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0. Summary. The paper studies hypothesis testing problems (H, K;) for the
mean of a vector variate having a multivariate normal distribution with known
covariance matrix, in cases where the alternative K is restricted by a number of
linear 1nequaht1es (Sectlon 2). We describe a method for obtaining the most
stringent szze-a test ¢* for Problem (H, K;) (Section 3). This method is used for
constructing ¢* for a number of special problems (H, K1) (Sections 5, 6 and 7)
where (i) K, is symmetrical and (ii) ¥, is sufficiently small. Thus for these
special problems, we can compare ¢* with the most stringent SMP size-a test oo
that can be obtained by applying the general methods of [9] and [10] (descnbed
in Section 2). It turns out (for the special problems w1th a = .05 or 01) that o*
does not provide a worth-while unprovement upon ¢y : ¢* has a smaller maximum
shortcoming but ¢y is better than ¢* from other over-all points of view. This
supports the opinion that generally no serious objections can be made to the use
of the MSSMP tests constructed in [10] Part 2 for problems from actual practice.
This is a fortunate circumstance, for these MSSMP tests require only simple
calculations.

By the way we prove a theorem characterizing the MS size-o test for a very
general problem (H, K(.)) where the hypothesis H may be composite while
K () consists of a finite number (m) of parameters 6;(¢ = 1, - - - , m) (Section 4)

1. Introduction. Let (H, K) be a testing problem with hypothesis H and
alternative K. The shortcoming v,,0(8) in (e K) of test ¢ with respect to the
class D of tests (test functions) is defined by

(1) Yo.0(8) = Bp*(8) — B,(6)

where 85 (0) = Supgen B¢(0) denotes the envelope power in 6 with respect to
i D and B,(0) = Esfe(X)} is the power in 9 of test (function) ¢. A test o" is said
to be MS(D) -(most stringent with respect to the class D) for Problem (H, K)
if (i) ¢* ¢ D and (ii)

(2) SUPsex Yor,0(0) = infoep SUPgex V,0(8).

In case D is the class of size-a tests, ¢* is said to be MS size-a.

A test ¢ is called SMP(D) (somewhere most powerful with respect to D) if
(i) ¢ € D and (ii) v,,0(8) = O for some 6 ¢ K. Let C denote the class
of .all SMP(D) tests for Problem (H, K). A test ¢, is said to be MSSMP(D)
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(most stringent somewhere most powerful with respect to D) if (i) ¢ & C and (ii)
(3) SUDsex You,5(0) = infpec SUPpex Vo,0(6). X

In case D is the class of size-a tests, ¢y is said to be MSSMP size-a.

In [9] and [10] Chapter 2 we described methods for obtaining MSSMP(D)
tests for large classes of testing problems with a restricted alternative. Applica-
tions to problems from actual practice were given in [10] Part 2.

Though MSSMP(D) tests are admissible (at least if D is sufficiently large)
they are not satisfactory for each problem with a restricted alternative: in [10]
Section 2.15 we described a family of testing problems (H, K) where K is defined
by one inequality and where a worth-while improvement upon the MSSMP (D)
tests turned out to be possible.

Obviously we are in want of a criterion charactenzmg the problems for which
the MSSMP(D) tests cannot be improved upon to a worth-while extent (a
provisional criterion has been described in [10] Section 2.13). For that purpose
the MSSMP(D) test should be compared with all other (admissible) size-a
tests, for a large number of problems.

In this paper we confine our attention to Problems (H, K1) (to be formulated
in Section 2) which are of the form {(H, K), ¢ = 1} described in [9] Section 3
and [10] Section 2.4. For such problems we try to obtain the MS size-a test o
by means of a method (Section 3) which resembles the method of van Zwet and
Oosterhoff (1967) for obtaining MS size-« tests for combination of tests problems
(H, K,) where K, is a positive orthant with vertex H (in our notation H and
K denote also the corresponding sets of parameters Q5 and Qx). Next we formu-
late a rule of thumb characterizing the problems for which the MS size-a test
¢" does not provide a worth-while improvement upon the MSSMP size-a test
¢o . Assuming that for such problems no other size-o test will improve upon ¢,
to a worth-while extent, we may postulate the rule of thumb as the criterion
wanted. Thus we obtained the opinion mentioned at the end of the Summary.

ReMark. Regarded as test-functions over the sample space, ¢ and ¢* are
obviously not uniquely determined. In this paper we ‘“identify”’ tests when their
power-functions over K, are identical.

2. The formulation of problem (H , Ky). In accordance with [9] Section 3 and
[10] Section 2.4, let X = (X, ---, X,) have the multivariate norma,l N(¢, Z)
distribution Wlth known nonsmgular covariance matrix = = A~ where 4 is
the n X n matrix (a*’). The outcomes z of X and the admitted vectors ¢ of means
(%, -+, £:) are regarded as points in the same n dimensional space R". The
vector £ of means is known to lie in the parameter space @ = H u K, defined by
the r inequalities

(4) 2ab" £ 20, (h=n—s+1,---,n—s+r)
“in the subspace R’ defined by the n — s equalities,
(5) 2iab" =0, (h=1,-,n—5s);
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2zr=s=n;®") (@G =1,---,n;h=1,---,n— s+ r) is supposed to be
a matrix of rank n — s + .

The hypothesis H is to be tested that ¢ lies in the subspace R*”" in R’, which
is obtained when all = signs in (4) are replaced by = signs. The alternative
K, corresponds with the subset of R® which is defined by (4) where at least one
inequality is strong. \

In R" an inner product is defined by means of the bilinear form

(2,y) = 2oia 250" zy;

and accordingly (i) orthogonality L y is defined by (z,y) = 0, (ii) the norm
Izl by ||z||* = (=, x) and (iii) if = spans the half-line I ( is the set of all points
gz with 6 > 0) andy spans the half-line m then cos {¥(l, m)} = |lz| ™ [ly]|™(z, ),
where ¥(1, m) is the angle between [ and m(0 < ¥(I, m) =< =).

In [9] Section 4 and [10] Section 2.6, we constructed the MSSMP size-a test
o for Problem (H, K;). Let R" be the linear subspace in B* perpendicular to the
R’ defined by H and let K, denote the intersection of K; and R". Ky is a
polyhedral angle with edges e;, - - - , e» which are obtained when all inequalities
(4) but one are replaced by the corresponding equalities. Next let the angle
¥, and the half-line s in K’ be defined by

(6) ¥, = inf;cx,’ SUPmek,’ ¥(I, m) = supmck,’ ¥(lo,m),

and let X’ be the projection of the sample point X on the R' spanned by I ;
further 0X” = ||X’|| (or — ||X||) in case X* & (or £) ly. The MSSMP size-a
test ¢o for problem (H, K;) rejects if and only if 0X* = u, where u, = (@) (a)
and ®%(z) = P(U = z) when U has the normal N(0, 1) distribution.

D being the class of size-a tests for Problem (H, K;), the envelope power in a
point £ £ Ky is equal to 85*(¢) = ®(4« — ||¢]|). The maximum of the short-
coming of ¢y over an arbitrary half-line I in K. is a strictly increasing function
of the angle ¥(I, ly):

() Ypoo(}) = supperso [B%(ua — [[E]) — @ [ua — [I£]l cos {¥(L, W)}

Tables of v,,,0(l) as a function of ¥ = ¥(l, ly) and as a function of cos ¥ will
be given in [8]. We shall compare the MSSMP size-a test ¢ with the MS size-a
test ¢ by considering graphs of v,,0(l) for ¢ = ¢ and ¢ = ¢ and [ varying
over (subsets of) K;' (see the Figures 3, 4, 5, 8, 9 and 10).

ReMARK. It may be proved easily that the (power function of the) MSSMP
size-a test ¢o for Problem (H, K;) is uniquely determined.

3. A general method for obtaining the MS size-a test o* for Problem (H, K,).
Our method is based on the following two lemmas:

First let (H, K(.)) be a testing problem for the variate X over the sample
space X, such that K (., consists of exactly m parameterpoints 6; defining pdf’s
fo6x) over X(¢ = 1, - - ,m). Let ¢ be MP size-a for testing H against the simple
alternative that X has the pdf 2 pifs,(z) over X where p;, - - - , p., are certain
probabilities (p; = 0; D p: = 1).
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LremMmaA 1. If these probabilities py, - -+ , pm are such that
(8) Yo.0(01) = Yp,0(62) = -+ = ¥,,0(0m)

holds, then ¢ 1s MS size-a for problem (H, K ().

Proor. Suppose ¢ does not minimize the maximum shortcoming over K () .
Then there exists a test ¢ ¢ D such that v,,p(60;) < v,,0(0;) and consequently
By(8:) > B,(6;) (¢ =1, --- ,m). But the power of ¥ against the above-described
simple alternative is p; By(6:). Consequently ¢ would be more powerful than
¢. Thus we obtain a contradiction.

A complement of Lemma 1 will be given in the characterization Theorem 2
(Section 4).

Next let (H, K®) and (H, K®) be two problems for the variate X over &,
such that K® < K®.

Lemma 2. If the test ¢ 55 MS size-a for Problem (H, K™) and

(9) SUPsex (1Y,,0(0) = SUPsek () Y,,p(6)

then ¢ is MS size-o: for Problem (H, K®).
Proor. For an arbitrary testing problem II = (H, K) we define

(10) bp(II) = inf,.p SUpPsex Yo,0(0),

where D is the class of all size-a tests; bp(II) is the maximum shortcoming on K
of the MS size-a test for Problem IT if this test exists. Next let I denote problem
(H, K®) (i = 1, 2). Then it follows from K < K® that bp(I®) < bp(II®)
(see Lemma 3 in Section 7).

Moreover the left-hand side of (9) is equal to bp(II™®), for ¢ is MS size-a for
Problem M. Thus it follows from (9) that bp(I®) = bo(I®). Hence
bo(I®) = bp(I®) and (9) shows that ¢ is MS size-a for Problem I®.

In order to obtain the MS size-a test ¢* for Problem (H, K;), we shall try to
find m parameterpoints 6;, --- , 8, in K;, defining pdf’s f5,(x) over R", with
probabilitiesp; , - -+ , pm (2 pi = 1) such that the MP size-a test ¢ for H against
the simple alternative that X has the pdf Y, p; fo,(z) satisfies (8), and (9) with
K (m and K, substituted for K and K®. In that case the lemmas show that ¢
is the MS size-a test ¢* for Problem (H, K;) and we write 6,* and p;* instead of
6; and pi .

Let fi, - - , f» be an orthonormal basis of B" such that fo—s4r41, - - , f» SPan
R " and fn_s41, ** - , fa sSpan R’; consequently fo—si1, - - , fa—s+r Span R (see
Section 2, [9] Section 3, or [10] Section 2.5). We shall only look for 6,%, - -+ , 0,*
among the points of K,'. Suppose that 6;, - -- , 6,, are m parameterpoints in
K,'. With respect to the basis f;, - - - , f the coordinates of 6; are 7ia, -+ , 7.
where 7;; =0(j=1,---,n —sn —s+r+ 1, ---,n) and accordingly 6;
defines the pdf

fou(x) = (20) ™ exp {—} 271 (5 — ni)?

in the point z of R" with coordinates 1, - - - , ¥ with respect to fi, - -+, fa'.
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Next suppose that p; , - - - , p.. are m probabilities defining the pdf > p;fo,(z)
with respect to fi, -+, fu, over R". The MP size-a test ¢ for the simple hy-
pothesis: 9, = 0 (¢ = 1, - - - , n), against the simple alternative that X has the
pdf D ;i fo,(2) is obtained by applying the Neyman-Pearson fundamental
lemma. This test rejects when

(11) 2otapiexp { 21 ng Y Z Ca,

where ¢, is determined such that the probability of (11) is equal to @ when
Yy, -+, Y, are independent N (0, 1) variates. Obviously this test ¢ is of size-a
for testing the whole hypothesis H and consequently ¢ is MP size-a for testing
H against the simple alternative that X has the pdf > ps fo,(2).

In the rest of this section and in the Sections 5, 6 and 7 we confine our attention
to Problems (H, K;) where K, is a symmetrical polyhedral angle (see Sections
6 and 7 for the definition of symmetry in case r = 38 or 4); &; will denote the unit
vector along the ith edge e; of Ky’ (¢ = 1, -+, r). For these problems we look
for 6%, -+, 0, only among the r-tuples (61,---,6,) where 6, = v
(4 =1,---, r). On account of the symmetry of Ky, the MP size-a test ¢,
for H against the simple alternative that X has the pdf % p; fo,(x) where
0; = vé; , will satisfy (8) if p; = ¥ (i = 1, -+, 7). So we look for ¢* only
among these tests ¢,(» > 0). The shortcoming of ¢, in all r points 6; = » & is
equal to the following function of »:

(12) 'Yw.D{e( V)} = q’x(ua - V) - ﬁw.(”é-‘)

(the notation 6(») is introduced in order to indicate that this shortcoming does
not depend on 7). Next we define »* by the requirement that

(13) Yot p{0(7*)} = 5UPs>0 V.0 {6()}

stating that ¢,» is a test of the form ¢, such that the shortcoming in 6(») (or
equivalently in »e;) is maximized.

The maximum shortcoming of ¢, over the half-line [ in K’ is determined by
(see Formula (7))

(14) Yort.n(l) = SuPes0 {F(Ua — %) — Bo,+(u])}

where [ is the unit vector spanning 1.
THEOREM 1. The test ¢+ is the MS size-a test ¢* for Problem (H, K1) if

(15) Yo,00(1) £ Yo,r.n{0(+"))

holds for each half-line 1 in Ky'.

PROOF. ¢,+ is of the form ¢, . Consequently (Lemma 1) ¢,+ is MS size-a for
Problem (H, K ,(»*)) where K (,,(»*) consists of the r points »*¢; (i = 1, -+ - ,r)
in’K,y'. We have

(16) SUPsex ;) %) Vo, *.0(0) = Yg,*,0{0( ¥}
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On account of (15) we have
(17) Yorrn(0) = Vo, 00"},

for all § £ K, with equality for § = »*¢; ¢ Ki'. But ¢, and consequently v,,+,5(8)
are invariant under all translations parallel to R*~" (see Formula (11)). Hence
(17) holds for all 8 ¢ K; with equality for 8 = »*¢; . This and (16) gives

(18) SUPgek, Yo, *.( 0) = SUPsex () v*) 7¢.‘.D(0)~

By applying Lemma 2 we complete the proof of the theorem.
ReMARK. The verification of Condition (15) is based on the results of the com-
putations. For all problems which will be considered in the Sections 5, 6 and 7

we found

(19) 7%‘-0{0(”*)} = 7%':1)(61) (7' = 1’ Tt T)
showing that we indeed minimize the maximum shortcoming #,,.n(e;) over
e; (1 = 1, -+, r) when we maximize the shortcoming v,,,0{0(»)} of ¢, in »&;

as a function of ». We shall prove (19) assuming that (i) there exists a »* (0 <
»* < o) satisfying (13) and (ii) the corresponding shortcoming f(x) =
Yo,,.p(%€:) over e; has exactly one maximum whereas f'(x) # 0 everywhere
else (x > 0). Let the function g(») denote the left-hand side of (12). Then
(i) g(») has a maximum for » = »*, (ii) F*) = g(¥®), (iil) f(x) = g() for
all » > 0 (otherwise for a certain x, ¢,« would be more stringent than ¢, for testing
H against Ky (x)). Hence f(»*) = 0 and on account of the assumptions,
g(+v*) = f(»*) = sup, f(») what proves (19).
Consequently we may verify that

(20) Yo 0(1) = ¥o,+.0(e:)
holds for each half-line I in Ky, instead of Condition (15). Of course the right-
hand side in (20) does not depend on % (¢ = 1, -+, 7). It will turn out in the

Sections 5, 6 and 7 that Condition (20) is satisfied provided that ¥, (see Section
2) is not too large. If ¥, is so large that (20) is not satisfied, then ¢,+ will be not
MS size-a for Problem (H, K;) (this follows from Theorem 4 under the assump-

tions of Theorem 3).

4. Back-ground material for Section 3. The Lemmas 1 and 2 and Theorem 1
give sufficient conditions for a test to be MS size-a. This section is devoted to some
complementary results. It is not necessary to read this section before the Sections
5,6 and 7 where only Theorem 1 is needed in order to prove that certain tests are
MS size-a.

Condition (8) is sufficient for ¢ to be MS size-a (Lemma 1) for the general
problem (H, K () described at the beginning of Section 3. In case m = 2, Condi-

Jtion (8) is also necessary for ¢ to be MS size-a. For suppose v,,0(61) < ¥e,n( 6:)
and let ¢, be the MP size-a test for H against the simple alternative 6, , then (for
sufficiently small p > 0) (1 — p)¢ + pgz € D will be more stringent than ¢ for
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Problem (H, K ¢)). Moreover in case m = 2 it can be shown easily that there exist
probabilities p; , po(p1 + p. = 1) such that the corresponding MP test ¢ satisfies
(8).In case m > 2 there will not always exist probabilities p; , - - - , p» such that
(8) holds. For let ¢ be MS size-a for Problem (H, K ) where K () consists of
6:, 0, ¢ Ky' (6; and 6, not on the same half-line 1). Let 65 , - - - , ,, be parameter-
points in K, such that v,.5(0;) < ¥o.0(01) = ¥e.p(0:) (i = 3, --- , m). Then ¢
is M8 size-a for Problem (H, K (»)) (Lemma 2) but ¢ does not satisfy (8).

CHARACTERIZATION THEOREM 2. If the sample space X salisfies a regularity
condition ([7] p. 354) then there exists a number k (2 < k < m), indices i; (§ = 1,
oo, k;4, =1, -+, m) and probabilities p(i;) (D_p(i;) = 1) such that the MP
size-a test ¢ for H against the simple alternative that X has the pdf D p(3;)fo; ()
satisfies :

Yoo(0:) = +++ = Yp,0(0i) = 7" = maXicy,....mVp,0(6:)

s0 that ¢ is MS size-a for Problem (H, K (n)) on account of the Lemmas 1 and 2.

Proor. This is the situation of a S-game ([2] p. 47) where Player I (Nature)
has a finite number of pure strategies 6; (¢ = 1, - - - , m) while Player IT (Statisti-
cian) selects his strategy (test function) ¢ from the class D of all size-a tests.
In the R™ of points ¢ = (g1, "+ , gn) We define the subset S of all points g with
coordinates g; = v,,0(6:;) (¢ = 1, ---,m) (¢ &€ D). Obviously equivalent tests
(with the same power over K ,)) are represented by the same point in S. Let K
denote the unit hypercube of all points g with0 < g; < 1(¢=1,---,m). Sisa
closed, convex subset of K and S has a point in common with each of the m faces
gi=0(=1, .- ,m)of K. The convexity of S can be proved by remarking that
when ¢, ¢’ ¢ D are characterized by the points g, g’ ¢ S, then for 0 < p < 1,
the test pp + (1 — p)¢ & D and this test is characterized by the point pg +
(1 — p)g'. It follows from the Weak Compactness Theorem ([7] p. 354) provided
that & satisfies a regularity condition, that (i) there exists a MP size-a test for
H against the simple alternative 9; (S has a point in common with g; = 0) and
(ii) S is closed.

Next ([2]p.49) let Ty = {g;9 e R",9: <v (i =1, - -- ,m)} denote the “nega-
tive orthant” in R™ shifted so that the vertex (0, --- ,0) is at the point y =
(¥, -++ ,%). Ty is obviously open and convex. Let ¥* = sup, {¥; Ty n § = &}.
Then T'» n S = F; hence there exists a hyperplane ), pig; = ¢ separating T'ye
and S. Withoutloss of generality we can assumep; = 0 (¢ = 1, --- ,m), 2 pi =
1; moreover the hyperplane contains the vertex v* of I',+ ([2] page 43, [5] pages
11 and 12). [Tx] n S 5= . Let g* & S be such that ¢g* & [T',+]. S is convex and has
a point in common with each of the m faces g; = 0 of K. Consequently at least
two coordinates g;* of g* are equal tov*. So there exists a numberk (2 £ k < m)
and indices 4; (j = 1, - -+, k;4; = 1, - - - , m) such that the coordinates g*(¢;) are
equal toy*(j = 1, - -+ , k) whereas the other coordinates of g* are smaller. The
separating hyperplane Y p.g: = ¢ contains g* and the vertex v*. Consequently
pi = 0fors = 4;(j =1, ---,k). We complete the proof by remarking that the
test ¢ which is represented by g* ¢ S is MP size-a for testing H against the simple
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alternative that X has the pdf D p; foc:)(x); for the power 2 p; B,(68:) against
this simple alternative becomes as large as possible when Pi Yo,p(6;) is mini-
mized; the latter expression is = ¢ for all points g ¢ S and =¢ for the point ¢*.

Theorem 2 characterizes the parameterpoints 6(Z;) (7 = 1, --- , k) as those
points where the shortcoming v,,5(0) of the MS size-o test ¢ for Problem (H,
K () is as large as possible. We remark that each MS size-a test ¥ for Problem
(H, K () is MP size-a for H against the simple alternative that X has the pdf
2. p(ifocy () for otherwise 2. p(i;)Bu{0(3;)} < 2 p(i;)B,{6(i;)} and
hence Y, p(%;)vv.0{0(3;)} > v* and vy,p{0(3;)} > +* for some index j. This
remark will be useful for proving that the MS size-o test for Problem (H, K ()
is uniquely determined under certain assumptions (see Theorem 4).

It can be proved that there exists a MS size-a test ¢ for Problem (H, K;)
which is “invariant” or in other words, which only depends on the coordinates
yi(¢=n—s+1,.---,n — s+ r) of the sample point z (see Section 3). For
such tests we can restrict our attention to the power over K .

CHARACTERIZATION THEOREM 3. If there exists an tnvariani MS size-a test
for Problem (H, Ki), such that a (finite) number m and parameterpoints 6; £ Ky’
(z =1, .-+, m) exist with the property that

'Y¢.D(01') = 8UP¢:x,’ 7¢.D(0) = 'Y*’ (7: =1 7m);

while for all other 6 & Ky we haveyy,0(8) < v* (and even v, p(8) < v* — efor some
€ > 0, provided that ||6]| is sufficiently large) then y is MS size-a for Problem (H,
K (m) ) .

Proor. Suppose ¢ is not MS size-a for Problem (H, K (.)). Let ¢ be a MS
size-a test of the form (11), for Problem (H, K(»)) (see Theorem 2). Then
Yo.0(0:) < vy.0(0:) (¢ =1,---,m) and we can construct p (0 < p < 1) such
that the test pp + (1 — p)¢¥ € D is more stringent for Problem (H, K;) than y.
Thus we obtain a contradiction.

UniqueNEss TueorEM 4. If (H, K,) satisfies the condition of Theorem 3, then
each MS size-a test ¢* for Problem (H, K,) satisfies ¢* = ¢ a.e. (u).

PROOF. ¢ is MS size-a for Problem (H, K(m) and v¢.0(0:) = v* (i = 1,
.-+, m) (Theorem 3). Hence ¢* is MS size-a for Problem (H, K (m)). Conse-
quently both ¢ and ¢ are MP size-o for testing H against the simple alternative
that X has a pdf D, p(¢)fo)(x) where 6(¢) ¢ Ky'. Hence ¢* = ¢ a.e. (1) where
p is the Lebesgue measure over R".

In the following sections, the condition of Theorem 3 turns out to hold for cer-
tain problems. For problems (H, K;) satisfying the condition (we conjecture that
each problem (H, K;) will do that) there obviously exist probabilities p; (¢ =
1, --- ,m) such that the MS size-a test ¢* for Problem (H, K;) can be obtained
by applying Lemma 1 (Condition (8) is satisfied) and Lemma 2. This shows that
Condition (20) (or (15)) is necessary for ¢, to be MS size-a for Problem (H, K;)
. where K;' is symmetrical (Remark in Section 3). By ‘introducing the condition
of Theorem 3, we avoided the difficulties that emerge when the alternative con-
sists of an infinite number of points
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Bartholomew [1], Kudé [6] a.o. applied the L.R. (Iikelihood-ralio) ecriterion to
problems of the form (H, K;). Their L.R. size-a test ¢ is not of the form (11).
Consequently ¢’ is not MS size-o (if at least the condition of Theorem 3 is satis-
fied). Theoretically, the L.R. criterion has the disadvantage that it is not formu-
lated as an optimum property in terms of the power ([7], page 15). From a practi-
cal point of view, ¢’ seems to stand somewhere midway between ¢, and ¢ : the
maximum shortcoming will lie between that of ¢ and ¢*; the computations in-
volved are more complicated than for ¢, but much less difficult than for ¢*.

Doornbos and Prins [3], Kander and Zacks [4], a.o. considered testing problems
which can be regarded as (generalizations of) special cases of Problem (H, S;)
where on the basis of an outcome of the random variable X described in Section
2, the hypothesis H has to be tested against the alternative S; corresponding with
the subset of R* which is defined by the existence of an index & (h = n — s + 1,

-, n —~ § + r) such that strict inequality holds in (4) for this index whereas
equality holds for all other indices.

ExamrpLi. Let X, -+, X, have independent normal N(u;, 1) distributions
(4=1,---,r). Thehypothesis H: u; = 0 (¢ = 1, - - - , r) has to be tested against
the alternative S; : for some index h (h = 1, --- ,r) we have u; > 0 whereas
pi=0( =1,---,7r;4 ¥ h), or in other words that the vector of means (y, ,
-+, uy) is situated on one of the edges of the positive orthant.

Obviously for the general problem (H, S;), the intersection Sy’ of S; and R’
(see Section 2) consists of the r edges e; (¢ = 1,---,r) of Ky'. The class of all
SMP size-a tests for Problem (H, S;) consists of the r tests 0X* = u, where X’
is the projection of X on the R' spanned by the half-line  and I = ¢; (7 =
1, ---,r). Consequently the criterion MSSMP is inappropriate for Problem
(H, 81). It is seen easily that the MSSMP size-a test ¢ for Problem (H, K;) is
MS (C) for Problem (H, 8;) when C is the class of all tests of the form 0X” = u,,
which are based on a linear combination of the coordinates X , - - - , X, (Kander
and Zacks applied a Bayesian approach with a limiting argument and thus ob-
tained a test of the form 0X’ = u, which is not MS (C)). The restriction to the
above-mentioned class C seems to be rather undesirable for problems of the form
(H, 8i). The method described after the proof of Lemma 2 where m = r and
6; = vig; (¢ = 1, --- ,r) will provide the MS size-a test for Problem (H, S;).
The computations are feasible if we restrict our attention to Problems (H, S;)
where the corresponding polyhedral angle K’ is symmetrical (see Example). For
such cases it follows from (19) that ¢, 7s the MS size-a test for Problem (H, S;)
(Condition (20) needs not. to be satisfied).

The above-mentioned Example provides an interesting test-case. The cor-
responding tests ¢o , ¢, and the L.R. size-o test ¢ respectively reject when Y X;,
Y- exp(»X;) and max X; are sufficiently large. o and ¢ may be regarded as
limiting cases (» — 0 and » — « respectively) of ¢, ; consequently the MS
size-a test ¢,» has an intermediate position between ¢, and ¢’ . The method of
Kander and Zacks inheres in the construction of ¢p (their limiting argument cor-
responds with » — 0 in ¢,) whereas the method of Doornbos and Prins provides.
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¢ . The tests ¢o , ¢+ and ¢’ respectively have the maximum shortcomings .26, .11,
A1 (r = 2); .35, .17, .17 (r = 3) and 47, .21, .21 (r = 4) over the alternative
S, in case @ = .05. This shows that for these cases ¢’ does not differ much from
the MS size-o test ¢,». The maximum shortcoming of ¢, is unsatisfactory large;
the corresponding advantages of ¢, (and ¢’) over ¢, are not neutralized by ad-
vantages of ¢y over ¢,» from other reasonable over-all points of view (see [11]
Figure 5.2 where the shortcoming of ¢y and ¢, is plotted for the r = 2 case).

5. Comparing ¢, and ¢* for Problems (H, K;) with r = 2. In the case r = 2,
K/ is an angle with vertex 0in R” = R* and K, is obviously symmetrical. We
introduce a new orthonormal basis g, - - , g« for R" with g, = |l& — & '(&
— &) and g2 = [|&1 + & 7" (& + &). The half-line [, satisfying (6) is spanned by
gz . Further ¥, = ¥(g,, €;). The coordinates of the simple point X with respect
to the basis g1, - - - , g» are denoted by Z;, ---,Z, . Obviously ¢, rejects when
Zy Z U . Graphs of v,,,0(1) as a function of ¥ = ¥(I, l,) (see Formula (7)) are
given in the Figures 3, 4 and 5.

Next we try to obtain ¢* by determining ¢,» (see Section 3). Using the basis
g1, g wehave & = ((—1)" ' sin ¥y, cos ¥y, 0---) (¢ = 1,2); 6; = ve;
defines the n-variate normal N(6;, I') distribution with pdf f5,(z) (z = 1, 2).
The MP size-a test ¢, for H against the simple alternative that X has the pdf
3o, () + 3fs,(z) rejects when

{exp (—3Z:" — $2,")} " lexp [—3{(Z1 — vsin W)’ + (Z: — v cos ¥0)’}]
+ exp [—3{(Z1 + vsin¥,)® + (Zy — » cos \I/o)z}]]
is sufficiently large, or equivalently when
(21) Zy Z fra9,(Z1),
where
(22) frrawo(21) = (v cos ¥g)™
log, {ca(v, ¥o)/[exp (21 v sin¥y) + exp (—21 v sin V) 1}

with ca(7, %) such that Test (21) is of size-a for testing H or equivalently for
testing the hypothesis that Z; and Z, have independent normal N (0, 1) distribu-
tions.

Let I denote the half-line in Ky’ spanned by the vector 7_= (sin ¥, cos¥,0---)
where [¥| < ¥, . The power of ¢, in the arbitrary point »I of I (» > 0) is deter-
mined by

(23) B%("z) = P{Z2 = fv,a,‘l'o(Zl)},

where in the right-hand side Z; and Z, have independent normal N(x sin ¥, 1)
and N(x cos ¥, 1) distributions respectively.

Next we compute »* satisfying (13) (the computations are based on the as-
sumption that the function g(») that is defined by the left-hand side of (12) has
exactly one summit for » > 0, e¢f [11] Theorem 4.1). Thus we obtain the test ¢,

¥



TESTS FOR RESTRICTED ALTERNATIVES 541

(that is MS size-a for the allied Problem (H, S;) described in Section 4) and the
problem arises whether ¢, is the MS size-a test ¢* for Problem (H, K1) or equiva-
lently whether Condition (20) is satisfied for each half-line I in K, (see also (14)
and (23)). In the limiting case ¥o = %= the tests ¢,(» > 0) degenerate into the
same test ¢’ which rejects when |Z3| = ;o . We have v,,0(k) = 1 — « and (20)
is not satisfied. There will exist a critical angle ¥, (a) such that (20) is satisfied
and ¢, is the MS size-a test ¢* for Problem (H, K3), if and only if

(24) 0 £ ¥ = ).

In order to determine this critical angle we examined Condition (20) by con-
sidering graphs of v,,+,p(l) as a function of ¥ = ¥(l, ;) (see Figures 3, 4 and 5).
Indeed an angle %" (a) turned out to exist such that ¢,» = ¢* if (24) holds,
whereas otherwise v,,+,0(1) obtains an absolute maximum for I = , . In this con-
nection we refer to [11] where van Zwet and Oosterhoff proved analytically for the
¥, = 45° case that v,,+,0(1) as function of ¥ = ¥(l, ) can only have maxima for
v=0and¥ = ¥,.

The test ¢,« is of the form (21), (22) and is completely determined if we know
v* and cq(v¥, ¥o). Writing »* = »,*(¥) and ca(va" (W), ¥o) = ca” (¥) we indi-
cate that »* and ¢* are completely determined by o and ¥, . Corresponding graphs
for all values ¥, satisfying (24) are given in the Figures 1 and 2. These figures
determine ¢,+ completely, exactly in those cases where ¢, is the MS size-a test ¢*
for Problem (H, K1). Moreover these figures determine %,“" (a).

We proposed to compare the MSSMP size-a test oo and the MS size-o test *
for Problem (H, K;) with r = 2 by means of graphs of v,,5(I) as function of
¥ = ¥(l, ly) for ¢ = @ and ¢ = ¢*. Such graphs are given in the Figures 3, 4
and 5 (a = .05).

By definition, the maximum shortcoming of ¢* is smaller than that of ¢o . But
from other points of view ¢, may be better. In Figure 6 for example we give a graph
of (see also [10] Section 2.15)

)\a(‘Iro) = ‘I’o_l \I’]_(‘I’o 5 a),

where ¥;(¥, , ) is by definition such that the condition (I, l)) < (¥, a) is
necessary and sufficient for v,,,0(I) = v4+,p(l). So ¢ is regarded as better than
¢ from this point of view if No(¥o) > 1.

We can also compute (cf [10] Sections 2.15 and 4.3)

Av(\IIO) = %‘1/0—1 -‘I:‘%'o 'Yqo.D(l) av

where v,,p(!) is regarded as a function of ¥ = ¥(l, l,). Corresponding graphs for
cand ¢ (0 £ ¥ < %, (a)) are given in Figure 7.

Interpreting the Figures 3, - - - , 7 and the theory of [10] Section 2.15 we arrive
at the following rule of thumb: for Problems (H, K;) with » = 2 and ¥, < 60°, ¢*
does not provide a worth-while improvement upon ¢, .

ReMARk. In [9] Section 2 and [10] Section 2.3 we made objections to the cri-
terion MS size-a. Supposing that y,+,0(l) was almost constant over [¥| < ¥, for
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¥ = \I/(l ly), we expected that ¢y would provide a worth-while improvement
upon ¢* for Problems (H, K;) with ¥, small. The Figures 4 and 5 show that
these objections do not apply to Problems (H, K;) in caser = 2. For such prob-
lems both ¢ and ¢* have similar power properties if ¥, is small.

6. Companng ¢o and o* for Problem (H, K;) with » = 3 and K,’ symmetrical.
In this case, K; is a symmetrical polyhedral angle in R" = R®. The symmetry
may be defined by ¥(e; , e;) = ¥(e1, e3) = ¥(ez, €3). We can introduce an ortho-
normal basis g1 , - - -+ , ga for R" such that the unit vectors ¢; along the edges e; of
K, have the coordinates

&1 = (sin¥,0,co8%,,0:--)
é = (—% sin ¥, , 3 3! sin ¥, cos ¥, 0 --+)

g = (—3sinY, —73*sm\I/o,cos\I/o,0 DR

The half-line I, satisfying (6) is spanned by gs ; ¥(l, ;) = ¥ (7 = 1, 2, 3).
The coordinates of the sample point X with respect to the basis g, - - - , g» are
denoted by Z; , - - - , Z, . Obviously ¢, rejects when Z = u, .

The test ¢, (see Sections 3 and 5) rejects when

(25) Zs Z fr,aw,(Z1, Zy)
where f is defined by
(26) (v cos Wo)fy.aw,(21,2:) = logefca(v, ¥o) [exp(z v sin ¥o)
+ exp (— %21 v sin W) {exp(3 3 vsin¥,) + exp (— % 3’22 v sin W) } 1Y},

with ca(», ¥o) such that Test (25) is of size-a for testing H.

The test ¢,+ is determined according to (12) and (13) (the computations are
based on the assumption that (12) as function of » has exactly one summit).
Condition (20) is examined by computing v,,+ o(1) as a function of ¥ = ¥(I, o)
for I varying over the intersection of K, and the R’ spanned by e; and g; . So ¥
varies over [—¥; , ¥,] where

(27) ¥, = arccos {¥(& + &, gs)} = arc cos {2 cos ¥o/(1 + 3 cos’ %) Y.

Corresponding graphs of v,,0(l) for ¢ = goand ¢ = ¢,» = o are given in the
TFigures 8, 9 and 10. Here ¢, is assumed to be the MS size-« test ¢ * for Problem
(H, K1) because the function y,+ (1) of ¥ = ¥(l, ly) over [—¥; , ¥o] has an abso-
lute maximum for ¥ = ¥, (see Formula (19)).

Interpreting these figures (and other results mentioned in [8] and in [10] Section
4.3) we obtain the opinion that the rule of thumb at the end of Section 5 may be
modified for Problems (H, K;) with r = 3, substituting 70° for 60° for example

_From certain over-all points of view, o provides a slight unprovement upon ¢*
if 40° < ¥, < 60°. Further the power properties of ¢y and ¢* are quite similar
for ¥, < 30°.



544 W. SCHAAFSMA

7. Comparing ¢, and ¢* for Problems (H, K;) with » > 3. The case K," sym-
metrical and r = 4 was treated also along the lines of Section 3. In this case we
introduce an orthonormal basis g1, - - - , g» for R such that

& = (sin¥,,0,0,cos¥,0--),
& = (—3'sin¥, 37 8" sin ¥, 0, cos ¥, 0 ---),

& = (—3'sin¥, —37 2 sin ¥y, 37 2 sin ¥y, cos ¥, 0 -+ +),
& = (—3'sin¥, —37 2'sin ¥, —37 2 sin %, cos ¥, 0 - ),

and the MSSMP size-a test ¢ rejects when Z, = u, whereas the test ¢, (see Sec-
tions 3 and 6) rejects when

(28) Zo 2 foao(Z1, 2o, Zo)

where f is defined by a formula similar to (26) but with a more intricate denomi-
nator in the right-hand side.

Again ¢,+ can be determined and Condition (20) is examined by computing
Yo,+,0(1) as a function of ¥ = ¥(I, k) = ¥(I, g4) forl varying over the intersection
of K’ and the R’ spanned by e, and g, . So ¥ varies over [—¥; , ¥,] where

(29) W = ¥(& + & + &, ¢g1) = arc cos {3 cos ¥o/(1 + 8 cos’ YALE

Interpreting the corresponding graphs of v,,»,0(I) we obtain the opinion that
the rule of thumb at the end of Section 5 may be modified for Problems (H, K;)
with r = 4, substituting 75° for 60° for example.

From certain over-all points of view, ¢, provides a worth-while improvement
upon ¢* if 35° < ¥, < 65°. The power properties of ¢ and o* are quite similar
for ¥, < 30°.

The rest of this section is devoted to a comparison of ¢, and ¢* for Problems
(H, K,) where K. is an orthant: ¥(e; , e;) = 90°for,7 = 1,---,r;4 5% 7 (in
[10] Section 4.3 we examined such problems as feasible test-cases for the pro-
visional classification in [10] Section 2.13). For such problems we have ¥, =
arc cos (7*). Let A,(%) denote the averaged maximum shortcommg Yo,0(l)
when 7 has the uniform distribution over the intersection of K,  and the surface
of the unit sphere in R". For « = .05 we have

(30) . Ap(@) & (1—a) {1l — 2 T3+ DT (3]

(see [10] Section 4.3, the formula for 4,(m)). We shall use 4,(¥) as a measure
for comparing ¢ and ¢* for Problems (H, K;) where K;' is an orthant, r = 2, 3,
4, .- and o = .05.

Figure 3 applies to the case r = 2. We compute A ,+(¥%) = .097 and 4,,(¥,) =
084; further ¥, (a) & 46°. Neither ¢, nor ¢* provides a worth-while improve-
~ment upon the other.

“ Condition (20) is not satisfied in the case r = 3: ¥, (a) X 54° < W, = 54.7°.
Yo,+,0(1) is almost constantly equal to .16 for I varying over the region studied
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(see Section 6). We shall have A ,«(¥,) = .16 for the unknown MS size-a test ¢*.
From (30) we obtain A4,,(¥,) ~ .13. Neither ¢, nor ¢* provides a worth-while
improvement upon the other; ¢ is slightly better from the 4 ,(¥,) point of view.

In the case r = 4 we have A,,(¥) = .15 (see (30)). Condition (20) is not
satisfied: ¥,“" (o) A 59° < ¥y = 60°. Buty,,+o(l) is almost constantly equal to
about .21 for I varying over the region studied. We shall have 4 «(%,) = .21 for
the unknown MS size-a test ¢*. So ¢ provides a worth-while improvement upon
¢" from the A ,(¥,) point of view whereas the maximum shortcoming of ¢* (about
.21) is much smaller than the maximum shortcoming (.47) of ¢q .

Next, by applying two simple lemmas, we prove Theorem 5 elucidating the
cases 1 > 4.

Lemma 3. If 0® = (H, K®) and I® = (H, K®) are two testing problems for
the variate X over & such that K® < K®, then bp(II®) = bp(II®) (bp(II) was
defined in (10)).

Next let IT, and I, be two testing problems of the form (H, K1) such that for
both problems K’ is an orthant in an R™ (n and s may be different).

LemmAa 4. For I, and 11, we have bp(I1,) = bp( II.).

We shall elucidate the cases » > 4 by considering a sequence {IL} (r = 2,
3, - - -) of problems of the form (H, K;) where K;' is an orthant in R".

THEOREM 5. For each sequence {IL} (r = 2, 3, ---) we have (i) bp(1I,)
bD(Hr+1) ("' = 2, 3, . ') and (ii) limr»oo bD(Hr) =1-q.

Proor. (i) may be proved by applying Lemma 3 and Lemma 4. (ii) will be
proved by applying Lemma 1 and Lemma 3. First we remark that the trivial
size-a test ¢;(2) = o belongs to D. Moreover sups.x, vo,,0(0) = 1 — . Hence
bo(I,) S1—a(r=2,3,--).

We shall construct for ¢ > 0 an integer r, such that bp(II,) > 1 — a — € for
r > r. . For that purpose we define », such that & (ue — v.) —a =1 — a — }e.
With respect to Problem II, we introduce an orthonormal basis g;, - -+ , g, forR”
such that g; = & (s = 1, - -+, r). This is possible because K;' is an orthant. The
coordinates of the sample point X are denoted by Z;, --- ,Z, . By applying
Lemma 1 we obtain the MS size-a test ¢, for H against the alternative K ¢, (».) C
K, where K (,)(v.) consists of the parameterpoints v. g; (¢ = 1, - -+ , 7). 0, rejects
when

IIA

Z;=1 exp(vEZ) = ca,r(”e)

where ¢,,(v.) is determined such that the test is of size-a. By applying the
Central Limit Theorem for r — « (. is fixed) it can be shown that the power of
¢y, In vg; tends to a as r — «. Thus we can choose 7. such that for » > r, this
power is smaller than « + %e. Consequently the corresponding shortcoming
is larger than ®(ue — ».) — a — %e But this shortcoming is equal to
bo(H, K »(».)). By applying Lemma 3 we obtain

bo(IL) > ®(Ue — ve) —a — 3e=1—a —¢ for 7> 7.

This completes the proof of the theorem.
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By definition the MS size-a test ¢* has the advantage over the MSSMP size-a
test oo, that the corresponding maximum shortcoming is smaller. Theorem 5
shows that this advantage becomes unimportant when » — «, for the maximum
shortcoming tends to 1 — & as r — « both for o and ¢ .

¢o has the important advantage that good power properties for large regions
inside K; are warranted: the expression in the right-hand side of (30) tends to
(1—a) (1 -2~ .19asr— » (a = .05).

Acknowledgments. The computations have been performed on the Telefunken
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