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SPLITTING A SINGLE STATE OF A STATIONARY PROCESS
INTO MARKOVIAN STATES!

By S. W. DHARMADHIKARI
Michigan State University and Indian Statistical Institute

1. Introduction and summary. Let {Y,, n = 1} be a stationary process with
a finite state-space J. Let § denote a state of J and let s, ¢ denote finite sequences
of statesof J. If s = (61, -+, 6,), let p(s) = P[(Y1, -+, Y,) = s]. The rank
n(8) of a state & is defined to be the largest integer n such that we can find 2n
sequences S, -+ , Sy, b1, - - , t, such that the n X n matrix [|p(s:dt;)| is non-
singular. The number n(8) was first defined by Gilbert [5] and the term rank was
first used by Fox and Rubin [4]. A state § is called Markovian if n(8) = 1. It is
easy to check that § is Markovian if, and only if, p(sét) = p(sé)p(6t)/p(8) for
all s and ¢.

Suppose that u is a fixed state of J. Let J "= J — {u}. Assume that n(u) < .
Fox and Rubin have shown that there exists a stationary process {X,} with a
countable state-space I = J uJ” and a function f on I onto J such that
(2) f(2) = pifieJ" and f(8) = sifd e J'; (b) states of J” are Markovian states
of {X,};and (e) {Y,} and {f(X.)} have the same distribution. Gilbert [5] has
shown that J” must have at least n(u) elements whereas Fox and Rubin [4]
have given an example to show that J " cannot always be chosen to be finite. For
8 & J' let »(8) denote the rank of 6in {X,}. In general »(8) = n(8). But Fox and
Rubin have shown that {X,} can be constructed in such a way that »(§) = 1
whenever n(8) = 1. Finally they have shown that, if n(x) = 2, then {X,} can
be chosen in such a way that J” has 2 elements and »(8) = n(8) for all 5 & J'.

In this paper we give some conditions under which J” can be chosen to be
finite. These conditions are similar to those imposed in [2]. It is shown that {X,}
can be constructed in such a way that, for 6 ¢ J', »(8) = 1 whenever n(s) = 1.
Finally it is proved that if N(u) = n(u), then »(8) = n(s) forall 5¢ J'. This
generalizes the result proved by Fox and Rubin for the case n(u) = 2. However,
they have given results for the non-stationary case also. The results of this paper
were partially reported in [3].

2. The main result. We recall that u is a fixed state of J of finite rank. The
finiteness of n(x) can be used (see [1] and [2]) to find 2n(u) sequences Sy, i ,
i = 1,---, n(u), such that the matrix ||p(s.ty;)| is non-singular. Let =,(¢)
denote the row vector whose 7th element is p(s,ut). Then, for every s, there is a
unique row vector a,(s) such that, for all ¢,

(1) p(sut) = au(s)m'(1).
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1070 S. W. DHARMADHIKARI

Let @(a,) denote the closed convex cone generated by the vectors a,(s) where
s varies over all finite sequences of states of J. Define €(r,) similarly. If " de-
notes the dual cone of a cone @, then (1) shows that €(a,) < [€(m,)] .

Let H,. denote the set of all sequences of length m of states of J. We interpret
H, as the set consisting of the empty sequence &F. For conventions regarding ¢,
see [1]. Let H = U, _ H,, . Define H,," and H' from J' similarly.

For notational compactness we adopt the conventions {&f = ¢ and &t =
Forwu e H, let A,(u) denote the n(u) X n(u) matrix whose sth row is o, (Suamu).
Then equation (1) and the uniqueness of «,(s) can be used to show that for all
seH,te HandueH,

(2) au(8)Au(u) = au(spw) and  Au(w)w)/(t) = =) (uut).

The state u of finite rank will be split into a finite number of Markovian states
under the following condition.
Conprtion C, . There is a convex polyhedral cone @, generated by N (u) non-

zero veetors B, ¢ = 1, --- , N(u), such that
(3) @(OL#) c e C [e<7"ﬂ)]+;
(4) Buidy(u) e, forall 7 andall weH'

It is a straightforward consequence of (2) that if either €(a,) or €(w,) is
polyhedral then condition C, holds with €, = €(a,) or €, = [C(m,)] .

We now assume that condition C, holds. Let B, be the N(u) X n(u) matrix
whose ith row is 8,;. It follows from (3) that for every u ¢ H' there is a non-
negative vector ¢,(u) such that ¢,(u)B, = a,(u). Further (4) shows that, for
every ueH', we can choose a non-negative matrix M,(u) such that
B A, (u) = ]l[ (u)By .

Observe that g,() has been defined. For sequences s ¢ (H — H), define
g.(s) by induction as follows.

(5) qu(suu) = qu($)Mu(u), uel

LeEmMA 1. For all se H, o, (8) = qu(8)B, .

Proor. The lemma holds for all s ¢ H' and hence for sequences of length zero
in H. Suppose it holds for all sequences in H of length < n. Let s have length
(n + 1) and belong to H — H'. Then s = s'uu where s has length < nandu ¢ H'.
Therefore

(IM(S)Bu = QM(S,)M;L(“)B# = %(Sl}BuA#("") = au<3,>A#(u) = au(s,ﬂu) = au(s)-

The lemma thus follows by induction.

The Markov-state {X,} that will be constructed will have state-space
[ =J uJ" whereJ” = {u;,i=1,---,N(u)}. If gui(s) denotes the ith entry
of gu(s) then, for a sequence s ¢ H, , we want to have

qui(8) = P[(Yy, -+, Yy) = 8 Xnp1 = ui.
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But we also want {X,} to be stationary. This means that ¢,(s) must satisfy
certain stationarity conditions. We proceed to show that a choice satisfying these
conditions can be made.

We note that the vectors B,; are non-zero. This easily implies that
Buimy (&) > 0. Therefore the 8,:’s can be chosen in such a way that Buma (B) = eu,
where ¢, is the column vector all of whose N(u) elements equal 1. We assume
that this has been done. Then, for all s¢ H,

(6) Gu(8)ew = qu(8)Bum/ (&) = au(s)m/ (&) = p(sm).

For s¢ H, define ¢,"(s) = Y in, qu(ts). Then (6) and the stationarity of
{Y,} imply that

(7 9. (s)e, = p(su)

for all se H and form = 1, 2, --- . It follows from (7) that 0 < ¢,"(s) < e,
Define

0,(8) = 07" Domer 4 (5).

Then 0 < 6,(s) < e, for all n and s. Since the number of sequences s is countable,
there is a single subsequence {nx, k = 1} of positive integers such that g.(s) =
limg,e 0,,(s) exists for all se H.

LEmMaA 2. For all se H, §u.(s)B, = au(s).

Proor. The uniqueness of o,(s) and the stationarity of {Y,} show that

¢."(s)Bu = Ztﬂlm au(ts) = au(s).

Therefore 6,(s)B, = au(s). This proves the lemma.
LemMma 3. For all se H, §u(s) = 2 e, Gu(ts).
Proor. If the lemma holds for m = 1, then

thHm+1 QM(tS) = ZusHm ZvcHl Gu(vus) = Zueﬂm Gu(us)

and the lemma follows by induction for all m. It is thus enough to prove the
lemma for m = 1. Observe that

QM(M‘H)(S) = Zucﬂmu qu(us) = Ztem Zveﬁm%(”ts) = Ztsﬂx Q#(m)(t‘g)'

Summing for m = 1, ---, n and dividing by n, we get
0. (s) + n_l[Q#(n+l)(S> - QI‘(D(’S)] = Zum 8. (ts).

Replacing n by n; and letting k — o« we get the lemma for m = 1. This proves
the lemma.

LemMA 4. For all se H and we H', qu(spu) = Gu(s)Mu(u).

Proor. Straightforward.

The preceding three lemmata show that g.(s) has all the properties of g.(s)
and also has the required stationarity properties. From now on we will use g.(s)
without any reference to the original ¢(s) and will suppress the bar over g.

Recall that I = J' uJ”, where J” = {u,, % =1, ---, N(n)}. Let Gn be the
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set of all sequences of length m of states of I. Let G = U,_G,. Define F,,
and F similarly from I u {u}.

For w e H', let r,:(u) = By, (u). Recall that B,:’s have been chosen in such
a way that 7,,(&f) = 1 for all 2. For ¢ ¢ G, we define r,;(¢) by induction as fol-
lows.

(8) ruiupit) = [Mp(w)lirai(t),
where u ¢ H and [M,(u)];; denotes the (¢, 7)th term in 1/,(u). For ¢ e F, define
r.(t) by induction as follows.

rar(upt) = D4 9‘#1(uyjt), ued.

Finally #,(¢) will denote the column vector whose ¢th entry is 7,.:(¢).
LemMa 5. For all t e H, ,(t) = Bum) (1).
Proor. Straightforward by induction.
LemmA 6. ForallueF andve F,

ru(upv) = 2278 ru(upp).

Proor. The definitions yield the lemma for w ¢ G. For w ¢ F — G, the lemma
follows easily by induction.
LEmMa 7. For all weF and ve F,

ui(upv) = rui(u;)rei(v).

Proor. For w ¢ H and v ¢ @, the lemma follows from definitions. For
weF — H andve F — @, we can use induction and Lemma 6 to prove the
lemma.

Lemma 8. Forallte F

Zue(x‘m Ty(tu) = 7',,,(15).

Proor. As in the case of Lemma 3 it is sufficient to prove the lemma for
m = 1. If t e H, then

2owea rullw) = 2 m(twy) A 2w raltw) = ma(tw) A e, ra(tu)
= 2 e 7u(0) = 2 e, Bum (1) = By 2oy m (tu) = By (1)
= r,(1).

If te F — H thent = vujw where v ¢ ¥ qnd w e H. We then have

2w () = D ee, a(m0n) = Dueay ulom) )i (wn)
= 1u(0m5) D2uee, tus(wu) = ru(op)r(w) = ru(omw) = ru(t).

This proves the lemma.
LEevMMA 9. Forall se H and t ¢ H,

qu($)ru(t) = p(sut).
Proor. QM(S)TM(Q = QM(8>Bu7rul(t) = aﬂ(s)ﬂ'u,(t) = P(Sﬂt)-
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We are now ready to define the underlying stochastic process { X} with state-
space I. Define the finite dimensional distributions as follows.
(9)  PUXy, -+, X,) =ul =pu), if weH,/, and
P(Xy, -, X.) = upd] = qui(w)ra(t), if weH and teG.

TueoreMm 1. The finite dimensional distributions defined by (9) are consistent
and the resulting process {X,} s stattonary. Every u,; is a Markovian state of {X,}.
Moreover, if f(ui) = wfor all i and f(8) = & for 6 J’, then {Y,} and f(X,)}
have the same distribution.

Proor. (a) Consistency. First let u ¢ H,'. Then

2w PUX1, o, Xap) = w]
= 2 XY PU(Xy, -+, Xaw) = upd + 2eemy PI(X1, -+, X)) = wp)
2 qui(u) + Zeem p(w) = qu(w)ru(D) + 2aem p(ur)
plus) + 2uenpwn) = 2enp(w) = p(u)
= P[(X1, -+, X.) = ul.
Next let s = wupw where uw e H and v ¢ G. Then
2w PL(X1, -+, Xopn) = su)

Il

= szsGl P[(X17 Ty, Xn+1) = uﬂ-ﬂ)’w] = ZwsGl q;.ti(u)rui(vw)

= qui(u) Zuwl rpi(ow) = qui(u)r(v) = PH(Xy, ---, X,) = upw).
This verifies consistency

(b) Stationarity. First let u ¢ H,'. Then
P[(X27 ot ,Xn-f—l) = u]

= Zm;, P[(Xy, -+, Xopa) = vu]

= Z?(’{) P[(X17 R} n+1) = l"fu + ZWHl (Xl, ] Xn+1) = Z)’I,L]

= ZN—( Gui( B )rui(u) + ZveHl plou) = p(uu) + ZveHl’p(vu)
= 2 v, p(vu) = p(u).

Next let s = uuo where u ¢ H and v ¢ G. Then

P(Xz, -+, Xun) = 8]
= Zu'tGl P<X1 y Ty Xn+1) = 'wul.l,ﬂ)]
= ZN(”)P (Xl, Ty, n+1) = #]u#ﬂ)] + Zws}!l P[(le M ,Xn+1) = wupw]

Y% qui( D) 1ui(unw) + 2 werr, Guiwu)rui(v)

YD 4 (DM (w))jirui(v) + D wer,” quiwu) rui(v)

= Qui(p)rui(v) + 2 uery Guiwu) ()

= [D ey Quilww) () = qui(w)rui(v) = P(X1, -+, Xn) = upal.

Il
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This checks stationarity.
(e) The second statement of the theorem follows easily from (9) and the
last statement follows easily from Lemma 9.

3. Markovian states of {Y,} can be kept Markovian. In Section 2 the state
uof {Y,} was split into N(r) Markovian states of {X,}. We will use the same
letter p to denote the probability function of the process {X,}. For § ¢ J’, let
v(5) be the rank of § in {X,}. For u ¢ H and ¢ ¢ H, the probability p(uét) can be
obtained by adding probabilities p(véw) where v and w vary over certain sub-
sets of G. It therefore follows that »(8) = n(8). It is desirable to construct
{X,} in such a way that »(8) = n(8) for all 5 ¢ J'. Whether this can be achieved
under the condition C, is an open question. In this section we show that
if n(8) = 1 then we can arrange to have »(8) = 1. We will exhibit this only for
one Markovian state.

Let £ be a fixed state of J' and let n(¢) = 1. In this section s will denote a
sequence in H' which does not involve ¢£. We define g.(u) for u = s and &s as
before. We also define 1, (s) as before. For u ¢ H' let g,(uts) = p(u)qu(&s)/p(£).
For sequences ¢ in H — H’ which do not involve ¢ define g,(¢) by g.(uus) =
qu(u)M,(s). For t ¢ H' define r,(t) as before. Complete the definition of M,(¢)
for t ¢ H' as follows:

M (uts) = ru(ué)qu(Es)/p(§), weH.

We can now define ¢,(¢) for all sequences ¢ in H which involve both u and £ by
using (5). Finally we can use (8) to define 7,(¢) for all sequences ¢tin F — H'.

It is straightforward to verify that all the lemmata of Section 2 hold for the
above choices of g, and r,. It is also easy to prove that for ¢t ¢ G and u ¢ @,

ru(uét) = ru(uE)p(&)/p(8),
and for v e H and w ¢ H,

qu(viw) = p(vE)qu(fw)/p(§).

TuroreM 2. The process {X,} gien by Theorem 1 through the above choices of
q. and r, has v(§) = 1.
Proor. We must show that, for t e G and u ¢ G,

(10) p(tku) = p(t&)p(&u)/p(£).

(a) If te H and ue H', then (10) follows because n(¢) = 1.
(b) Lette G — H and w e G. Then ¢ = vpa where v ¢ H and w ¢ G. We have

p(téu) = popavtu) = qui(v)rui(wiu) = qui(v)ru(wé)p(du) /p(£)
p(opawt)p(u)/p(§) = p(tE)p(&u)/p(&),

which is the same as (10).
(¢) Let te H and we G — H'. Then v = vuaw where v e H and w e (. We

I
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have

Il

p(teopaw) = qui(t)rui(w) = p(t8)gui(&v)rui(w) /p (&)
p(t&)p(fopaw) /p(£) = p(t&)p(¢u)/p(§).
This verifies (10) and completes the proof of the theorem.

p(téu)

Il

4. The regular case. In this section we assume that conditions C, hold with
N(u) = n(n). We call this the regular case. In this case the matrix B, is non-
singular and therefore a vector g,(s), non-negative or not, satisfying q.(s)B,
= a,(s) is uniquely determined as g.(s) = a,(s)B, . Similarly M, (u) is uniquely
determined. Non-negativity of ¢.(s) and M,(u) is guaranteed by condition
C, and the stationarity properties are guaranteed by Lemma 3. Since M, (u) is
unique, so is r,(¢) for all t¢ F.

Suppose now 8 & J' and let n(8) < «.Fork = 1, ---, n(8), choose sk, Lok
and, for ¢ e H, vectors m;(¢) and «s(¢) as in the first paragraph of Section 2.
We note that we may choose the ss’s and the #’s in such a way that they belong
to H'. This is because, for s ¢ H, p(s) can be obtained by linear combinations of
p(u) where u varies over some subset of H'. For s ¢ H, A,(s) will denote the
n(w) X n(8) matrix whose sth row is a;(suus). The matrices 4;,(s) are defined
similarly. It can be shown from the uniqueness of « that for all sc H, te H,
ueH andve H

o, (8)Aus(u) = as(suu),
A,‘s(u)ra'(t) = 1r,,l(u3t),
Auys(u)As(v) = A (udv).

In the above results p and & can be interchanged.
Suppose a;;(s) denotes the kth element of a;(s). We need two lemmata.
LemMA 10. Let s H and w e H. Then

(11) > sk (8)qu(sanbu) = gqu(séu).
Proor. The left side of (11) = > i asn(8) e, (sondu) By = a5(s)Asu(u)B, "
= a,(su)B," = g.(séu).

To state the next lemma we need to define a;(s) for all s e F' as follows. For
2 =1,.--,n(u) and s e H, we define

as(uis) = qui( F)Buidus(s).
TFor the remaining sequences in F, we define
as(upw) = p(upi)lgui( )] as(uo), where v ¢ H.
LEmMA 11. Forallse HyteHand4,j = 1, --- ,n(u),
(M,(s88))i5 = [gue( )] 200 Qe (i) qus(surdt).
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Proor.

S8 (M u(580)) 0180

— B (53) = B a(8)Aan(t) = [guil @) s (tis) Aau D)
= [gui( D) 2rD asn(pmis) o (ssxdt)
(IM(Q)]_I Zn(a) s (pss) Zj_l Qi (S560t) Buj

= 200 (@)™ 200 aseis) gui(sawdt) 18,s -

The result now follows from the linear independence of 8,;s.

For t ¢ G we now define 7;(¢) as the column vector whose kth entry is p(ssdt),
where this function p now refers to {X,}.

TureorEM 3. In the regular case, the process { X} given by Theorem 1 is such that
v(8) = n(8) forall s J".

Proor. If n(8) = o« then »(§) = «. So let n(8) < «». To show that
v(8) = n(8) we must verify that, for all s G and t ¢ G,

(12) p(sdt) = as(s)ms(t).

(a) If se H and t ¢ H', there is nothing to prove.
(b) Letse H andte G — H'. Thent = upp where v & G and u ¢ H'. We have

p(sot) = p(sdup®) = qui(sdu)rui(v) = 20D aun(s)qui(5:6u) 7ui(v)
= 200 an(s)p(swdupd) = as(s)m (upd) = as(s)ms (1.
(¢) Let se @ — H and te H'. Write s = uu» where u & G and v ¢ H'. Then
p(sot) = p(upwdt) = p(up)rui(vét) = p(ups)Bum' (v8t) = p(up:)Buidu(v)ms' (t)
P (up) lgui( D) as(p) ' () = as(upw)m'(t) = as(s)ms (t).

(d) Let seG — H and te G — H'. Write s = up® and ¢ = wu,;y where
weG, veH' weH and yeG. Then

p(sdt) = p(uppdwpy) = p(up:) Mu(v6w)]irui(y)

p(upd)lgus @)1 208D aan (o) gui(s6dw) 1 (y)

D (upd) [qui( @)1 20D aan(pv) p (ssudwpy)

P (ups) [qui( D) o) i (wpgy) = ow(upd)ms' (wuy) = as(s)ms (t).

I

Il

This verifies (12) and completes the: proof of the theorem.

CoROLLARY. If n(u) = 2, then we can split u tnto two Markovian states in such
a way that v(8) = n(8) for all s¢J .

Proor. It was shown on page 1037 of [2] that if n(u) = 2 then we are in the
regular case. Hence the preceding theorem applies.

The result stated in the above corollary has been proved by Fox and Rubin
[4]. However, they have considered the non-stationary case also whereas the
present paper is restricted to the stationary case.
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