2 V(|t — h|) exp (—3K¢t) dt.

In the right hand side of (22), in the first integrand put ¢ = $h — %, and in the
second put ¢ = 1h + u, u going in each case from zero to «. Then,

(23) Ii = [T V(3h + u) exp [-3K(3h — u)"] du

+ 3 V(lu — 3h)) exp [~ 3K (3h + u)?) du.

By making similar transformations,
Io = [PV (Jt]) exp (—3K8) dt + [i2 V(|t]) exp (—3Kt) dt
(24) = [SV(ju — $A) exp [-3K(3h — u)’| du
| + [T V(u 4 3h) exp [-3K(3h + u)"] du.
Combining (23) and (24),
(25) L1 —Io= [T[V(u+ 3h) — V(ju — 3A])]
-{exp [—3K(3h — w)"] — exp [—3K(3h + u)*]} du.
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Now throughout the range of integration,
u+ 3h = |[u — 3.
Since by assumption V() is non-decreasing in ¢, the expression in the first curly

bracket in the right hand side of (25) is non-negative. The expression in the
second curly bracket is positive. Hence

(26) L —I,z0.

By a similar calculation (26) is seen to hold, when A < 0. Hence I, , in (20)
is minimized for ~ = 0, so that by (19), the Bayes estimate is given by,

(27) b(s, z) = ggs_lfis- R
We next obtain an upper bound for the improvement in risk of the Bayes
estimate YN 'b(s, x) in (27) as compared to the risk of the estimate YN ',

So far, the only assumption made regarding the loss function V'(¢) is that it is
non-decreasing, i.e. for; > t, = 0

(28) V(t) 2 V(t).

We now state the further condition to be satisfied by V(¢) viz., for arbitrary
K>0

(29) 2o V(|t]) exp (—3Kt?) dt < .

The significance of this condition may be briefly discussed here. If the loss
function is of the form V(t) = ¢, (0 £ ¢ < ), then for it to be non-decreasing
we must have ¢ = 0. More generally, (29) is satisfied for any loss function of
the form

(30) V(t) = Dra Ak

where ¢, are positive constants. Thus most loss functions considered in practice,
satisfy both the conditions (28) and (29).
Incidentally condition (29) is necessarily satisfied by every loss function which
is bounded as required by the axioms of Neumann and Morgenstein (1947).
Let A., be the risk of the estimate YN ', , for a given sample s. Then pro-
ceeding as from (13) through (16), we have in place of (16) writing V(s, )
for V(YN Y&x — X|),

(31) A‘r,s = fR,,(a) L1‘F1 dxs ffw V(S, x) ‘Fz dXN_n(s) .

Let I, , be the inner integral in (31). Then on making the transformation (18)
and putting,

(32) h = YN7'z,(1 — gg.7")
we have,
(33) L. = (K/2m)} [2, V(|t — h|) exp (—3K&) di

= (K/2m)} [2. V(|t]) exp [—3K(¢ + )} dt.
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We now substitute (33) in (31) and interchange the order of integration with
respect to x, and ¢. This is permissible by Fubini’s theorem as the integrand is
non-negative. Then in the space R, , we make an orthogonal transformation
of co-ordinates, taking &, as an independent coordinate. Let z” denote the group
of the remaining (n(s) — 1) transformed variables. Then

[Lidd = 1.
We thus have from (31),
(34) A, = (K/2r) [2, V(|t]) dt [Zexp [—3K(t + h)*]-F1d3,.
Now, from (32) by using (11), we get
(35) h = a-%/7"
where

a = Y(Ng,)[(y(s)™ = Y.
Next, in the right hand side of (34), we substitute for F; by (12). Note that
—2(27°9,)™ — 3K(t + h)’
—&5(27°9,) " — $K(t + agr™")" by (35)
= —(1 + Kd'gr™)-(279)7(& + Ktag(1 + Kalgr™)7)*
— 1Kf-(1 + Kd'gr™") 7

Making this reduction after substituting for F; by (12), and integrating out
with respect to &, , we obtain that in (34)

[2sexp [—3K (¢ + h)’|F1dZ,
= (1 + Ka%.r %) -exp [-3KE (1 + Ka'gr ™)

so that (34) yields,
(36) A..= (20) K1 + Kd'gr )7 [2. V(t])
-exp [—31K£- (1 + Kd'gr™)™ dt.

Now put
K(1 + Kd'gr ™)™ = K(1 — 9),
so that,
(37) 8 = Kd'gr (1 + Kd'gr )™ < Kd'gsr .

Hence 6 can be made arbitrarily small by increasing = sufficiently.
Next, by Lemma 3.1 proved at the end of this subsection, (29) implies that
Aor sufficiently small §,

(38) A, = (K/2x)} [2.V(|t]) exp (—3KE) dt + ax'd + o(3)
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where,
ag = 0, if V() is constant for ¢ > 0,
> 0, otherwise.

The corresponding expression for the Bayes risk B, in (16) is simply obtained
by putting in (35) A = 0 so that a = 0 and hence by (37) 8 = 0, thus giving

B.,= (K/27r)* ff,, V(|t]) exp (—-%Ktz) dt.
Hence

(39) A,y — Bry = ax-8 + 0(8).

By (38), ax = 0 only if V(¢) is constant for ¢ > 0. In this trivial case, all esti-
mates are admissible. Hence excluding it we have ax > 0. We now take 7 suf-
ficiently large and thus make & sufficiently small, so that in (39),

o(8) = ak*9,
and hence
A, — Brs £ 2050 < 2Ka’g,-agr’ by (37).
Here by (20), K and hence az, and by (35) a depend on s. Hence putting
C = max,s (2Ka’g,-ax)
we have from (39),
(40) A,y — B,, < Cr  forall r > some .

(40) gives the upper bound for (4., — B:.). We show in part II of this
section that this upper bound implies weak admissibility of Z,YN -

We now state and prove the lemma assumed in (38).

LemMA 3.1. Conditions (28) and (29) on the function V(t) imply that

(1%) O(k) = K* [Z, V(|t]) exp (—3Kt") dt

is differentiable in K for all K > 0 and its differential coefficient 0'(K) < 0, except
when V(t) is constant for all ¢ > 0, in which case 0'(K) = 0.
Proor. Take any positive number K, , such that

(2% : 0< K: <K.

Then by (29),

(3%) 2o V(Jt]) exp (—3Kif) dt < oo.

Hence,

(4%) 2. V(|t]) exp (—3K£) exp [3(K — Kyt dt < oo.

For all sufficiently large ¢
(5%) £ < exp B(K — K)f].
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Hence (4¥) implies that

(6) [2. 2V (Jt]) exp (—3KE) dt < <.
In the right hand side of (1*) put
(7% ux(t) = K V(|f]) exp (—3K£).
Then
(8% |our/0K| < 3V (|t]) exp (—3K£) (K™ + K*fY).
In the right hand side of (8*), put
(9% vx(t) = V(Jt]) exp (—3K£) (K™ + K*).
Then )
(10°)  aux(0)/0K = —3V(|i]) exp (—3KE) (K™ + K¥)

IIA

0.

Consider values of K in some arbitrary finite interval [k; , k2] where 0 < k1 < k..
By (10*) and (8%), for K ¢ [k1, ko]

(11%) |oux/0K| < 3V (Jt]) exp (—3kd) (k™ + k')
= g(¢) say.

By (29) and (6¥),
(12%) “0g(t) dt < oo.
By applying the dominated convergence theorem (see for example, applica-
tion 3°, Lodve, p. 126), it follows from (11%) and (12*) that @’(K) exists and
is obtained by differentiating under the integral sign, so that
(13%) O'(K) = [20(ux(t)/9K) dt
L2, V(Jt]) exp (—3K£) (1 — Kt dt.
By assumption, (13%) holds for K & [ky, k2]. But since &, and &, can be arbitrary,

(13*) holds for all K > 0.
Next,

(14*)  fragiexp (—3K£)(1 — K£*) dt + [res1exp (—3KE)(1 — K¢*) dt
= [Z.exp (—3K#)(1 — K£) dt = 0.

Then since V(|t|) is non-decreasing in [¢],
(15%)  Jiex V(Jt]) exp (—3K£)(1 — K¢&') di
< V(K™ [iegiexp (—3KE)(1 — K2 dt,
-and,
(16*)  [res1 V(Jt]) exp (—3KE)(1 — K&)dt
< V(K™ [res1exp (—3KE)(1 — K7P) dt.
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The sign of equality holds in both (15*) and (16*), only if V(¢) = V( K =
constant for all # > 0. Now combining (15*) and (16™) with (14™) and substitut-
ing in (13%), the lemma is proved.

3-II. Weak admissibility. Let A, , be the risk for the given sample s of the
estimate YN ¢'(s, z) in (5). Then as in (10),
(41) A7, = (2m) 7 [y Li-Lodz [Z0 V' (s, 2)p(Fs — 0)g(Xn-niy — 6)
-exp (—6°/27") do
where V'(s, ) is written for V(YN '|6'(s, z) — Xu|). Now, after a little reduc-
tion, similar to that in (12), we have .
(42) (& — 0)( Xy — 0) = forfs
where,
2 = (¥ — y(8))/(2m)](y(s)) exp (=3HY — y()()Y Knanw — &I
and,
fo = (¥Y/20) exp {—3YIy(8)& + [¥ — y()] Xwol7™ — o).

These expressions for f, and f; can be obtained simply from the expressions for
Fy and F; in (12) by letting + — . Substituting (42) in (41), we get,

A= 2m) 77 [y I dte fay_uy LrdZimno [2a V' (5, 2)fa-fo
(43) exp (—6°/27%) do
= 2m) 7 [, Lndz, [0 dZ yoni [20 V' (8, 2)fofo
-exp (—6°/27") df
by using (14). Similarly the risk 4., of Z, is given by
(44) Ao = 20) 47 [ay, Lnde, [0 dX wni [0 V(s, 2)fofs
-exp (—6°/27") do

where V(s, ) = V(YN7'&, — X4|) as in (30).
In (43), and (44), excluding the factor exp (—6°/27"), 6 occurs in the factor
fs only. It is séen from (42) that

(45) [0 fsds = 1.
Now put
(46) U(s,z) = [20 V(s, 2)fo: dX vt

and
" U'(s,2) = [0 V'(s, 2)f2 dZ v-nce) -

Note that U(s, ) and U’(s, ) depend on z, through only those z; for which
7 £ s and thus are estimates according to Definition 2.1.
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Then by transforming the variables as in (18) by putting
t= (Y — y(s))N—l[XN—n(S) — &,

and
h = YN (s, x) — &,
we get,
(47) U(s, z) = [ZaV(|t]) exp (—3b8") dt = Ud(s),
and,

U'(s,z) = [2.V(|t — h|) exp (—21bt%) dt,

where b = NX(Y — y(s)) ™ y(s)Y .
Hence as shown from (18) through (26),

(48) U'(s,z) = U(s,z) forall zeRy.

We may exclude the trivial case of V(f) = constant for all ¢, (0 < ¢ < =)
as in that case every estimate whatsoever is strictly admissible. Assuming V(t)
to be not constant on (0, « ) as shown in Lemma 3.2 at the end of this section,
the set of values of u, for which w > h/2 and V(u + 3h) — V(u — %h) > 0 has
positive measure. It then follows from (25) that the inequality in (48) holds,

whenever,
(49) h # 0, ie. €(s,z) — & # 0.

Obviously, the sign of equality holds in (48) whenever ¢'(s, ) = &, .

Now, there are two possible alternatives, (i) for every sample s ¢ S, the subset
of Ry on which (49) holds is a null subset or (ii) there exists at least one sample
s & 8, for which (49) holds on a non-null subset of Ry .

Suppose (ii) is true: For every positive number @, let 7', , denote the subset of

R,y defined by,
(50) = (x;,1e8)eT,, if, and only if,

|zi < a  forall ies.

Now U(s, z) and U’(s, z) depend on z, only through those z;, for which 7 ¢ s.
Hence since the strict inequality in (49) is assumed to hold on a non-null (uy)
subset of Ry it holds on a non-null (u, ) subset of B, .

[NotE. Here we use the symbol (ux) to denote the Lebesgue measure on the
k-dimensional subspace Ry.] The existence of the non-null (u.¢)) subset of R,
implies that there exists a positive constant 8, (3 > 0) and a positive number a,

such that
[r, Ln dz,[U'(s, ) — Ug(s)] = B.
7, In dzUo(s) is obviously finite as L, is bounded and T, is a finite set. Hence
(51) [r, L dz,U'(s, ) — [r, L dz,Uo(s) = B.
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Let T\’ be the complement of T, . Then from (43) and (44) we have,
(52) AL, — A, = Ty(2r) ™ — To(20) 7 + T,

where

(53) Ti= [r,Lade, [Z0dXy_ne [Z0 V'(s, ©) fofs-exp (—6°/27") d6,
(54) T, = fra L, du, ffw AX (s ffw V(s, x)-fo-fs-exp (—6°/27%) do
and

(55) Ts

(2m) 77 [rpe Lndms [Z0 dX woneoy [Z0 [V (s, ) — V(s, 2)]
fa-fs-exp (—6°/27%) d.

Now in the right hand side of (53), the integrand is non-negative and non-de-
creasing as 7 — «. Hence by the monotone convergence theorem, as 7 — o,

Tl*'—) fTu Ll d:l}s ffw dXN—-n(s) ffw V,<8, x)f2‘f3‘d0
(56) = [r,LidzU'(s,x) by (45) and (46)
= [r, Lidz.Us(s) + B by (51).

7’
Hence for all 7 = some 7

(57) T1 2 [r, Ly da,Uo(s) + 38.
Next in the right hand side of (54) since exp ( —6°/27") < 1, we have,
(58) Ty < [r, Indzs [0 dX n-niy [Z V(s, )fo-f2d8
= [z, L1 da,Uq(s) by (45) and (46),

Lastly, in (55), by virtue of the minimizing property of the Bayes solution, the
integrand is everywhere decreased by replacing (s, ) by the Bayes estimate
b(s, x) in (27). The resulting integrand being everywhere non-positive the
integration can be extended from the set 7T,° to the whole space R, . We thus
have

Ts = (2r) 7 [rye Lndzy [Z0 dX woniy [Zo [Vi(s, 1) — V(s, 7)]
fo-fs-exp (—6°/27") df
(59) 2 (2m) 77 [an, Lndzs [P0 dZ v [Ze Vi(s, ) — V(s, )]

fo-fs-exp (—6°/27") df
= B'r,s - Ar,s .

Hence by (40),

(60) Ts = C/7° for 7= 1.

C(jmbining (57), (58) and (60) with (52), we have

(61) Ar,— A, = —%6(2#)'%7-_1 -/ forall = some n
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(61) holds, for the particular sample for which (49) is assumed to hold on a non-
null subset of By . Denoting this sample by so, we write (61) as

(62) A:,so — A= %5(27")_§7'—1 —C/7* for r=m.
By the minimizing property of the Bayes solution, we have for s 5 s, s ¢ S,
(63) A:,s - A'r,s g Br,s - Ar,s % _0/7'2 by (40).

Multiplying both sides of (62) by p(s), both sides of (63) by p(s) and summing
over all s ¢ S, we have,

(64) A — A, = B-p(s0)(2m) 7 — ¢/ forall r =,

Here A, and A, denote the expected risks of the estimates YN¢/(s, ) and
YN7'%,.

Since so £ S, p(s0) > 0. Hence (64) implies that by making r sufficiently large,
say T = 1o,

(65) A > A,.

But this contradicts (6). Hence the assumption (ii) relating to equation (49)
must be false. It follows that €'(s, ) = &, a.e. in Ry ; hence the strict inequality
in (6) and hence in (4) cannot hold on a non-null subset of Ry . From this the
weak admissibility of &(s, z) follows. This completes the proof of Theorem 3.1.

We shall now state and prove Lemma 3.2 which was used in deriving condi-
tion (49).

Lemma 3.2. If the loss function V(i) is not constant over (0, o ), then for any
positive constant h, the set of values of t for which

o(t + k) > o(t)

has positive measure.
Proor. Since V(¢) is not constant in (0, =), there exists at least one number T,

such that

(66) V(T) > V(0+).
Consider values of ¢ in the range
(67) max (T — h,0) <t=T.

Since V(tj is everywhere non-decreasing, for ¢ satisfying (67), we have
V(t+h) = V(T) = V().

Hence V(t + k) 3 V(t) can hold in this range only if, V() = V(T).

Obviously there will be an interval of values ¢, for which V(¢ + &) > V()
unless V(T: + 0) = V(T), where Ty = max (T — h, 0). If T, ¢ 0, then by re-
peating the same argument with T in place of T', we get V(T + 0) = V(T)
where T, = max (T — 2h, 0).

Continuing the argument, we see that the set S of values of ¢ for which
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V(t + h) > V(i), can be a null set only if
(68) V(T) = V(0+).
But (68) contradicts (66). Hence the set S must be of positive measure.

4. Strict admissibility. The rest of the argument proceeds precisely as in
Sections 4 and 5 of the previous paper (1965-IIT). Corresponding to Theorem
4.1 of that paper, we have here

TueorEM 4.1. If an estimate &' (s, z) satisfies (6), a.e. n Qu_i, then
(s, x) = &(s, z) a.e.in Qu_s.

A proof of this theorem for the ratio estimate with the squared error as loss
function was given in (1966-IV) section 5, and the same proof holds word by
word for the more general loss function.

The argument is then completed by proving as in Theorem 5.1 of (1965-I11),
that weak admissibility implies strict admissibility. The theorem was proved for
a fixed sample size design in (1965-I1I1) and for a varying sample size design in
(1967). The proof here needs only slight modifications. Thus in place of (35) in
(1965-111), we define the set Qy_i by

(69) if ho > 0, zeQNm, if and only if,
Y7 2 mn @ S (y(80) ™ Xhaas — Y7 X0
and if hy < 0, = € Qy—m , if and only if
Y 2w 2 (y(50) 7 Xaai — Y Ylas,
Then for &£ Qy—m ,
(70) le'(s0, ) — Xnl Z |80 — Xl + ho.

By Lemma 3.1, there exists a subset of Q%_ , say Q. with positive measure,
such that for z & Qr%.. ,

(71) V(e (so,2) — Xnl]) > V(F — Xn).

Hence by the requirement of strict admissibility, for each z ¢ QNm , there must
be at least one other sample s ¢ S, for which

W(s, z) = €'(s, ) — & = 0.
We then partition the set Qx%,, into sets Ly, as in (36) of (1965-III) and again

one of these sets Ly, must be of positive measure. The rest of the proof pro-
ceeds on similar lines and we reach the conclusion that unless the set E of points
at which h(s, z) = €'(s, ) — &, is empty, there is a contradiction either with
Theorem 3.1 or with Theorem 4.1. We thus prove,

TuroREM 5.1. Weak admissibility of the estimate &(s, x) implies its strict ad-
massibility.

This completes the proof of the result which we set out to prove.
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REMARK. By a similar argument it is proved that .- Y is strictly admissible
for the population total, and Z, for the population weighted mean Xy .
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