A COMPARISON OF THE MOST STRINGENT AND THE MOST STRINGENT SOMEWHERE MOST POWERFUL TEST FOR CERTAIN PROBLEMS WITH RESTRICTED ALTERNATIVE ## By W. Schaafsma ## University of Groningen **0.** Summary. The paper studies hypothesis testing problems (H, K_1) for the mean of a vector variate having a multivariate normal distribution with known covariance matrix, in cases where the alternative K_1 is restricted by a number of linear inequalities (Section 2). We describe a method for obtaining the most stringent size- α test φ^* for Problem (H, K_1) (Section 3). This method is used for constructing φ^* for a number of special problems (H, K_1) (Sections 5, 6 and 7) where (i) K_1' is symmetrical and (ii) Ψ_0 is sufficiently small. Thus for these special problems, we can compare φ^* with the most stringent SMP size- α test φ_0 that can be obtained by applying the general methods of [9] and [10] (described in Section 2). It turns out (for the special problems with $\alpha = .05$ or .01) that φ^* does not provide a worth-while improvement upon $\varphi_0:\varphi^*$ has a smaller maximum shortcoming but φ_0 is better than φ^* from other over-all points of view. This supports the opinion that generally no serious objections can be made to the use of the MSSMP tests constructed in [10] Part 2 for problems from actual practice. This is a fortunate circumstance, for these MSSMP tests require only simple calculations. By the way we prove a theorem characterizing the MS size- α test for a very general problem $(H, K_{(m)})$ where the hypothesis H may be composite while $K_{(m)}$ consists of a *finite* number (m) of parameters $\theta_i(i=1,\dots,m)$ (Section 4) **1.** Introduction. Let (H, K) be a testing problem with hypothesis H and alternative K. The shortcoming $\gamma_{\varphi,D}(\theta)$ in $\theta(\varepsilon K)$ of test φ with respect to the class D of tests (test functions) is defined by (1) $$\gamma_{\varphi,D}(\theta) = \beta_D^*(\theta) - \beta_{\varphi}(\theta)$$ where $\beta_D^*(\theta) = \sup_{\varphi \in D} \beta_{\varphi}(\theta)$ denotes the envelope power in θ with respect to D and $\beta_{\varphi}(\theta) = E_{\theta}\{\varphi(X)\}$ is the *power* in θ of test (function) φ . A test φ^* is said to be MS(D) (most stringent with respect to the class D) for Problem (H, K) if (i) $\varphi^* \in D$ and (ii) (2) $$\sup_{\theta \in K} \gamma_{\varphi^*,D}(\theta) = \inf_{\varphi \in D} \sup_{\theta \in K} \gamma_{\varphi,D}(\theta).$$ In case D is the class of size- α tests, φ^* is said to be MS size- α . A test φ is called SMP(D) (somewhere most powerful with respect to D) if (i) $\varphi \in D$ and (ii) $\gamma_{\varphi,D}(\theta) = 0$ for some $\theta \in K$. Let C denote the class of all SMP(D) tests for Problem (H, K). A test φ_0 is said to be MSSMP(D) Received 2 February 1967; revised 29 May 1967. 531 (most stringent somewhere most powerful with respect to D) if (i) $\varphi_0 \in C$ and (ii) (3) $$\sup_{\theta \in \mathbb{K}} \gamma_{\varphi_0,D}(\theta) = \inf_{\varphi \in C} \sup_{\theta \in \mathbb{K}} \gamma_{\varphi,D}(\theta).$$ In case D is the class of size- α tests, φ_0 is said to be MSSMP size- α . In [9] and [10] Chapter 2 we described methods for obtaining MSSMP(D) tests for large classes of testing problems with a restricted alternative. Applications to problems from actual practice were given in [10] Part 2. Though $\operatorname{MSSMP}(D)$ tests are admissible (at least if D is sufficiently large) they are not satisfactory for each problem with a restricted alternative: in [10] Section 2.15 we described a family of testing problems (H,K) where K is defined by *one* inequality and where a worth-while improvement upon the $\operatorname{MSSMP}(D)$ tests turned out to be possible. Obviously we are in want of a criterion characterizing the problems for which the MSSMP(D) tests cannot be improved upon to a worth-while extent (a provisional criterion has been described in [10] Section 2.13). For that purpose the MSSMP(D) test should be compared with all other (admissible) size- α tests, for a large number of problems. In this paper we confine our attention to Problems (H, K_1) (to be formulated in Section 2) which are of the form $\{(H, K_1), \sigma^2 = 1\}$ described in [9] Section 3 and [10] Section 2.4. For such problems we try to obtain the MS size- α test φ^* by means of a method (Section 3) which resembles the method of van Zwet and Oosterhoff (1967) for obtaining MS size- α tests for combination of tests problems (H, K_1) where K_1 is a positive orthant with vertex H (in our notation H and K denote also the corresponding sets of parameters Ω_H and Ω_K). Next we formulate a rule of thumb characterizing the problems for which the MS size- α test φ^* does not provide a worth-while improvement upon the MSSMP size- α test φ_0 . Assuming that for such problems no other size- α test will improve upon φ_0 to a worth-while extent, we may postulate the rule of thumb as the criterion wanted. Thus we obtained the opinion mentioned at the end of the Summary. REMARK. Regarded as test-functions over the sample space, φ_0 and φ^* are obviously not uniquely determined. In this paper we "identify" tests when their power-functions over K_1 are identical. 2. The formulation of problem (H, K_1) . In accordance with [9] Section 3 and [10] Section 2.4, let $X = (X_1, \dots, X_n)$ have the multivariate normal $N(\xi, \Sigma)$ distribution with *known* nonsingular covariance matrix $\Sigma = A^{-1}$ where A is the $n \times n$ matrix (a^{ij}) . The outcomes x of X and the admitted vectors ξ of means (ξ_1, \dots, ξ_n) are regarded as points in the same n dimensional space R^n . The vector ξ of means is known to lie in the parameter space $\Omega = H \cup K_1$ defined by the r inequalities (4) $$\sum_{i=1}^{n} b^{ih} \xi_i \geq 0, \qquad (h = n - s + 1, \dots, n - s + r)$$ in the subspace R^s defined by the n-s equalities, (5) $$\sum_{i=1}^{n} b^{ih} \xi_{i} = 0, \qquad (h = 1, \dots, n - s);$$ $2 \le r \le s \le n$; (b^{ih}) $(i = 1, \dots, n; h = 1, \dots, n - s + r)$ is supposed to be a matrix of rank n - s + r. The hypothesis H is to be tested that ξ lies in the subspace R^{s-r} in R^s , which is obtained when all \geq signs in (4) are replaced by = signs. The alternative K_1 corresponds with the subset of R^s which is defined by (4) where at least one inequality is strong. In \mathbb{R}^n an inner product is defined by means of the bilinear form $$(x, y) = \sum_{i=1}^{n} \sum_{j=1}^{n} a^{ij} x_{i} y_{j}$$ and accordingly (i) orthogonality $x \perp y$ is defined by (x, y) = 0, (ii) the norm ||x|| by $||x||^2 = (x, x)$ and (iii) if x spans the half-line l (l is the set of all points θx with $\theta > 0$) and y spans the half-line m then $\cos \{\Psi(l, m)\} = ||x||^{-1} ||y||^{-1} (x, y)$, where $\Psi(l, m)$ is the angle between l and $m(0 \leq \Psi(l, m) \leq \pi)$. In [9] Section 4 and [10] Section 2.6, we constructed the MSSMP size- α test φ_0 for Problem (H, K_1) . Let R' be the linear subspace in R' perpendicular to the R^{s-r} defined by H and let K_1' denote the intersection of K_1 and R'. K_1' is a polyhedral angle with edges e_1, \dots, e_r which are obtained when all inequalities (4) but one are replaced by the corresponding equalities. Next let the angle Ψ_0 and the half-line l_0 in K_1' be defined by (6) $$\Psi_0 = \inf_{l \subset K_1'} \sup_{m \subset K_1'} \Psi(l, m) = \sup_{m \subset K_1'} \Psi(l_0, m),$$ and let X^I be the projection of the sample point X on the R^1 spanned by l_0 ; further $0X^I = ||X^I||$ (or $-||X^I||$) in case $X^I \varepsilon$ (or ε) l_0 . The MSSMP size- α test φ_0 for problem (H, K_1) rejects if and only if $0X^I \ge u_\alpha$ where $u_\alpha = (\Phi^{\times})^{-1}(\alpha)$ and $\Phi^{\times}(x) = P(U \ge x)$ when U has the normal N(0, 1) distribution. D being the class of size- α tests for Problem (H, K_1) , the envelope power in a point $\xi \in K_1'$ is equal to $\beta_D^*(\xi) = \Phi^{\times}(u_{\alpha} - ||\xi||)$. The maximum of the short-coming of φ_0 over an arbitrary half-line l in K_1' is a strictly increasing function of the angle $\Psi(l, l_0)$: (7) $$\gamma_{\varphi_0,D}(l) = \sup_{\|\xi\|>0} \left[\Phi^{\times}(u_{\alpha} - \|\xi\|) - \Phi^{\times}\left[u_{\alpha} - \|\xi\|\cos\{\Psi(l, l_0)\}\right]\right].$$ Tables of $\gamma_{\varphi_0,D}(l)$ as a function of $\Psi = \Psi(l, l_0)$ and as a function of $\cos \Psi$ will be given in [8]. We shall compare the MSSMP size- α test φ_0 with the MS size- α test φ^* by considering graphs of $\gamma_{\varphi,D}(l)$ for $\varphi = \varphi_0$ and $\varphi = \varphi^*$ and l varying over (subsets of) K_1 (see the Figures 3, 4, 5, 8, 9 and 10). REMARK. It may be proved easily that the (power function of the) MSSMP size- α test φ_0 for Problem (H, K_1) is uniquely determined. 3. A general method for obtaining the MS size- α test φ^* for Problem (H, K_1) . Our method is based on the following two lemmas: First let $(H, K_{(m)})$ be a testing problem for the variate X over the sample space \mathfrak{X} , such that $K_{(m)}$ consists of exactly m parameterpoints θ_i defining pdf's $f_{\theta_i}(x)$ over $\mathfrak{X}(i=1, \dots, m)$. Let φ be MP size- α for testing H against the simple alternative that X has the pdf $\sum p_i f_{\theta_i}(x)$ over \mathfrak{X} where p_1, \dots, p_m are certain probabilities $(p_i \geq 0; \sum p_i = 1)$. LEMMA 1. If these probabilities p_1, \dots, p_m
are such that (8) $$\gamma_{\varphi,D}(\theta_1) = \gamma_{\varphi,D}(\theta_2) = \cdots = \gamma_{\varphi,D}(\theta_m)$$ holds, then φ is MS size- α for problem $(H, K_{(m)})$. Proof. Suppose φ does not minimize the maximum shortcoming over $K_{(m)}$. Then there exists a test $\psi \in D$ such that $\gamma_{\psi,D}(\theta_i) < \gamma_{\varphi,D}(\theta_i)$ and consequently $\beta_{\psi}(\theta_i) > \beta_{\varphi}(\theta_i)$ ($i = 1, \dots, m$). But the power of ψ against the above-described simple alternative is $\sum p_i \beta_{\psi}(\theta_i)$. Consequently ψ would be more powerful than φ . Thus we obtain a contradiction. A complement of Lemma 1 will be given in the characterization Theorem 2 (Section 4). Next let $(H, K^{(1)})$ and $(H, K^{(2)})$ be two problems for the variate X over \mathfrak{X} , such that $K^{(1)} \subseteq K^{(2)}$. Lemma 2. If the test φ is MS size- α for Problem $(H, K^{(1)})$ and (9) $$\sup_{\theta \in K} (1) \gamma_{\varphi, D}(\theta) = \sup_{\theta \in K} (2) \gamma_{\varphi, D}(\theta)$$ then φ is MS size- α for Problem $(H, K^{(2)})$. PROOF. For an arbitrary testing problem $\Pi = (H, K)$ we define $$(10) b_D(\Pi) = \inf_{\varphi \in D} \sup_{\theta \in K} \gamma_{\varphi,D}(\theta),$$ where D is the class of all size- α tests; $b_D(\Pi)$ is the maximum shortcoming on K of the MS size- α test for Problem Π if this test exists. Next let $\Pi^{(i)}$ denote problem $(H, K^{(i)})$ (i = 1, 2). Then it follows from $K^{(1)} \subset K^{(2)}$ that $b_D(\Pi^{(1)}) \leq b_D(\Pi^{(2)})$ (see Lemma 3 in Section 7). Moreover the left-hand side of (9) is equal to $b_D(\Pi^{(1)})$, for φ is MS size- α for Problem $\Pi^{(1)}$. Thus it follows from (9) that $b_D(\Pi^{(1)}) \geq b_D(\Pi^{(2)})$. Hence $b_D(\Pi^{(1)}) = b_D(\Pi^{(2)})$ and (9) shows that φ is MS size- α for Problem $\Pi^{(2)}$. In order to obtain the MS size- α test φ^* for Problem (H, K_1) , we shall try to find m parameterpoints $\theta_1, \dots, \theta_m$ in K_1 , defining pdf's $f_{\theta_i}(x)$ over R^n , with probabilities p_1, \dots, p_m ($\sum p_i = 1$) such that the MP size- α test φ for H against the simple alternative that X has the pdf $\sum p_i f_{\theta_i}(x)$ satisfies (8), and (9) with $K_{(m)}$ and K_1 substituted for $K^{(1)}$ and $K^{(2)}$. In that case the lemmas show that φ is the MS size- α test φ^* for Problem (H, K_1) and we write θ_i^* and p_i^* instead of θ_i and p_i . Let f_1, \dots, f_n be an orthonormal basis of R^n such that $f_{n-s+r+1}, \dots, f_n$ span R^{s-r} and f_{n-s+1}, \dots, f_n span R^s ; consequently $f_{n-s+1}, \dots, f_{n-s+r}$ span R^r (see Section 2, [9] Section 3, or [10] Section 2.5). We shall only look for $\theta_1^*, \dots, \theta_m^*$ among the points of K_1' . Suppose that $\theta_1, \dots, \theta_m$ are m parameterpoints in K_1' . With respect to the basis f_1, \dots, f_n the coordinates of θ_i are $\eta_{i1}, \dots, \eta_{in}$ where $\eta_{ij} = 0$ $(j = 1, \dots, n - s; n - s + r + 1, \dots, n)$ and accordingly θ_i defines the pdf $$f_{\theta_i}(x) = (2\pi)^{-\frac{1}{2}n} \exp \left\{ -\frac{1}{2} \sum_{j=1}^n (y_j - \eta_{ij})^2 \right\}$$ in the point x of R^n with coordinates y_1 , \cdots , y_n with respect to f_1 , \cdots , f_n . Next suppose that p_1, \dots, p_m are m probabilities defining the pdf $\sum p_i f_{\theta_i}(x)$ with respect to f_1, \dots, f_n , over R^n . The MP size- α test φ for the simple hypothesis: $\eta_i = 0$ ($i = 1, \dots, n$), against the simple alternative that X has the pdf $\sum p_i f_{\theta_i}(x)$ is obtained by applying the Neyman-Pearson fundamental lemma. This test rejects when (11) $$\sum_{i=1}^{m} p_i \exp \left\{ \sum_{j=n-s+1}^{n-s+r} \eta_{ij} Y_j \right\} \ge c_{\alpha},$$ where c_{α} is determined such that the probability of (11) is equal to α when Y_1, \dots, Y_n are independent N(0, 1) variates. Obviously this test φ is of size- α for testing the whole hypothesis H and consequently φ is MP size- α for testing H against the simple alternative that X has the pdf $\sum p_i f_{\theta_i}(x)$. In the rest of this section and in the Sections 5, 6 and 7 we confine our attention to Problems (H, K_1) where K_1' is a symmetrical polyhedral angle (see Sections 6 and 7 for the definition of symmetry in case r=3 or 4); \bar{e}_i will denote the unit vector along the *i*th edge e_i of K_1' ($i=1,\cdots,r$). For these problems we look for $\theta_1^*,\cdots,\theta_m^*$ only among the r-tuples $(\theta_1,\cdots,\theta_r)$ where $\theta_i=\nu\bar{e}_i$ ($i=1,\cdots,r$). On account of the symmetry of K_1' , the MP size- α test φ_r for H against the simple alternative that X has the pdf $\sum p_i f_{\theta_i}(x)$ where $\theta_i=\nu\bar{e}_i$, will satisfy (8) if $p_i=r^{-1}$ ($i=1,\cdots,r$). So we look for φ^* only among these tests $\varphi_r(\nu>0)$. The shortcoming of φ_r in all r points $\theta_i=\nu$ \bar{e}_i is equal to the following function of ν : (12) $$\gamma_{\varphi_{\nu},D}\{\theta(\nu)\} = \Phi^{\times}(u_{\alpha} - \nu) - \beta_{\varphi_{\nu}}(\nu \bar{e}_{i})$$ (the notation $\theta(\nu)$ is introduced in order to indicate that this shortcoming does not depend on i). Next we define ν^* by the requirement that (13) $$\gamma_{\varphi_{\nu}^*,D}\{\theta(\nu^*)\} = \sup_{\nu>0} \gamma_{\varphi_{\nu},D}\{\theta(\nu)\}$$ stating that φ_{ν^*} is a test of the form φ_{ν} such that the shortcoming in $\theta(\nu)$ (or equivalently in $\nu \bar{e}_i$) is maximized. The maximum shortcoming of φ_{r^*} over the half-line l in K_1' is determined by (see Formula (7)) $$\gamma_{\boldsymbol{\omega},^{\bullet},\boldsymbol{D}}(l) = \sup_{\kappa>0} \{ \Phi^{\times}(u_{\alpha} - \kappa) - \beta_{\boldsymbol{\omega},^{\bullet}}(\kappa \overline{l}) \}$$ where \bar{l} is the unit vector spanning l. THEOREM 1. The test φ_{r^*} is the MS size- α test φ^* for Problem (H, K_1) if (15) $$\gamma_{\varphi_{p^*},D}(l) \leq \gamma_{\varphi_{p^*},D}\{\theta(\nu^*)\}$$ holds for each half-line l in K_1' . PROOF. φ_{r^*} is of the form φ_r . Consequently (Lemma 1) φ_{r^*} is MS size- α for Problem $(H, K_{(r)}(r^*))$ where $K_{(r)}(r^*)$ consists of the r points $r^*\bar{e}_i$ $(i = 1, \dots, r)$ in K_1 . We have (16) $$\sup_{\theta \in K(\tau)^{(\nu^*)}} \gamma_{\varphi_{\nu^*,D}}(\theta) = \gamma_{\varphi_{\nu^*,D}}\{\theta(\nu^*)\}.$$ On account of (15) we have (17) $$\gamma_{\varphi_{\nu}^*,D}(\theta) \leq \gamma_{\varphi_{\nu}^*,D}\{\theta(\nu^*)\},$$ for all $\theta \in K_1$ with equality for $\theta = \nu^* \bar{e}_i \in K_1$. But φ_{ν^*} and consequently $\gamma_{\varphi_{\nu^*},D}(\theta)$ are invariant under all translations parallel to R^{s-r} (see Formula (11)). Hence (17) holds for all $\theta \in K_1$ with equality for $\theta = \nu^* \bar{e}_i$. This and (16) gives (18) $$\sup_{\theta \in K_1} \gamma_{\varphi_{\nu}^*, D}(\theta) = \sup_{\theta \in K_{(r)}(\nu^*)} \gamma_{\varphi_{\nu}^*, D}(\theta).$$ By applying Lemma 2 we complete the proof of the theorem. REMARK. The verification of Condition (15) is based on the results of the computations. For all problems which will be considered in the Sections 5, 6 and 7 we found (19) $$\gamma_{\varphi_{\nu}^{*},D}\{\theta(\nu^{*})\} = \gamma_{\varphi_{\nu}^{*},D}(e_{i}) \qquad (i = 1, \dots, r)$$ showing that we indeed minimize the maximum shortcoming $\gamma_{\varphi_{\nu},D}(e_{i})$ over e_{i} $(i=1,\cdots,r)$ when we maximize the shortcoming $\gamma_{\varphi_{\nu},D}\{\theta(\nu)\}$ of φ_{ν} in $\nu\bar{e}_{i}$ as a function of ν . We shall prove (19) assuming that (i) there exists a ν^{*} (0 $< \nu^{*} < \infty$) satisfying (13) and (ii) the corresponding shortcoming $f(n) = \gamma_{\varphi_{\nu_{*},D}}(n\bar{e}_{i})$ over e_{i} has exactly one maximum whereas $f'(n) \neq 0$ everywhere else (n) = 0. Let the function $g(\nu)$ denote the left-hand side of (12). Then (i) $g(\nu)$ has a maximum for $\nu = \nu^{*}$, (ii) $f(\nu^{*}) = g(\nu^{*})$, (iii) $f(n) \geq g(n)$ for all n > 0 (otherwise for a certain n, $\varphi_{\nu^{*}}$ would be more stringent than φ_{κ} for testing H against $K_{(r)}(n)$). Hence $f'(\nu^{*}) = 0$ and on account of the assumptions, $g(\nu^{*}) = f(\nu^{*}) = \sup_{\kappa} f(n)$ what proves (19). Consequently we may verify that $$\gamma_{\varphi_{n}^{*},D}(l) \leq \gamma_{\varphi_{n}^{*},D}(e_{i})$$ holds for each half-line l in K_1' , instead of Condition (15). Of course the right-hand side in (20) does not depend on i ($i = 1, \dots, r$). It will turn out in the Sections 5, 6 and 7 that Condition (20) is satisfied provided that Ψ_0 (see Section 2) is not too large. If Ψ_0 is so large that (20) is not satisfied, then φ_r will be not MS size- α for Problem (H, K_1) (this follows from Theorem 4 under the assumptions of Theorem 3). 4. Back-ground material for Section 3. The Lemmas 1 and 2 and Theorem 1 give sufficient conditions for a test to be MS size- α . This section is devoted to some complementary results. It is not necessary to read this section before the Sections 5, 6 and 7 where only Theorem 1 is needed in order to prove that certain tests are MS size- α . Condition (8) is sufficient for φ to be MS size- α (Lemma 1) for the general problem $(H, K_{(m)})$ described at the beginning of Section 3. In case m = 2, Condition (8) is also necessary for φ to be MS size- α . For suppose $\gamma_{\varphi,D}(\theta_1) < \gamma_{\varphi,D}(\theta_2)$ and let φ_2 be the
MP size- α test for H against the simple alternative θ_2 , then (for sufficiently small $\rho > 0$) $(1 - \rho)\varphi + \rho\varphi_2 \varepsilon D$ will be more stringent than φ for Problem $(H, K_{(2)})$. Moreover in case m=2 it can be shown easily that there exist probabilities p_1 , $p_2(p_1+p_2=1)$ such that the corresponding MP test φ satisfies (8). In case m>2 there will not always exist probabilities p_1 , \cdots , p_m such that (8) holds. For let φ be MS size- α for Problem $(H, K_{(2)})$ where $K_{(2)}$ consists of θ_1 , $\theta_2 \in K_1'$ (θ_1 and θ_2 not on the same half-line l). Let θ_3 , \cdots , θ_m be parameterpoints in K_1' such that $\gamma_{\varphi,D}(\theta_i) < \gamma_{\varphi,D}(\theta_1) = \gamma_{\varphi,D}(\theta_2)$ ($i=3,\cdots,m$). Then φ is MS size- α for Problem $(H, K_{(m)})$ (Lemma 2) but φ does not satisfy (8). Characterization Theorem 2. If the sample space \mathfrak{X} satisfies a regularity condition ([7] p. 354) then there exists a number k ($2 \le k \le m$), indices i_j (j = 1, \cdots , k; $i_j = 1$, \cdots , m) and probabilities $p(i_j)$ ($\sum p(i_j) = 1$) such that the MP size- α test φ for H against the simple alternative that X has the pdf $\sum p(i_j)f_{\theta(i_j)}(x)$ satisfies $$\gamma_{\varphi,D}(\theta_{i_1}) = \cdots = \gamma_{\varphi,D}(\theta_{i_k}) = \gamma^* = \max_{i=1,\dots,m} \gamma_{\varphi,D}(\theta_i)$$ so that φ is MS size- α for Problem $(H, K_{(m)})$ on account of the Lemmas 1 and 2. PROOF. This is the situation of a S-game ([2] p. 47) where Player I (Nature) has a finite number of pure strategies θ_i ($i=1,\cdots,m$) while Player II (Statistician) selects his strategy (test function) φ from the class D of all size- α tests. In the R^m of points $g=(g_1,\cdots,g_m)$ we define the subset S of all points g with coordinates $g_i=\gamma_{\varphi,D}(\theta_i)$ ($i=1,\cdots,m$) ($\varphi \in D$). Obviously equivalent tests (with the same power over $K_{(m)}$) are represented by the same point in S. Let K denote the unit hypercube of all points g with $0 \le g_i \le 1$ ($i=1,\cdots,m$). S is a closed, convex subset of K and S has a point in common with each of the m faces $g_i=0$ ($i=1,\cdots,m$) of K. The convexity of S can be proved by remarking that when φ , $\varphi' \in D$ are characterized by the points g, $g' \in S$, then for $0 \le \rho \le 1$, the test $\rho \varphi + (1-\rho)\varphi' \in D$ and this test is characterized by the point $\rho g + (1-\rho)g'$. It follows from the Weak Compactness Theorem ([7] p. 354) provided that $\mathfrak X$ satisfies a regularity condition, that (i) there exists a MP size- α test for H against the simple alternative θ_i (S has a point in common with $g_i=0$) and (ii) S is closed. Next ([2] p. 49) let $\Gamma_{\gamma} = \{g; g \in R^m, g_i < \gamma \ (i = 1, \cdots, m)\}$ denote the "negative orthant" in R^m shifted so that the vertex $(0, \cdots, 0)$ is at the point $\gamma = (\gamma, \cdots, \gamma)$. Γ_{γ} is obviously open and convex. Let $\gamma^* = \sup_{\gamma} \{\gamma; \Gamma_{\gamma} \cap S = \emptyset\}$. Then $\Gamma_{\gamma^*} \cap S = \emptyset$; hence there exists a hyperplane $\sum p_i g_i = c$ separating Γ_{γ^*} and S. Without loss of generality we can assume $p_i \geq 0$ $(i = 1, \cdots, m)$, $\sum p_i = 1$; moreover the hyperplane contains the vertex γ^* of Γ_{γ^*} ([2] page 43, [5] pages 11 and 12). $[\Gamma_{\gamma^*}] \cap S \neq \emptyset$. Let $g^* \in S$ be such that $g^* \in [\Gamma_{\gamma^*}]$. S is convex and has a point in common with each of the m faces $g_i = 0$ of K. Consequently at least two coordinates g_i^* of g^* are equal to γ^* . So there exists a number k $(2 \leq k \leq m)$ and indices i_j $(j = 1, \cdots, k)$ whereas the other coordinates of g^* are smaller. The separating hyperplane $\sum p_i g_i = c$ contains g^* and the vertex γ^* . Consequently $p_i = 0$ for $i \neq i_j$ $(j = 1, \cdots, k)$. We complete the proof by remarking that the test φ which is represented by $g^* \in S$ is MP size- α for testing H against the simple alternative that X has the pdf $\sum p_i f_{\theta(i)}(x)$; for the power $\sum p_i \beta_{\varphi}(\theta_i)$ against this simple alternative becomes as large as possible when $\sum p_i \gamma_{\varphi,D}(\theta_i)$ is minimized; the latter expression is $\geq c$ for all points $g \in S$ and = c for the point g^* . Theorem 2 characterizes the parameterpoints $\theta(i_j)$ $(j=1,\cdots,k)$ as those points where the shortcoming $\gamma_{\varphi,D}(\theta)$ of the MS size- α test φ for Problem $(H, K_{(m)})$ is as large as possible. We remark that each MS size- α test ψ for Problem $(H, K_{(m)})$ is MP size- α for H against the simple alternative that X has the pdf $\sum p(i_j)f_{\theta(i_j)}(x)$ for otherwise $\sum p(i_j)\beta_{\psi}\{\theta(i_j)\} < \sum p(i_j)\beta_{\varphi}\{\theta(i_j)\}$ and hence $\sum p(i_j)\gamma_{\psi,D}\{\theta(i_j)\} > \gamma^*$ and $\gamma_{\psi,D}\{\theta(i_j)\} > \gamma^*$ for some index j. This remark will be useful for proving that the MS size- α test for Problem $(H, K_{(m)})$ is uniquely determined under certain assumptions (see Theorem 4). It can be proved that there exists a MS size- α test ψ for Problem (H, K_1) which is "invariant" or in other words, which only depends on the coordinates y_i $(i = n - s + 1, \dots, n - s + r)$ of the sample point x (see Section 3). For such tests we can restrict our attention to the power over K_1 . Characterization Theorem 3. If there exists an invariant MS size- α test ψ for Problem (H, K_1) , such that a (finite) number m and parameterpoints $\theta_i \in K_1'$ $(i = 1, \dots, m)$ exist with the property that $$\gamma_{\psi,D}(\theta_i) = \sup_{\theta \in K_1'} \gamma_{\psi,D}(\theta) = \gamma^*, \qquad (i = 1, \dots, m),$$ while for all other $\theta \in K_1'$ we have $\gamma_{\psi,D}(\theta) < \gamma^*$ (and even $\gamma_{\psi,D}(\theta) < \gamma^* - \epsilon$ for some $\epsilon > 0$, provided that $\|\theta\|$ is sufficiently large) then ψ is MS size- α for Problem (H, $K_{(m)}$). PROOF. Suppose ψ is not MS size- α for Problem $(H, K_{(m)})$. Let φ be a MS size- α test of the form (11), for Problem $(H, K_{(m)})$ (see Theorem 2). Then $\gamma_{\varphi,D}(\theta_i) < \gamma_{\psi,D}(\theta_i)$ $(i = 1, \dots, m)$ and we can construct ρ $(0 < \rho < 1)$ such that the test $\rho\varphi + (1 - \rho)\psi \varepsilon D$ is more stringent for Problem (H, K_1) than ψ . Thus we obtain a contradiction. Uniqueness Theorem 4. If (H, K_1) satisfies the condition of Theorem 3, then each MS size- α test φ^* for Problem (H, K_1) satisfies $\varphi^* = \psi$ a.e. (μ) . PROOF. ψ is MS size- α for Problem $(H, K_{(m)})$ and $\gamma_{\psi,D}(\theta_i) = \gamma^*$ $(i = 1, \dots, m)$ (Theorem 3). Hence φ^* is MS size- α for Problem $(H, K_{(m)})$. Consequently both ψ and φ^* are MP size- α for testing H against the simple alternative that X has a pdf $\sum p(i)f_{\theta(i)}(x)$ where $\theta(i) \in K_1'$. Hence $\varphi^* = \psi$ a.e. (μ) where μ is the Lebesgue measure over R^n . In the following sections, the condition of Theorem 3 turns out to hold for certain problems. For problems (H, K_1) satisfying the condition (we conjecture that each problem (H, K_1) will do that) there obviously exist probabilities p_i $(i = 1, \dots, m)$ such that the MS size- α test φ^* for Problem (H, K_1) can be obtained by applying Lemma 1 (Condition (8) is satisfied) and Lemma 2. This shows that Condition (20) (or (15)) is necessary for φ , to be MS size- α for Problem (H, K_1) where K_1' is symmetrical (Remark in Section 3). By introducing the condition of Theorem 3, we avoided the difficulties that emerge when the alternative consists of an infinite number of points Bartholomew [1], Kudô [6] a.o. applied the L.R. (likelihood-ratio) criterion to problems of the form (H, K_1) . Their L.R. size- α test φ' is not of the form (11). Consequently φ' is not MS size- α (if at least the condition of Theorem 3 is satisfied). Theoretically, the L.R. criterion has the disadvantage that it is not formulated as an optimum property in terms of the power ([7], page 15). From a practical point of view, φ' seems to stand somewhere midway between φ_0 and φ^* : the maximum shortcoming will lie between that of φ_0 and φ^* ; the computations involved are more complicated than for φ_0 but much less difficult than for φ^* . Doornbos and Prins [3], Kander and Zacks [4], a.o. considered testing problems which can be regarded as (generalizations of) special cases of Problem (H, S_1) where on the basis of an outcome of the random variable X described in Section 2, the hypothesis H has to be tested against the alternative S_1 corresponding with the subset of R^s which is defined by the existence of an index h (h = n - s + 1, \cdots , n - s + r) such that strict inequality holds in (4) for this index whereas equality holds for all other indices. Example. Let X_1 , \cdots , X_r have independent normal $N(\mu_i, 1)$ distributions $(i=1,\cdots,r)$. The hypothesis $H:\mu_i=0$ $(i=1,\cdots,r)$ has to be tested against the alternative S_1 : for some index h $(h=1,\cdots,r)$ we have $\mu_h>0$ whereas $\mu_i=0$ $(i=1,\cdots,r;i\neq h)$, or in other words that the vector of means (μ_1,\cdots,μ_r) is situated on one of the edges of the positive orthant. Obviously for the
general problem (H, S_1) , the intersection S_1' of S_1 and R'(see Section 2) consists of the r edges e_i ($i = 1, \dots, r$) of K_1 . The class of all SMP size- α tests for Problem (H, S_1) consists of the r tests $0X^I \ge u_{\alpha}$ where X^I is the projection of X on the R^1 spanned by the half-line l and $l = e_i$ (i = $1, \dots, r$). Consequently the criterion MSSMP is inappropriate for Problem (H, S_1) . It is seen easily that the MSSMP size- α test φ_0 for Problem (H, K_1) is MS (C) for Problem (H, S_1) when C is the class of all tests of the form $0X^I \ge u_{\alpha}$, which are based on a linear combination of the coordinates X_1, \dots, X_n (Kander and Zacks applied a Bayesian approach with a limiting argument and thus obtained a test of the form $0X^I \ge u_\alpha$ which is not MS (C)). The restriction to the above-mentioned class C seems to be rather undesirable for problems of the form (H, S_1) . The method described after the proof of Lemma 2 where m = r and $\theta_i = \nu_i \bar{e}_i \ (i = 1, \dots, r)$ will provide the MS size- α test for Problem (H, S_1) . The computations are feasible if we restrict our attention to Problems (H, S_1) where the corresponding polyhedral angle K_1' is symmetrical (see Example). For such cases it follows from (19) that φ_{i*} is the MS size- α test for Problem (H, S₁) (Condition (20) needs not to be satisfied). The above-mentioned Example provides an interesting test-case. The corresponding tests φ_0 , φ_r and the L.R. size- α test φ' respectively reject when $\sum X_i$, $\sum \exp(\nu X_i)$ and max X_i are sufficiently large. φ_0 and φ' may be regarded as limiting cases ($\nu \to 0$ and $\nu \to \infty$ respectively) of φ_r ; consequently the MS size- α test φ_{r^*} has an intermediate position between φ_0 and φ' . The method of Kander and Zacks inheres in the construction of φ_0 (their limiting argument corresponds with $\nu \to 0$ in φ_r) whereas the method of Doornbos and Prins provides φ' . The tests φ_0 , φ_{r^*} and φ' respectively have the maximum shortcomings .26, .11, .11 (r=2); .35, .17, .17 (r=3) and .47, .21, .21 (r=4) over the alternative S_1 in case $\alpha=.05$. This shows that for these cases φ' does not differ much from the MS size- α test φ_{r^*} . The maximum shortcoming of φ_0 is unsatisfactory large; the corresponding advantages of φ_{r^*} (and φ') over φ_0 are not neutralized by advantages of φ_0 over φ_{r^*} from other reasonable over-all points of view (see [11] Figure 5.2 where the shortcoming of φ_0 and φ_{r^*} is plotted for the r=2 case). 5. Comparing φ_0 and φ^* for Problems (H, K_1) with r=2. In the case r=2, K_1' is an angle with vertex 0 in $R^r=R^2$ and K_1' is obviously symmetrical. We introduce a new orthonormal basis g_1, \dots, g_n for R^n with $g_1=\|\bar{e}_1-\bar{e}_2\|^{-1}(\bar{e}_1-\bar{e}_2)$ and $g_2=\|\bar{e}_1+\bar{e}_2\|^{-1}(\bar{e}_1+\bar{e}_2)$. The half-line l_0 satisfying (6) is spanned by g_2 . Further $\Psi_0=\Psi(g_2,e_1)$. The coordinates of the sample point X with respect to the basis g_1, \dots, g_n are denoted by Z_1, \dots, Z_n . Obviously φ_0 rejects when $Z_2 \geq u_\alpha$. Graphs of $\gamma_{\varphi_0,D}(l)$ as a function of $\Psi=\Psi(l,l_0)$ (see Formula (7)) are given in the Figures 3, 4 and 5. Next we try to obtain φ^* by determining φ_{ν^*} (see Section 3). Using the basis g_1, \dots, g_n we have $\bar{e}_i = ((-1)^{i-1} \sin \Psi_0, \cos \Psi_0, 0 \dots)$ (i = 1, 2); $\theta_i = \nu \bar{e}_i$ defines the *n*-variate normal $N(\theta_i, I)$ distribution with pdf $f_{\theta_i}(x)$ (i = 1, 2). The MP size- α test φ_{ν} for H against the simple alternative that X has the pdf $\frac{1}{2}f_{\theta_1}(x) + \frac{1}{2}f_{\theta_2}(x)$ rejects when $$\begin{aligned} \{ \exp\left(-\frac{1}{2}{Z_{1}}^{2} - \frac{1}{2}{Z_{2}}^{2}\right) \}^{-1} \left[\exp\left[-\frac{1}{2}\{\left(Z_{1} - \nu \sin\Psi_{0}\right)^{2} + \left(Z_{2} - \nu \cos\Psi_{0}\right)^{2}\}\right] \right] \\ + \exp\left[-\frac{1}{2}\{\left(Z_{1} + \nu \sin\Psi_{0}\right)^{2} + \left(Z_{2} - \nu \cos\Psi_{0}\right)^{2}\}\right] \end{aligned}$$ is sufficiently large, or equivalently when $$(21) Z_2 \geq f_{\nu,\alpha,\Psi_0}(Z_1),$$ where $$(22) \quad f_{\nu,\alpha,\Psi_0}(z_1) = (\nu \cos \Psi_0)^{-1}$$ $$\log_e \left\{ c_{\alpha}(\nu, \Psi_0) / [\exp(z_1 \nu \sin \Psi_0) + \exp(-z_1 \nu \sin \Psi_0)] \right\}$$ with $c_{\alpha}(\nu, \Psi_0)$ such that Test (21) is of size- α for testing H or equivalently for testing the hypothesis that Z_1 and Z_2 have independent normal N(0, 1) distributions. Let l denote the half-line in K_1 spanned by the vector $\bar{l} = (\sin \Psi, \cos \Psi, 0 \cdots)$ where $|\Psi| \leq \Psi_0$. The *power* of φ_r in the arbitrary point $\kappa \bar{l}$ of l ($\kappa > 0$) is determined by (23) $$\beta_{\varphi_{\nu}}(\varkappa \bar{l}) = P\{Z_2 \ge f_{\nu,\alpha,\Psi_0}(Z_1)\},$$ where in the right-hand side Z_1 and Z_2 have independent normal $N(\kappa \sin \Psi, 1)$ and $N(\kappa \cos \Psi, 1)$ distributions respectively. Next we compute ν^* satisfying (13) (the computations are based on the assumption that the function $g(\nu)$ that is defined by the left-hand side of (12) has exactly one summit for $\nu > 0$, cf [11] Theorem 4.1). Thus we obtain the test φ_{ν^*} (that is MS size- α for the allied Problem (H, S_1) described in Section 4) and the problem arises whether φ_{r^*} is the MS size- α test φ^* for Problem (H, K_1) or equivalently whether Condition (20) is satisfied for each half-line l in K_1' (see also (14) and (23)). In the limiting case $\Psi_0 = \frac{1}{2}\pi$ the tests $\varphi_r(\nu > 0)$ degenerate into the same test φ' which rejects when $|Z_1| \geq u_{\frac{1}{2}\alpha}$. We have $\gamma_{\varphi',D}(l_0) = 1 - \alpha$ and (20) is not satisfied. There will exist a critical angle $\Psi_0^{(cr)}(\alpha)$ such that (20) is satisfied and φ_{r^*} is the MS size- α test φ^* for Problem (H, K_1) , if and only if $$(24) 0 \leq \Psi_0 \leq \Psi_0^{(cr)}(\alpha).$$ In order to determine this critical angle we examined Condition (20) by considering graphs of $\gamma_{\varphi_{r}^{*},D}(l)$ as a function of $\Psi=\Psi(l,l_{0})$ (see Figures 3, 4 and 5). Indeed an angle $\Psi_{0}^{(cr)}(\alpha)$ turned out to exist such that $\varphi_{r^{*}}=\varphi^{*}$ if (24) holds, whereas otherwise $\gamma_{\varphi_{r}^{*},D}(l)$ obtains an absolute maximum for $l=l_{0}$. In this connection we refer to [11] where van Zwet and Oosterhoff proved analytically for the $\Psi_{0}=45^{\circ}$ case that $\gamma_{\varphi_{r}^{*},D}(l)$ as function of $\Psi=\Psi(l,l_{0})$ can only have maxima for $\Psi=0$ and $\Psi=\Psi_{0}$. The test φ_{ν^*} is of the form (21), (22) and is completely determined if we know ν^* and $c_{\alpha}(\nu^*, \Psi_0)$. Writing $\nu^* = \nu_{\alpha}^*(\Psi_0)$ and $c_{\alpha}(\nu_{\alpha}^*(\Psi_0), \Psi_0) = c_{\alpha}^*(\Psi_0)$ we indicate that ν^* and c^* are completely determined by α and Ψ_0 . Corresponding graphs for all values Ψ_0 satisfying (24) are given in the Figures 1 and 2. These figures determine φ_{ν^*} completely, exactly in those cases where φ_{ν^*} is the MS size- α test φ^* for Problem (H, K_1) . Moreover these figures determine $\Psi_0^{(cr)}(\alpha)$. We proposed to compare the MSSMP size- α test φ_0 and the MS size- α test φ^* for Problem (H, K_1) with r = 2 by means of graphs of $\gamma_{\varphi,D}(l)$ as function of $\Psi = \Psi(l, l_0)$ for $\varphi = \varphi_0$ and $\varphi = \varphi^*$. Such graphs are given in the Figures 3, 4 and 5 $(\alpha = .05)$. By definition, the maximum shortcoming of φ^* is smaller than that of φ_0 . But from other points of view φ_0 may be better. In Figure 6 for example we give a graph of (see also [10] Section 2.15) $$\lambda_{\alpha}(\Psi_0) = \Psi_0^{-1} \Psi_1(\Psi_0, \alpha),$$ where $\Psi_1(\Psi_0, \alpha)$ is by definition such that the condition $\Psi(l, l_0) \leq \Psi_1(\Psi_0, \alpha)$ is necessary and sufficient for $\gamma_{\varphi_0, D}(l) \leq \gamma_{\varphi^*, D}(l)$. So φ_0 is regarded as better than φ^* from this point of view if $\lambda_{\alpha}(\Psi_0) > \frac{1}{2}$. We can also compute (cf [10] Sections 2.15 and 4.3) $$A_{\varphi}(\Psi_0) = \frac{1}{2}\Psi_0^{-1} \int_{-\Psi_0}^{\Psi_0} \gamma_{\varphi,D}(l) d\Psi$$ where $\gamma_{\varphi,D}(l)$ is regarded as a function of $\Psi = \Psi(l, l_0)$. Corresponding graphs for φ_0 and φ^* $(0 \le \Psi_0 \le \Psi_0^{(er)}(\alpha))$ are given in Figure 7. Interpreting the Figures 3, \cdots , 7 and the theory of [10] Section 2.15 we arrive at the following *rule of thumb*: for Problems (H, K_1) with r = 2 and $\Psi_0 < 60^{\circ}$, φ^* does not provide a worth-while improvement upon φ_0 . REMARK. In [9] Section 2 and [10] Section 2.3 we made objections to the criterion MS size- α . Supposing that $\gamma_{\varphi^*,D}(l)$ was almost constant over $|\Psi| \leq \Psi_0$ for $\Psi = \Psi(l, l_0)$, we expected that φ_0 would provide a worth-while improvement upon φ^* for Problems (H, K_1) with Ψ_0 small. The Figures 4 and 5 show that these objections do not apply to Problems (H, K_1) in case r = 2. For such problems both φ_0 and φ^* have similar power properties if Ψ_0 is small. 6. Comparing φ_0 and φ^* for Problem $(H,
K_1)$ with r=3 and K_1' symmetrical. In this case, K_1' is a symmetrical polyhedral angle in $R^r=R^3$. The symmetry may be defined by $\Psi(e_1, e_2) = \Psi(e_1, e_3) = \Psi(e_2, e_3)$. We can introduce an orthonormal basis g_1, \dots, g_n for R^n such that the unit vectors \bar{e}_i along the edges e_i of K_1' have the coordinates $$\begin{split} \bar{e}_1 &= (\sin \Psi_0 , 0, \cos \Psi_0 , 0 \cdots) \\ \bar{e}_2 &= (-\frac{1}{2} \sin \Psi_0 , \frac{1}{2} 3^{\frac{1}{2}} \sin \Psi_0 , \cos \Psi_0 , 0 \cdots) \\ \bar{e}_3 &= (-\frac{1}{2} \sin \Psi_0 , -\frac{1}{2} 3^{\frac{1}{2}} \sin \Psi_0 , \cos \Psi_0 , 0 \cdots). \end{split}$$ The half-line l_0 satisfying (6) is spanned by g_3 ; $\Psi(l_0, e_i) = \Psi_0$ (i = 1, 2, 3). The coordinates of the sample point X with respect to the basis g_1, \dots, g_n are denoted by Z_1, \dots, Z_n . Obviously φ_0 rejects when $Z_3 \geq u_{\alpha}$. The test φ_{ν} (see Sections 3 and 5) rejects when $$(25) Z_{\delta} \geq f_{\nu,\alpha,\Psi_0}(Z_1, Z_2)$$ where f is defined by (26) $$(\nu \cos \Psi_0) f_{\nu,\alpha,\Psi_0}(z_1, z_2) = \log_{\epsilon} \{ c_{\alpha}(\nu, \Psi_0) [\exp(z_1 \nu \sin \Psi_0) + \exp(-\frac{1}{2} z_1 \nu \sin \Psi_0) \{ \exp(\frac{1}{2} 3^{\frac{1}{2}} z_2 \nu \sin \Psi_0) + \exp(-\frac{1}{2} 3^{\frac{1}{2}} z_2 \nu \sin \Psi_0) \}]^{-1} \},$$ with $c_{\alpha}(\nu, \Psi_0)$ such that Test (25) is of size- α for testing H. The test φ_{r^*} is determined according to (12) and (13) (the computations are based on the assumption that (12) as function of ν has exactly one summit). Condition (20) is examined by computing $\gamma_{\varphi_r^*,D}(l)$ as a function of $\Psi=\Psi(l,l_0)$ for l varying over the intersection of K_1 and the R^2 spanned by e_1 and g_3 . So Ψ varies over $[-\Psi_1, \Psi_0]$ where (27) $$\Psi_1 = \cos \{ \Psi(\bar{e}_2 + \bar{e}_3, g_3) \} = \cos \{ 2 \cos \Psi_0 / (1 + 3 \cos^2 \Psi_0)^{\frac{1}{2}} \}.$$ Corresponding graphs of $\gamma_{\varphi,D}(l)$ for $\varphi = \varphi_0$ and $\varphi = \varphi_{r^*} = \varphi^*$ are given in the Figures 8, 9 and 10. Here φ_{r^*} is assumed to be the MS size- α test φ^* for Problem (H, K_1) because the function $\gamma_{\varphi^*,D}(l)$ of $\Psi = \Psi(l, l_0)$ over $[-\Psi_1, \Psi_0]$ has an absolute maximum for $\Psi = \Psi_0$ (see Formula (19)). Interpreting these figures (and other results mentioned in [8] and in [10] Section 4.3) we obtain the opinion that the *rule of thumb* at the end of Section 5 may be modified for Problems (H, K_1) with r = 3, substituting 70° for 60° for example. From certain over-all points of view, φ_0 provides a slight improvement upon φ^* if $40^{\circ} < \Psi_0 < 60^{\circ}$. Further the power properties of φ_0 and φ^* are quite similar for $\Psi_0 < 30^{\circ}$. 7. Comparing φ_0 and φ^* for Problems (H, K_1) with r > 3. The case K_1 symmetrical and r = 4 was treated also along the lines of Section 3. In this case we introduce an orthonormal basis g_1, \dots, g_n for R^n such that $$\begin{split} \bar{e}_1 &= (\sin \Psi_0 \,,\, 0,\, 0,\, \cos \Psi_0 \,,\, 0\, \cdots) \,, \\ \bar{e}_2 &= (-3^{-1} \sin \Psi_0 \,,\, 3^{-1} \,8^{\frac{1}{2}} \sin \Psi_0 \,,\, 0,\, \cos \Psi_0 \,,\, 0\, \cdots) \,, \\ \bar{e}_3 &= (-3^{-1} \sin \Psi_0 \,,\, -3^{-1} \,2^{\frac{1}{2}} \sin \Psi_0 \,,\, 3^{-\frac{1}{2}} \,2^{\frac{1}{2}} \sin \Psi_0 \,,\, \cos \Psi_0 \,,\, 0\, \cdots) \,, \\ \bar{e}_4 &= (-3^{-1} \sin \Psi_0 \,,\, -3^{-1} \,2^{\frac{1}{2}} \sin \Psi_0 \,,\, -3^{-\frac{1}{2}} \,2^{\frac{1}{2}} \sin \Psi_0 \,,\, \cos \Psi_0 \,,\, 0\, \cdots) \,, \end{split}$$ and the MSSMP size- α test φ_0 rejects when $Z_4 \ge u_\alpha$ whereas the test φ_ν (see Sections 3 and 6) rejects when (28) $$Z_4 \ge f_{\nu,\alpha,\Psi_0}(Z_1, Z_2, Z_3)$$ where f is defined by a formula similar to (26) but with a more intricate denominator in the right-hand side. Again φ_{r^*} can be determined and Condition (20) is examined by computing $\gamma_{\varphi_{r^*},D}(l)$ as a function of $\Psi=\Psi(l,l_0)=\Psi(l,g_4)$ for l varying over the intersection of K_1 and the R^2 spanned by e_1 and g_4 . So Ψ varies over $[-\Psi_1,\Psi_0]$ where (29) $$\Psi_1 = \Psi(\bar{e}_2 + \bar{e}_3 + \bar{e}_4, g_4) = \arccos \{3 \cos \Psi_0/(1 + 8 \cos^2 \Psi_0)^{\frac{1}{2}}\}.$$ Interpreting the corresponding graphs of $\gamma_{\varphi,^{\bullet},D}(l)$ we obtain the opinion that the *rule of thumb* at the end of Section 5 may be modified for Problems (H, K_1) with r = 4, substituting 75° for 60° for example. From certain over-all points of view, φ_0 provides a worth-while improvement upon φ^* if 35° $<\Psi_0<65$ °. The power properties of φ_0 and φ^* are quite similar for $\Psi_0<30$ °. The rest of this section is devoted to a comparison of φ_0 and φ^* for Problems (H, K_1) where K_1' is an orthant: $\Psi(e_i, e_j) = 90^\circ$ for $i, j = 1, \dots, r; i \neq j$ (in [10] Section 4.3 we examined such problems as feasible test-cases for the provisional classification in [10] Section 2.13). For such problems we have $\Psi_0 = \operatorname{arc\ cos\ }(r^{\frac{1}{2}})$. Let $A_{\varphi}(\Psi_0)$ denote the averaged maximum shortcoming $\gamma_{\varphi,D}(l)$ when \overline{l} has the uniform distribution over the intersection of K_1' and the surface of the unit sphere in R^r . For $\alpha = .05$ we have (30) $$A_{\omega_0}(\Psi_0) \approx (1-\alpha) \left\{1 - \pi^{-\frac{1}{2}} \left[\Gamma\left\{\frac{1}{2}(r+1)\right\}\right]^{-1} r^{\frac{1}{2}} \Gamma\left(\frac{1}{2}r\right)\right\}$$ (see [10] Section 4.3, the formula for $A_{\alpha}(m)$). We shall use $A_{\varphi}(\Psi_0)$ as a measure for comparing φ_0 and φ^* for Problems (H, K_1) where K_1' is an orthant, $r = 2, 3, 4, \cdots$ and $\alpha = .05$. Figure 3 applies to the case r=2. We compute $A_{\varphi^*}(\Psi_0)=.097$ and $A_{\varphi_0}(\Psi_0)=.084$; further $\Psi_0^{(er)}(\alpha)\approx 46^\circ$. Neither φ_0 nor φ^* provides a worth-while improvement upon the other. Condition (20) is not satisfied in the case r=3: $\Psi_0^{(cr)}(\alpha) \approx 54^\circ < \Psi_0 = 54.7^\circ$. $\gamma_{\varphi_r^{\bullet},D}(l)$ is almost constantly equal to .16 for l varying over the region studied (see Section 6). We shall have $A_{\varphi^*}(\Psi_0) \approx .16$ for the unknown MS size- α test φ^* . From (30) we obtain $A_{\varphi_0}(\Psi_0) \approx .13$. Neither φ_0 nor φ^* provides a worth-while improvement upon the other; φ_0 is slightly better from the $A_{\varphi}(\Psi_0)$ point of view. In the case r=4 we have $A_{\varphi_0}(\Psi_0)\approx .15$ (see (30)). Condition (20) is not satisfied: $\Psi_0^{(er)}(\alpha)\approx 59^\circ < \Psi_0=60^\circ$. But $\gamma_{\varphi,*,p}(l)$ is almost constantly equal to about .21 for l varying over the region studied. We shall have $A_{\varphi^*}(\Psi_0)\approx .21$ for the unknown MS size- α test φ^* . So φ_0 provides a worth-while improvement upon φ^* from the $A_{\varphi}(\Psi_0)$ point of view whereas the maximum shortcoming of φ^* (about .21) is much smaller than the maximum shortcoming (.47) of φ_0 . Next, by applying two simple lemmas, we prove Theorem 5 elucidating the cases r > 4. LEMMA 3. If $\Pi^{(1)} = (H, K^{(1)})$ and $\Pi^{(2)} = (H, K^{(2)})$ are two testing problems for the variate X over \mathfrak{X} such that $K^{(1)} \subset K^{(2)}$, then $b_D(\Pi^{(1)}) \leq b_D(\Pi^{(2)})$ ($b_D(\Pi)$ was defined in (10)). Next let Π_r and $\bar{\Pi}_r$ be two testing problems of the form (H, K_1) such that for both problems K_1' is an orthant in an R^r (n and n may be different). LEMMA 4. For Π_r and $\bar{\Pi}_r$ we have $b_D(\Pi_r) = b_D(\bar{\Pi}_r)$. We shall elucidate the cases r > 4 by considering a sequence $\{\Pi_r\}$ $(r = 2, 3, \cdots)$ of problems of the form (H, K_1) where K_1' is an orthant in R^r . THEOREM 5. For each sequence $\{\Pi_r\}$ $(r=2, 3, \cdots)$ we have (i) $b_D(\Pi_r) \leq b_D(\Pi_{r+1})$ $(r=2, 3, \cdots)$ and (ii) $\lim_{r\to\infty} b_D(\Pi_r) = 1 - \alpha$. PROOF. (i) may be proved by applying Lemma 3 and Lemma 4. (ii) will be proved by applying Lemma 1 and Lemma 3. First we remark that the trivial size- α test $\varphi_t(x) \equiv \alpha$ belongs to D. Moreover $\sup_{\theta \in K_1} \gamma_{\varphi_t,D}(\theta) = 1 - \alpha$. Hence $b_D(\Pi_r) \leq 1 - \alpha$ $(r = 2, 3, \dots)$. We shall construct for $\epsilon > 0$ an integer r_{ϵ} such that $b_D(\Pi_r) > 1 - \alpha - \epsilon$ for $r > r_{\epsilon}$. For that purpose we define ν_{ϵ} such that $\Phi^{\times}(u_{\alpha} - \nu_{\epsilon}) - \alpha = 1 - \alpha - \frac{1}{2}\epsilon$. With respect to Problem Π_r we introduce an orthonormal basis g_1, \dots, g_n for R^n such that $g_i = \bar{e}_i$ ($i = 1, \dots, r$). This is possible because K_1' is an orthant. The coordinates of the sample point X are denoted by Z_1, \dots, Z_n . By applying Lemma 1 we obtain the MS size- α test $\varphi_{\nu_{\epsilon}}$ for H against the alternative $K_{(r)}(\nu_{\epsilon}) \subset K_1$ where $K_{(r)}(\nu_{\epsilon})$ consists of the parameter points $\nu_{\epsilon} g_i$ ($i = 1, \dots, r$). $\varphi_{\nu_{\epsilon}}$ rejects when $$\sum_{i=1}^{r} \exp(\nu_{\epsilon} Z) \geq c_{\alpha,r}(\nu_{\epsilon})$$ where $c_{\alpha,r}(\nu_{\epsilon})$ is determined such that the test is of size- α . By applying the Central Limit Theorem for $r \to \infty$ (ν_{ϵ} is fixed) it can be shown that the power of $\varphi_{\nu_{\epsilon}}$ in $\nu_{\epsilon}g_i$ tends to α as $r \to \infty$. Thus we can choose r_{ϵ} such that for $r > r_{\epsilon}$ this power is
smaller than $\alpha + \frac{1}{2}\epsilon$. Consequently the corresponding shortcoming is larger than $\Phi^{\times}(u_{\alpha} - \nu_{\epsilon}) - \alpha - \frac{1}{2}\epsilon$. But this shortcoming is equal to $b_D(H, K_{(r)}(\nu_{\epsilon}))$. By applying Lemma 3 we obtain $$b_{D}(\Pi_{\tau}) > \Phi^{\times}(u_{\alpha} - \nu_{\epsilon}) - \alpha - \frac{1}{2}\epsilon \ge 1 - \alpha - \epsilon, \text{ for } r > r_{\epsilon}.$$ This completes the proof of the theorem. By definition the MS size- α test φ^* has the advantage over the MSSMP size- α test φ_0 , that the corresponding maximum shortcoming is smaller. Theorem 5 shows that this advantage becomes unimportant when $r \to \infty$, for the maximum shortcoming tends to $1 - \alpha$ as $r \to \infty$ both for φ^* and φ_0 . φ_0 has the important advantage that good power properties for large regions inside K_1 are warranted: the expression in the right-hand side of (30) tends to $(1-\alpha)(1-2^{\frac{1}{2}}\pi^{-\frac{1}{2}})\approx .19$ as $r\to\infty$ ($\alpha=.05$). Acknowledgments. The computations have been performed on the Telefunken TR-4 of Groningen University by means of programs written by Drs. H. J. van Linde and Mr. D. Velvis. The power functions were computed by means of Gauss-Hermite quadrature formulas. Tables of numerical results will be given in [8]. We are indebted to the referee for some comments leading to Section 4. ## REFERENCES - [1] BARTHOLOMEW, D. J. (1961). A test of homogeneity of means under restricted alternatives (with discussion). J. Roy. Statist. Soc. Ser. B 23 239-281. - [2] Blackwell, D. and Girshick, M. A. (1954). Theory of Games and Statistical Decisions. Wiley, New York. - [3] DOORNBOS, R. AND PRINS, H. J. (1958). On slippage tests. Indag. Math. 20 38-55 and 438-447. - [4] KANDER, K. AND ZACKS, S. (1966). Test procedures for possible changes in parameters of statistical distributions occurring at unknown time points. Ann. Math. Statist. 37 1196-1210. - [5] Karlin, S. (1959). Mathematical Methods and Theory in Games, Programming, and Economics II. Pergamon, London. - [6] Kudô, A. (1963). A multivariate analogue of the one-sided test. Biometrika 50 403-418. - [7] LEHMANN, E. L. (1959). Testing Statistical Hypothesis. Wiley, New York. - [8] Linde, H. J. van, Velvis, D. and Schaafsma, W. (1967). Tables for the construction of MSSMP and MS size-α tests for problems with a restricted alternative. Report T.W. 40, Mathematical Institute. Reitdiepskade 4 Groningen. - [9] SCHAAFSMA, W. AND SMID, L. J. (1966). Most stringent somewhere most powerful tests against alternatives restricted by a number of linear inequalities. Ann. Math. Statist. 37 1161-1172. - [10] SCHAAFSMA, W. (1966). Hypothesis Testing Problems with the Alternative Restricted by a Number of Inequalities. Noordhoff, Groningen. - [11] ZWET, W. R. VAN AND OOSTERHOFF, J. (1967). On the combination of independent test statistics. Ann. Math. Statist. 38 659-680 (1966: Preliminary Report S366, VP 27 Mathematisch Centrum Amsterdam).