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A REMARK ON HITTING PLACES FOR
TRANSIENT STABLE PROCESS!

By Sipney C. Porr

University of California, Los Angeles

1. Introduction. In this note we will consider a non-degenerate, drift free,
d-dimensional stable process X (¢), having exponent ¢, 0 < o =< 2, and transition
density p(t, x) satisfying the scaling property

(1.1) p(rt, r = p(t, ).

Thusif a = 1 the process must be isotropic, while if & 5% 1 the process is arbitrary.
In addition, we assume that X(¢) is a version of the process which is a standard
Markov process. (See [1] for a description of a standard process.)

In (3] Taylor states the following:

TurorEM 1. Assume p(1, 0) > 0. Then p(t, z) > 0 for all t > 0 and all z ¢ R*
(d-dvmensional Euclidean space).

The proof given by Taylor seems incomplete. Our first result will be to present
a complete proof of this useful fact. It is a pleasure for me to thank J. Folkman
for helpful conversations on this matter. In fact, by using induction on the di-
mension, and a much more refined version of the arguments used to prove this
theorem, Folkman was able to demonstrate the following much more precise fact:

l/ﬂx)rd/a

{y:p(t,y) > 0 forsome ¢t} = {y:p(t,y) >0 forall ¢ > 0}.

Suppose now, in addition to the assumptions made above, that o < d so that
X(t) is a transient process.

Let B be a bounded Borel subset of R?, and let 75 = inf {t > 0:X(t) ¢ B}
(= if X(t) g B for allt > 0) denote the first hitting time of B. Recall that B
is said to be polar if P,(Ts < ») = 0. Let 7’5 denote the quantity 7’5 for the
dual process —X(t). The potential kernel of the process X(¢) is the quantity

g(x) = [T p(t, z)dt,

while the kernel for the dual process is §(z) = ¢g( —z). For an event A, let P,(A)
denote the probability of A given X(0) = =z, and for a random variable Z, let
E[Z; A] = [ 4 Z(w)Ps(dw).

The main purpose of this note is to establish the following:

TurorEM 2. Suppose a < d and that p(1, 0) > 0. Let B be a bounded Borel set,
and let f be an arbitrary continuous function on the closure B of B. If the kernel
g(z) < o, |x| = 1, and is such that for any compact A,

(1.2) lim )00 SUPyes g(2 Yglx)™ =1,
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then there is a unique bounded measure wy , having support on B, such that

(1.3) sy Blf(X(T5)); Tn < lg(—2)7" = [5f(2)ms(de).

Moreover, the measure 5 is also the unique measure having support on B such that
(1.4) Po(Tw < ©) = [5g(z — y)ms(dy).

Equation (1.4) shows that the measure 75 is the dual (co) capacitory measure
of B. Applied to the dual process —X(¢), Theorem 2 shows that if (1.2) holds,
then there is a unique bounded measure u; having support on B (the capacitory
measure of B) such that

(1.5) lim |- EL[f(X( TB)); TB < 00]9(11?)—1 = ‘ff;f(z)pg(dZ),
and
(1.6) PTs < @) = [5g(y — z)us(dy).

Applying (1.3) to the function f = 1, we see that under condition (1.2),
limyzjw g(—2) "Po(Ts < ©) = 75(B),

while (1.6) shows that
limzjsm g( —2) " Po(Ts < o) = us(B).

Thus we derive directly for our processes the known fact that us(B) = ws(B).
The common total mass of these measures, C(B), is called the capacity of B.
Clearly B is polar iff C(B) = 0. If B is not polar, then in view of (1.6) we may
rewrite (1.3) as

(1.7) 1M (e Bolf(X(T5)) | Ts < ] = [5f(2)ws(de)/C(B).

Now it is a fundamental fact of probabilistic potential theory (see chapter 6 of
[1]) that representations (1.4) and (1.6) hold for a large variety of Markov
processes, including all transient stable processes. The main point of Theorem 2 is
that for those transient stable processes satisfying (1.2), the co-capacitory (re-
spectively capacitory) measure of a non-polar set has the intuitively appealing
interpretation as the conditional hitting (respectively co-hitting) measure at .

For isotropic processes, p(1,0) > 0, and g(x) is a multiple of [[*™%, and thus
(1.2) holds for all such processes. Previously, (Theorem 2 of [2]) we deduced that
(1.3) held for compact B in the isotropic case by an argument which used the
symmetry in an essential way (so it could not be carried over to processes just
satisfying (1.2)), and also used (1.4) and several other key properties of the
capacitory potential. The proof we will give here is far more elementary in nature,
and we will deduce (1.4) directly during the course of the argument, thereby pro-
~viding a new proof of that basic result. As will be seen below, (1.2) holds for all
one dimensional processes with @ < 1 which are not one-sided, so there are
certainly non-isotropic processes to which the theorem applies.
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Since (as pointed out by Taylor [3]) the set
K = {z:p(t,z) > 0 for some ¢ > 0}

is a convex cone with vertex at 0, it is clear that (1.2) can hold only if K = R?,
(ie.if p(1,0) > 0). It follows from the scaling property that

(18) g(z) = [z g(x/lx]),

and thus under the assumptions of Theorem 2, g(z) < o,z # 0.

In one dimension the unit sphere consists of the two points =4-1, and it easily
follows that (1.2) holds for all one dimensional processes such that p(1, 0) > 0,
(i.e. we exclude only the one-sided processes). In fact, one can explicitly compute
g(z) for all one dimensional processes with a < 1.

ProrposrTioN 1. Assume X (t) is a one dimensional stable process with exponent
a < 1 having log characteristic function —t |6|* (1 + thsgn (9)),whereh = @ tan
(37a), |8] = 1. Then

(19) g(z) = [1 — Bsgn (z)]20(a) cos (3ma)] ™ |a|*.

For d > 1 matters seem to be more difficult. All that is readily deducible about
g(x) (see below) is that it is lower-semi continuous and finite a.e. In [3] Taylor
asserts without proof (he comments that the proof is routine) that g(z) is con-
tinuous on the unit sphere. However, the author has been unable to show this,
and the matter seems entirely non-trivial. Our interest in Taylor’s fact is that if
p(1,0) > 0 and g(z) is continuous on the unit sphere, then Theorem 1 and a
simple argument shows that (1.2) holds. Thus if Taylor’s assertion is correct,
Theorem 2 holds for all processes with p(1,0) > 0 and @ < d, o # 1. As to the
the nature of the difficulty here note that (1.1) shows

(1.10) p(t, &) = 4%(1, 2™,

and as p(1, z) is bounded and continuous, it follows that for any § > 0,
[ p(t, z) dt is bounded and continuous in . Thus the continuity properties of
g(z) depend on how p(t, z) behaves for small ¢, and via (1.10) how p(1, z)
behaves for large |z|. In the isotropic case, we know that p(1, )|z — ¢,
|z| — o for some constant C. To establish Taylor’s result we need far less. If we
could show that for z = 7¢, |§| = 1,

sup¢ 1 p(1, rE)r* < const,

the desired result would follow. Although this is extremely plausible, we have
been unable to prove (or disprove) it.
AppED IN PrROOF. Pruitt and Taylor have now found counter examples g (z)
on the sphere. In these examples g (z) is in finite at certain pointson the sphere.
We conclude by pointing out that Theorem 2.and an obvious modification of
the argument used to establish Theorem 3 of [2] shows that the following holds.
THEOREM 3. Assume the conditions of Theorem 2 are satisfied and let w5 be as in
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Theorem 2. Let B be a non-polar, bounded Borel set. Then for any continuous func-
tion f on B,
(111) limgw £ [5 Pt < T < w; X(T5) € dy)f(y)
= p(L,0)[d/a — 1]7Pu(Ts = ) [5f(y)ms(dy).
2. Proof of Theorem 1. The scaling property (1.1) shows that it suffices to
prove p(1, ) > 0 for all z ¢ R% Let
8(t) = {x e R%:p(t, z) > 0}.
If
8(t) + 8(r) = {z + y:aes(r), y £8(8)},

then it follows from the semi-group property of the transition density that

(2.1) $(t +r) = 8(t) + 8(r),
while the scaling property shows that
(2.2) S(rt) = r'°s(¢).

Set 8(1) = 8. Then (2.1) and (2.2) show that

% 4+ 1% = 8(r) + (1) = S(r + t) = (r + £)"%,
and, in particular, for 0 < r < 1 we see that
(2.3) Mo (1 — ) = s,

Suppose & > 1. Then (2.3) shows that if x ¢ 8, then so does r/*z + (1 — Yo,
0 = r = 1. Hence if x ¢ 8, then so does the segment Az where 1 < A < ), , Where
Ao is some number >1. Consequently, 2 ¢ $ implies Az ¢ § for all A = 1. But as
p(1, z) is continuous at z = 0 and p(1, 0) > 0, $ must contain a sphere of center
0, and thus § = R’

The case when a < 1isa bit more complicated. In this case (2.3) shows that if
x &8, then so does the point Az, where Ny < A =< 1 for some A\, < 1, and conse-
quently, the entire segment Az ¢ 8, where 0 < A < 1. Since $ contains a sphere of
center 0, 8 is star shaped from 0. From (2.3) we see that if z, y ¢ 8, then so does the
arc 7'z + (1 — )%, 0 < r < 1. Note that 8 + 8 = 2"*3 and 2¥* > 2. These
two facts show that either $ = R? or 8 is contained in a half space. To see that this
latter alternative cannot be the case, we proceed by contradiction. If § is con-
tained in a half space, then let D be a bounding hyperplane of this half space.
There are then points of « ¢ § arbitrarily near D, and there must also be points
Y, z € 8 such that 2/°z = y + 2. Since 2% > 2 we see that this is impossible for z
close enough to D. Thus § = R®
“ Finally, if @ = 1, then the process must be isotropic to satisfy the scaling rela-
tion (1.1). But then, if f(¢, %) is the density of the stable subordinator of exponent,
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1, it is well-known that
p(1,2) = [3f(1, u)(4ru) ™" exp (— |z[’/4u) du,
and thus p(1,z) > Oforallz ¢ R°. This completes the proof.

3. Proof of Theorem 2. Let B be a non-polar relatively compact Borel set. The
basic first passage relation states that for any Borel set A,

falp(t,y — x) — [§ [3 Po(Taeds, X(s) ede)p(t — s,y — 2)]dy
= P(Ts > t, X(t) e A),

It easily follows from this that the measure P.(Tp > ¢, X(¢) ¢ dy) has an
upper-semi-continuous density gz(¢, z, y) satisfying the relation

(38.1) p(t,y — ) — [i [5Po(Tseds, X(s) ede)p(t — s,y — 2) = gs(t, 2, y)
Set
g(z) = [Cp(t,z)dt, gs(z, y) = [V gs(t, 2, ) de,
and Hp(z,dz) = P(X(Tp) edz; Tp < »).

We then obtain from (3.1) and our assumptions on g that for z # y

(3.2) g(y — z) — [sHs(z, d2)g(y — 2) = gs(z, 9).
Since (1.2) holds, we see that
(3.3) limyyjaw 95(%, ¥)/9(y) = Po(Tp = =).

The basic duality relation of Hunt (see Section 1 of Chapter 6 of [1]) leads easily
to the conclusion

(34) 95(z, y) = éB(y, z),

where {5 is the quantity g5 for the dual process — X (¢).
Let K be an arbitrary compact set. From (3.2) we see that

(3.5) [xgly —o)g(—2) " dy — [a Hu(z, d2)lg(—2)]" [xg(y —2) dy

= [xga(z, Y)lg(—z)]"dy .
But

lim Supjeisw SUPyex g2(2, ¥)[g(—2)]7 = liMjaow sUPex g(y — 2)y(—2)]" = L,
and thus (3.3)—(3.5) and dominated convergence show that
(3.6) limpjsw [3Ha(z, d2)lg(—2)]™ [xg(y — 2)dy = [x Po(Ts < )dy.

Now it eésily follows from the fact that p(¢, z) is bounded and continuous in
x that [z g(y — z) dy is also continuous. Since p(1, 0) > 0, we see by Theorem 1
«that g(z) > 0, and thus if K has non-zero Lebesgue measure,

6 = inf,.5 fxg(y —2z)dy > 0.
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Hence by (3.6),
im supjaje Hs(z, B)/g(—2) < 67 [x Py(Ts < ) dy < o.

Consequently, there is a bounded measure 75 having support on B, such that for
some sequence ., , |, — o,

Hp(xn, dz)/g( —xa) — ma(dz)
weakly. From (3.6) we then obtain that
Jams(de) [xg(y — 2)dy = [x Py(Ts < =) dy.
Since K is an arbitrary compact, it must be that
(3.7) [59(y — 2)ma(de) = Py(Ts < =)
holds for a.e. y. But it is clear that
Py(Tp < o) = lim, ;o [za p(t, ¥ — 2)Po(Ts < o) dz
and that
J39(y — 2)ms(de) = limiyo [nep(t, y — @)[[39(z — 2)mwa(de)] dz,

and thus (3.7) holds for all y. Now it is well-known in general (See chapter 6 of
[1]), and quite simple to prove directly for the stable processes in particular, that
(3.7) uniquely determines the measure 5. Consequently, if there is another
subsequence of the measures Hp(z, dz)g( —z) " which converges weakly on B,
then the same argument as above shows that its limit measure must be =5 . Thus
(1.3) holds. This completes the proof.

4. Proof of Proposition 1. In view of (1.8) we need only compute g(=-1). The
computation of g(1) and §(—1) proceed in the same way so we will only consider
g(1). Formally g(1) may be computed as follows. Let » = g tan ira. Then

2rg(1) = [¢ dtRe [, e exp (—t]6]* (1 + ih sgn (6)) db
= Re |2, d6/16]* (1 + ih sgn (9)),

and further routine computations show that (1.9) holds. The hitch in the above is
to justify the interchange in the order of integration, which is not completely
trivial. To do this we may proceed as follows:

(4.1) 2mg(1) = [7dt f_w e 1"[cos (8) cos (£]6]*hsgn (6))
— sin (8) sin (¢ |6]h sgn (8))] do
Consider the first term on the right, i.e.,
I = [7dt [2,e """ cos () cos (6] hsgn (6)) db
= 2 [ dt [T e cos (6) cos (t6°h) db.
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" is integrable on (8, ») X [0, =), we see that

I = lim; ;02 5 cos 8(8) (1 + h*) ¢ *"[cos (hd6%) — h sin (ho6%)] do
= 2(1 + A) 77 cos8(8)*ds + lim., lims o [% cos 6(8) ¢ **[cos (ho§™)
— hsin (ho6%)] de].

Since for any § > 0, ¢~

But
™10, 6l0,
and thus if we can show that
[% cos (8)[cos (8h6%) — h sin (ho8™)] de
is bounded in 7', uniformly in 8, it would follow that
lim,, o limg 0 [5 = 0,
and the desired result would follow. If « < (n — 1)/n, n = 2, that may be ac-

complished by integrating by parts n times and examining Ihe terms.
An analogous argument verifies the interchange for the second term on the

right in (4.1). This completes the proof.
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