SPLITTING A SINGLE STATE OF A STATIONARY PROCESS INTO MARKOVIAN STATES¹

By S. W. Dharmadhikari

Michigan State University and Indian Statistical Institute

1. Introduction and summary. Let $\{Y_n, n \geq 1\}$ be a stationary process with a finite state-space J. Let δ denote a state of J and let s, t denote finite sequences of states of J. If $s = (\delta_1, \dots, \delta_n)$, let $p(s) = P[(Y_1, \dots, Y_n) = s]$. The rank $n(\delta)$ of a state δ is defined to be the largest integer n such that we can find 2n sequences $s_1, \dots, s_n, t_1, \dots, t_n$ such that the $n \times n$ matrix $\|p(s_i \delta t_j)\|$ is nonsingular. The number $n(\delta)$ was first defined by Gilbert [5] and the term rank was first used by Fox and Rubin [4]. A state δ is called Markovian if $n(\delta) = 1$. It is easy to check that δ is Markovian if, and only if, $p(s\delta t) = p(s\delta)p(\delta t)/p(\delta)$ for all s and t.

Suppose that μ is a fixed state of J. Let $J' = J - \{\mu\}$. Assume that $n(\mu) < \infty$. Fox and Rubin have shown that there exists a stationary process $\{X_n\}$ with a countable state-space $I = J' \cup J''$ and a function f on I onto J such that (a) $f(i) = \mu$ if $i \in J''$ and $f(\delta) = \delta$ if $\delta \in J'$; (b) states of J'' are Markovian states of $\{X_n\}$; and (c) $\{Y_n\}$ and $\{f(X_n)\}$ have the same distribution. Gilbert [5] has shown that J'' must have at least $n(\mu)$ elements whereas Fox and Rubin [4] have given an example to show that J'' cannot always be chosen to be finite. For $\delta \in J'$ let $\nu(\delta)$ denote the rank of δ in $\{X_n\}$. In general $\nu(\delta) \geq n(\delta)$. But Fox and Rubin have shown that $\{X_n\}$ can be constructed in such a way that $\nu(\delta) = 1$ whenever $n(\delta) = 1$. Finally they have shown that, if $n(\mu) = 2$, then $\{X_n\}$ can be chosen in such a way that J'' has 2 elements and $\nu(\delta) = n(\delta)$ for all $\delta \in J'$.

In this paper we give some conditions under which J'' can be chosen to be finite. These conditions are similar to those imposed in [2]. It is shown that $\{X_n\}$ can be constructed in such a way that, for $\delta \varepsilon J'$, $\nu(\delta) = 1$ whenever $n(\delta) = 1$. Finally it is proved that if $N(\mu) = n(\mu)$, then $\nu(\delta) = n(\delta)$ for all $\delta \varepsilon J'$. This generalizes the result proved by Fox and Rubin for the case $n(\mu) = 2$. However, they have given results for the non-stationary case also. The results of this paper were partially reported in [3].

2. The main result. We recall that μ is a fixed state of J of finite rank. The finiteness of $n(\mu)$ can be used (see [1] and [2]) to find $2n(\mu)$ sequences $s_{\mu i}$, $t_{\mu i}$, $i = 1, \dots, n(\mu)$, such that the matrix $||p(s_{\mu i}\mu t_{\mu j})||$ is non-singular. Let $\pi_{\mu}(t)$ denote the row vector whose *i*th element is $p(s_{\mu i}\mu t)$. Then, for every s, there is a unique row vector $\alpha_{\mu}(s)$ such that, for all t,

(1)
$$p(s\mu t) = \alpha_{\mu}(s)\pi_{\mu}'(t).$$

Received 30 October 1967.

¹ Work partially done while the author was at the University of Arizona.

Let $\mathfrak{C}(\alpha_{\mu})$ denote the closed convex cone generated by the vectors $\alpha_{\mu}(s)$ where s varies over all finite sequences of states of J. Define $\mathfrak{C}(\pi_{\mu})$ similarly. If \mathfrak{C}^+ denotes the dual cone of a cone \mathfrak{C} , then (1) shows that $\mathfrak{C}(\alpha_{\mu}) \subset [\mathfrak{C}(\pi_{\mu})]^+$.

Let H_m denote the set of all sequences of length m of states of J. We interpret H_0 as the set consisting of the empty sequence \varnothing . For conventions regarding \varnothing , see [1]. Let $H = \bigcup_{m=0}^{\infty} H_m$. Define H_m' and H' from J' similarly.

For notational compactness we adopt the conventions $t\emptyset = t$ and $\emptyset t = t$. For $u \in H$, let $A_{\mu}(u)$ denote the $n(\mu) \times n(\mu)$ matrix whose *i*th row is $\alpha_{\mu}(s_{\mu i}\mu u)$. Then equation (1) and the uniqueness of $\alpha_{\mu}(s)$ can be used to show that for all $s \in H$, $t \in H$ and $u \in H$,

(2)
$$\alpha_{\mu}(s)A_{\mu}(u) = \alpha_{\mu}(s\mu u) \text{ and } A'_{\mu}(u)\pi_{\mu}'(t) = \pi_{\mu}'(u\mu t).$$

The state μ of finite rank will be split into a finite number of Markovian states under the following condition.

Condition C_{μ} . There is a convex polyhedral cone \mathfrak{C}_{μ} generated by $N(\mu)$ non-zero vectors $\beta_{\mu i}$, $i = 1, \dots, N(\mu)$, such that

$$(3) \qquad \qquad e(\alpha_{\mu}) \subset e_{\mu} \subset [e(\pi_{\mu})]^{+};$$

(4)
$$\beta_{\mu i} A_{\mu}(u) \varepsilon \mathcal{C}_{\mu}$$
 for all i and all $u \varepsilon H'$.

It is a straightforward consequence of (2) that if either $\mathfrak{C}(\alpha_{\mu})$ or $\mathfrak{C}(\pi_{\mu})$ is polyhedral then condition C_{μ} holds with $\mathfrak{C}_{\mu} = \mathfrak{C}(\alpha_{\mu})$ or $\mathfrak{C}_{\mu} = [\mathfrak{C}(\pi_{\mu})]^{+}$.

We now assume that condition C_{μ} holds. Let B_{μ} be the $N(\mu) \times n(\mu)$ matrix whose *i*th row is $\beta_{\mu i}$. It follows from (3) that for every $u \in H'$ there is a nonnegative vector $q_{\mu}(u)$ such that $q_{\mu}(u)B_{\mu} = \alpha_{\mu}(u)$. Further (4) shows that, for every $u \in H'$, we can choose a non-negative matrix $M_{\mu}(u)$ such that $B_{\mu}A_{\mu}(u) = M_{\mu}(u)B_{\mu}$.

Observe that $q_{\mu}(\varnothing)$ has been defined. For sequences $s \varepsilon (H'-H)$, define $q_{\mu}(s)$ by induction as follows.

(5)
$$q_{\mu}(s\mu u) = q_{\mu}(s)M_{\mu}(u), \qquad u \in H'.$$

LEMMA 1. For all $s \in H$, $\alpha_{\mu}(s) = q_{\mu}(s)B_{\mu}$.

PROOF. The lemma holds for all $s \in H'$ and hence for sequences of length zero in H. Suppose it holds for all sequences in H of length $\leq n$. Let s have length (n+1) and belong to H-H'. Then $s=s'\mu u$ where s' has length $\leq n$ and $u \in H'$. Therefore

$$q_{\mu}(s)B_{\mu} = q_{\mu}(s')M_{\mu}(u)B_{\mu} = q_{\mu}(s')B_{\mu}A_{\mu}(u) = \alpha_{\mu}(s')A_{\mu}(u) = \alpha_{\mu}(s'\mu u) = \alpha_{\mu}(s).$$

The lemma thus follows by induction.

The Markov-state $\{X_n\}$ that will be constructed will have state-space $I = J' \cup J''$ where $J'' = \{\mu_i, i = 1, \dots, N(\mu)\}$. If $q_{\mu i}(s)$ denotes the *i*th entry of $q_{\mu}(s)$ then, for a sequence $s \in H_n$, we want to have

$$q_{ui}(s) = P[(Y_1, \dots, Y_n) = s, X_{n+1} = \mu_i].$$

But we also want $\{X_n\}$ to be stationary. This means that $q_{\mu}(s)$ must satisfy certain stationarity conditions. We proceed to show that a choice satisfying these conditions can be made.

We note that the vectors $\beta_{\mu i}$ are non-zero. This easily implies that $\beta_{\mu i} \pi_{\mu}'(\varnothing) > 0$. Therefore the $\beta_{\mu i}$'s can be chosen in such a way that $\beta_{\mu} \pi_{\mu}'(\varnothing) = e_{\mu}$, where e_{μ} is the column vector all of whose $N(\mu)$ elements equal 1. We assume that this has been done. Then, for all $s \in H$,

(6)
$$q_{\mu}(s)e_{\mu} = q_{\mu}(s)B_{\mu}\pi_{\mu}'(\emptyset) = \alpha_{\mu}(s)\pi_{\mu}'(\emptyset) = p(s\mu).$$

For $s \in H$, define $q_{\mu}^{m}(s) = \sum_{t \in H_{m}} q_{\mu}(ts)$. Then (6) and the stationarity of $\{Y_n\}$ imply that

$$q_{\mu}^{m}(s)e_{\mu} = p(s\mu)$$

for all $s \in H$ and for $m = 1, 2, \cdots$. It follows from (7) that $0 \leq q_{\mu}^{m}(s) \leq e_{\mu}'$. Define

$$\theta_n(s) = n^{-1} \sum_{m=1}^n q_{\mu}^{(m)}(s).$$

Then $0 \le \theta_n(s) \le e_{\mu}'$ for all n and s. Since the number of sequences s is countable, there is a single subsequence $\{n_k, k \geq 1\}$ of positive integers such that $\bar{q}_{\mu}(s) =$ $\lim_{k\to\infty} \theta_{n_k}(s)$ exists for all $s \in H$.

LEMMA 2. For all $s \in H$, $\bar{q}_{\mu}(s)B_{\mu} = \alpha_{\mu}(s)$.

PROOF. The uniqueness of $\alpha_{\mu}(s)$ and the stationarity of $\{Y_n\}$ show that

$$q_{\mu}^{m}(s)B_{\mu} = \sum_{t \in H_{m}} \alpha_{\mu}(ts) = \alpha_{\mu}(s).$$

Therefore $\theta_n(s)B_{\mu} = \alpha_{\mu}(s)$. This proves the lemma.

LEMMA 3. For all $s \in H$, $\bar{q}_{\mu}(s) = \sum_{t \in H_m} \bar{q}_{\mu}(ts)$. Proof. If the lemma holds for m = 1, then

$$\sum\nolimits_{t \in H_{m+1}} \bar{q}_{\mu}(ts) = \sum\nolimits_{u \in H_{m}} \sum\nolimits_{v \in H_{1}} \bar{q}_{\mu}(vus) = \sum\nolimits_{u \in H_{m}} \bar{q}_{\mu}(us)$$

and the lemma follows by induction for all m. It is thus enough to prove the lemma for m = 1. Observe that

$$q_{\mu}^{(m+1)}(s) = \sum_{u \in H_{m+1}} q_{\mu}(us) = \sum_{t \in H_1} \sum_{v \in H_m} q_{\mu}(vts) = \sum_{t \in H_1} q_{\mu}^{(m)}(ts).$$

Summing for $m = 1, \dots, n$ and dividing by n, we get

$$\theta_n(s) + n^{-1}[q_{\mu}^{(n+1)}(s) - q_{\mu}^{(1)}(s)] = \sum_{t \in H_1} \theta_n(ts).$$

Replacing n by n_k and letting $k \to \infty$ we get the lemma for m = 1. This proves the lemma.

LEMMA 4. For all $s \in H$ and $u \in H'$, $\bar{q}_{\mu}(s\mu u) = \bar{q}_{\mu}(s)M_{\mu}(u)$.

Proof. Straightforward.

The preceding three lemmata show that $\bar{q}_{\mu}(s)$ has all the properties of $q_{\mu}(s)$ and also has the required stationarity properties. From now on we will use $\bar{q}_{\mu}(s)$ without any reference to the original q(s) and will suppress the bar over q. Recall that $I = J' \cup J''$, where $J'' = \{\mu_i, i = 1, \dots, N(\mu)\}$. Let G_m be the

set of all sequences of length m of states of I. Let $G = \bigcup_{m=0}^{\infty} G_m$. Define F_m and F similarly from $I \cup \{\mu\}$.

For $u \, \varepsilon \, H'$, let $r_{\mu i}(u) = \beta_{\mu i} \pi_{\mu}'(u)$. Recall that $\beta_{\mu i}$'s have been chosen in such a way that $r_{\mu i}(\varnothing) = 1$ for all *i*. For $t \, \varepsilon \, G$, we define $r_{\mu i}(t)$ by induction as follows.

(8)
$$r_{\mu i}(u\mu_{j}t) = [M\mu(u)]_{ij}r_{\mu j}(t),$$

where $u \in H'$ and $[M_{\mu}(u)]_{ij}$ denotes the (i, j)th term in $M_{\mu}(u)$. For $t \in F$, define $r_{\mu i}(t)$ by induction as follows.

$$r_{\mu i}(u\mu t) = \sum_{j=1}^{N(\mu)} r_{\mu i}(u\mu_j t), \qquad u \in G.$$

Finally $r_{\mu}(t)$ will denote the column vector whose *i*th entry is $r_{\mu i}(t)$.

LEMMA 5. For all $t \in H$, $r_{\mu}(t) = B_{\mu} \pi_{\mu}'(t)$.

Proof. Straightforward by induction.

LEMMA 6. For all $u \in F$ and $v \in F$,

$$r_{\mu}(u\mu v) = \sum_{j=1}^{N(\mu)} r_{\mu}(u\mu_{j}v).$$

Proof. The definitions yield the lemma for $u \varepsilon G$. For $u \varepsilon F - G$, the lemma follows easily by induction.

LEMMA 7. For all $u \in F$ and $v \in F$,

$$r_{\mu i}(u\mu_j v) = r_{\mu i}(u\mu_j)r_{\mu i}(v).$$

PROOF. For $u \in H'$ and $v \in G$, the lemma follows from definitions. For $u \in F - H'$ and $v \in F - G$, we can use induction and Lemma 6 to prove the lemma.

Lemma 8. For all $t \in F$

$$\sum_{u \in G_m} r_{\mu}(tu) = r_{\mu}(t).$$

PROOF. As in the case of Lemma 3 it is sufficient to prove the lemma for m=1. If $t \in H$, then

$$\sum_{u \in G_1} r_{\mu}(tu) = \sum_{j=1}^{N(\mu)} r_{\mu}(t\mu_j) + \sum_{u \in H_1'} r_{\mu}(tu) = r_{\mu}(t\mu) + \sum_{u \in H_1'} r_{\mu}(tu)$$

$$= \sum_{u \in H_1} r_{\mu}(tu) = \sum_{u \in H_1} B_{\mu} \pi_{\mu}'(tu) = B_{\mu} \sum_{u \in H_1} \pi_{\mu}'(tu) = B_{\mu} \pi_{\mu}'(t)$$

$$= r_{\mu}(t).$$

If $t \in F - H$ then $t = v \mu_j w$ where $v \in F$ and $w \in H$. We then have

$$\sum_{u \in G_1} r_{\mu}(ru) = \sum_{u \in G_1} r_{\mu}(v\mu_j wu) = \sum_{u \in G_1} r_{\mu}(v\mu_j) r_{\mu j}(wu)$$
$$= r_{\mu}(v\mu_j) \sum_{u \in G_1} r_{\mu j}(wu) = r_{\mu}(v\mu_j) r_{\mu j}(w) = r_{\mu}(v\mu_j w) = r_{\mu}(v\mu_j).$$

This proves the lemma.

LEMMA 9. For all $s \in H$ and $t \in H$,

$$q_{\mu}(s)r_{\mu}(t) = p(s\mu t).$$

Proof. $q_{\mu}(s)r_{\mu}(t) = q_{\mu}(s)B_{\mu}\pi_{\mu}'(t) = \alpha_{\mu}(s)\pi_{\mu}'(t) = p(s\mu t).$

We are now ready to define the underlying stochastic process $\{X_r\}$ with statespace I. Define the finite dimensional distributions as follows.

(9)
$$P[(X_1, \dots, X_n) = u] = p(u)$$
, if $u \in H_n'$, and $P[(X_1, \dots, X_n) = u\mu_i t] = q_{\mu i}(u)r_{\mu i}(t)$, if $u \in H'$ and $t \in G$.

THEOREM 1. The finite dimensional distributions defined by (9) are consistent and the resulting process $\{X_n\}$ is stationary. Every μ_i is a Markovian state of $\{X_n\}$. Moreover, if $f(\mu_i) = \mu$ for all i and $f(\delta) = \delta$ for $\delta \varepsilon J'$, then $\{Y_n\}$ and $f(X_n)$ have the same distribution.

PROOF. (a) Consistency. First let $u \in H_n'$. Then

$$\sum_{v \in G_1} P[(X_1, \dots, X_{n+1}) = uv]$$

$$= \sum_{i=1}^{N(\mu)} P[(X_1, \dots, X_{n+1}) = u\mu_i] + \sum_{v \in H_1'} P[(X_1, \dots, X_{n+1}) = uv]$$

$$= \sum_{i=1}^{N(\mu)} q_{\mu i}(u) + \sum_{v \in H_1'} p(uv) = q_{\mu}(u)r_{\mu}(\varnothing) + \sum_{v \in H_1'} p(uv)$$

$$= p(u\mu) + \sum_{v \in H_1'} p(uv) = \sum_{v \in H} p(uv) = p(u)$$

$$= P[(X_1, \dots, X_n) = u].$$

Next let $s = u\mu_i v$ where $u \in H'$ and $v \in G$. Then

$$\sum_{w \in G_1} P[(X_1, \dots, X_{n+1}) = sw]$$

$$= \sum_{w \in G_1} P[(X_1, \dots, X_{n+1}) = u\mu_i vw] = \sum_{w \in G_1} q_{\mu i}(u) r_{\mu i}(vw)$$

$$= q_{\mu i}(u) \sum_{w \in G_1} r_{\mu i}(vw) = q_{\mu i}(u) r_{\mu i}(v) = P[(X_1, \dots, X_n) = u\mu_i v].$$

This verifies consistency

(b) Stationarity. First let $u \in H_n'$. Then

$$\begin{split} P[(X_{2}, \cdots, X_{n+1}) &= u] \\ &= \sum_{v \in G_{1}} P[(X_{1}, \cdots, X_{n+1}) = vu] \\ &= \sum_{i=1}^{N(\mu)} P[(X_{1}, \cdots, X_{n+1}) = \mu_{i}u] + \sum_{v \in H_{1}'} P[(X_{1}, \cdots, X_{n+1}) = vu] \\ &= \sum_{i=1}^{N(\mu)} q_{\mu i}(\varnothing) r_{\mu i}(u) + \sum_{v \in H_{1}'} p(vu) = p(\mu u) + \sum_{v \in H_{1}'} p(vu) \\ &= \sum_{v \in H_{1}} p(vu) = p(u). \end{split}$$

Next let $s = u\mu_i v$ where $u \in H'$ and $v \in G$. Then

$$P[(X_{2}, \dots, X_{n+1}) = s]$$

$$= \sum_{w \in G_{1}} P(X_{1}, \dots, X_{n+1}) = wu\mu_{i}v]$$

$$= \sum_{j=1}^{N(\mu)} P[(X_{1}, \dots, X_{n+1}) = \mu_{j}u\mu_{i}v] + \sum_{w \in H_{1}'} P[(X_{1}, \dots, X_{n+1}) = wu\mu_{i}v]$$

$$= \sum_{j=1}^{N(\mu)} q_{\mu j}(\varnothing) r_{\mu j}(u\mu_{i}v) + \sum_{w \in H_{1}'} q_{\mu i}(wu) r_{\mu i}(v)$$

$$= \sum_{j=1}^{N(\mu)} q_{\mu j}(\varnothing) [M_{\mu}(u)]_{j} r_{\mu i}(v) + \sum_{w \in H_{1}'} q_{\mu i}(wu) r_{\mu i}(v)$$

$$= q_{\mu i}(\mu u) r_{\mu i}(v) + \sum_{w \in H_{1}'} q_{\mu i}(wu) r_{\mu i}(v)$$

$$= [\sum_{w \in H_{1}} q_{\mu i}(wu)] r_{\mu i}(v) = q_{\mu i}(u) r_{\mu i}(v) = P[(X_{1}, \dots, X_{n}) = u\mu_{i}v].$$

This checks stationarity.

- (c) The second statement of the theorem follows easily from (9) and the last statement follows easily from Lemma 9.
- 3. Markovian states of $\{Y_n\}$ can be kept Markovian. In Section 2 the state μ of $\{Y_n\}$ was split into $N(\mu)$ Markovian states of $\{X_n\}$. We will use the same letter p to denote the probability function of the process $\{X_n\}$. For $\delta \in J'$, let $\nu(\delta)$ be the rank of δ in $\{X_n\}$. For $u \in H$ and $t \in H$, the probability $p(u\delta t)$ can be obtained by adding probabilities $p(v\delta w)$ where v and w vary over certain subsets of G. It therefore follows that $\nu(\delta) \geq n(\delta)$. It is desirable to construct $\{X_n\}$ in such a way that $\nu(\delta) = n(\delta)$ for all $\delta \in J'$. Whether this can be achieved under the condition C_μ is an open question. In this section we show that if $n(\delta) = 1$ then we can arrange to have $\nu(\delta) = 1$. We will exhibit this only for one Markovian state.

Let ξ be a fixed state of J' and let $n(\xi) = 1$. In this section s will denote a sequence in H' which does not involve ξ . We define $q_{\mu}(u)$ for u = s and ξs as before. We also define $M_{\mu}(s)$ as before. For $u \in H'$ let $q_{\mu}(u\xi s) = p(u\xi)q_{\mu}(\xi s)/p(\xi)$. For sequences t in H - H' which do not involve ξ define $q_{\mu}(t)$ by $q_{\mu}(u\mu s) = q_{\mu}(u)M_{\mu}(s)$. For $t \in H'$ define $r_{\mu}(t)$ as before. Complete the definition of $M_{\mu}(t)$ for $t \in H'$ as follows:

$$M_{\mu}(u\xi s) = r_{\mu}(u\xi)q_{\mu}(\xi s)/p(\xi), \quad u \in H'.$$

We can now define $q_{\mu}(t)$ for all sequences t in H which involve both μ and ξ by using (5). Finally we can use (8) to define $r_{\mu}(t)$ for all sequences t in F - H'.

It is straightforward to verify that all the lemmata of Section 2 hold for the above choices of q_{μ} and r_{μ} . It is also easy to prove that for $t \in G$ and $u \in G$,

$$r_{\mu}(u\xi t) = r_{\mu}(u\xi)p(\xi t)/p(\xi),$$

and for $v \in H$ and $w \in H$,

$$q_{\mu}(v\xi w) = p(v\xi)q_{\mu}(\xi w)/p(\xi).$$

Theorem 2. The process $\{X_n\}$ given by Theorem 1 through the above choices of q_{μ} and r_{μ} has $\nu(\xi) = 1$.

PROOF. We must show that, for $t \in G$ and $u \in G$,

$$(10) p(t\xi u) = p(t\xi)p(\xi u)/p(\xi).$$

- (a) If $t \in H'$ and $u \in H'$, then (10) follows because $n(\xi) = 1$.
- (b) Let $t \in G H'$ and $u \in G$. Then $t = v \mu_i w$ where $v \in H'$ and $w \in G$. We have

$$p(t\xi u) = p(v\mu_i w\xi u) = q_{\mu i}(v)r_{\mu i}(w\xi u) = q_{\mu i}(v)r_{\mu i}(w\xi)p(\xi u)/p(\xi)$$
$$= p(v\mu_i w\xi)p(\xi u)/p(\xi) = p(t\xi)p(\xi u)/p(\xi),$$

which is the same as (10).

u(c) Let $t \in H'$ and $u \in G - H'$. Then $u = v \mu_i w$ where $v \in H'$ and $w \in G$. We

have

$$p(t\xi u) = p(t\xi v \mu_i w) = q_{\mu i}(t\xi v) r_{\mu i}(w) = p(t\xi) q_{\mu i}(\xi v) r_{\mu i}(w) / p(\xi)$$
$$= p(t\xi) p(\xi v \mu_i w) / p(\xi) = p(t\xi) p(\xi u) / p(\xi).$$

This verifies (10) and completes the proof of the theorem.

4. The regular case. In this section we assume that conditions C_{μ} hold with $N(\mu) = n(\mu)$. We call this the regular case. In this case the matrix B_{μ} is non-singular and therefore a vector $q_{\mu}(s)$, non-negative or not, satisfying $q_{\mu}(s)B_{\mu} = \alpha_{\mu}(s)$ is uniquely determined as $q_{\mu}(s) = \alpha_{\mu}(s)B_{\mu}^{-1}$. Similarly $M_{\mu}(u)$ is uniquely determined. Non-negativity of $q_{\mu}(s)$ and $M_{\mu}(u)$ is guaranteed by condition C_{μ} and the stationarity properties are guaranteed by Lemma 3. Since $M_{\mu}(u)$ is unique, so is $r_{\mu}(t)$ for all $t \in F$.

Suppose now $\delta \varepsilon J'$ and let $n(\delta) < \infty$. For $k = 1, \dots, n(\delta)$, choose $s_{\delta k}$, $t_{\delta k}$ and, for $t \varepsilon H$, vectors $\pi_{\delta}(t)$ and $\alpha_{\delta}(t)$ as in the first paragraph of Section 2. We note that we may choose the $s_{\delta k}$'s and the $t_{\delta k}$'s in such a way that they belong to H'. This is because, for $s \varepsilon H$, p(s) can be obtained by linear combinations of p(u) where u varies over some subset of H'. For $s \varepsilon H$, $A_{\mu\delta}(s)$ will denote the $n(\mu) \times n(\delta)$ matrix whose *i*th row is $\alpha_{\delta}(s_{\mu i}\mu s)$. The matrices $A_{\delta\mu}(s)$ are defined similarly. It can be shown from the uniqueness of α that for all $s \varepsilon H$, $t \varepsilon H$, $u \varepsilon H$ and $v \varepsilon H$

$$lpha_{\mu}(s)A_{\mu\delta}(u) = lpha_{\delta}(s\mu u),$$
 $A_{\mu\delta}(u)\pi_{\delta}'(t) = \pi_{\mu}'(u\delta t),$
 $A_{\mu\delta}(u)A_{\delta\mu}(v) = A_{\mu}(u\delta v).$

In the above results μ and δ can be interchanged.

Suppose $a_{\delta k}(s)$ denotes the kth element of $\alpha_{\delta}(s)$. We need two lemmata. Lemma 10. Let $s \in H$ and $u \in H$. Then

(11)
$$\sum_{k=1}^{n(\delta)} a_{\delta k}(s) q_{\mu}(s_{\delta k} \delta u) = q_{\mu}(s \delta u).$$
Proof. The left side of (11) =
$$\sum_{k=1}^{n(\delta)} a_{\delta k}(s) \alpha_{\mu}(s_{\delta k} \delta u) B_{\mu}^{-1} = \alpha_{\delta}(s) A_{\delta \mu}(u) B_{\mu}^{-1}$$

$$= \alpha_{\mu}(s \delta u) B_{\mu}^{-1} = q_{\mu}(s \delta u).$$

To state the next lemma we need to define $\alpha_{\delta}(s)$ for all $s \in F$ as follows. For $i = 1, \dots, n(\mu)$ and $s \in H$, we define

$$\alpha_{\delta}(\mu_{i}s) = q_{\mu i}(\varnothing)\beta_{\mu i}A_{\mu\delta}(s).$$

For the remaining sequences in F, we define

$$\alpha_{\delta}(u\mu_{i}v) = p(u\mu_{i})[q_{\mu i}(\varnothing)]^{-1}\alpha_{\delta}(\mu_{i}v),$$
 where $v \in H$.

LEMMA 11. For all $s \in H$, $t \in H$ and $i, j = 1, \dots, n(\mu)$,

$$[M_{\mu}(s\delta t)]_{ij} = [q_{\mu i}(\varnothing)]^{-1} \sum_{k=1}^{n(\delta)} a_{\delta k}(\mu_i s) q_{\mu j}(s_{\delta k} \delta t).$$

Proof.

$$\begin{split} &\sum_{j=1}^{n(\mu)} [M_{\mu}(s\delta t)]_{ij} \beta_{\mu j} \\ &= \beta_{\mu i} A_{\mu}(s\delta t) = \beta_{\mu i} A_{\mu \delta}(s) A_{\delta \mu}(t) = [q_{\mu i}(\varnothing)]^{-1} \alpha_{\delta}(\mu_{i}s) A_{\delta \mu}(t) \\ &= [q_{\mu i}(\varnothing)]^{-1} \sum_{k=1}^{n(\delta)} a_{\delta k}(\mu_{i}s) \alpha_{\mu}(s_{\delta k}\delta t) \\ &= [q_{\mu i}(\varnothing)]^{-1} \sum_{k=1}^{n(\delta)} a_{\delta k}(\mu_{i}s) \sum_{j=1}^{n(\mu)} q_{\mu j}(s_{\delta k}\delta t) \beta_{\mu j} \\ &= \sum_{j=1}^{n(\delta)} [(q_{\mu i}(\varnothing))^{-1} \sum_{k=1}^{n(\delta)} a_{\delta k}(\mu_{i}s) q_{\mu j}(s_{\delta k}\delta t) \beta_{\mu j}. \end{split}$$

The result now follows from the linear independence of $\beta_{\mu j}$'s.

For $t \in G$ we now define $\pi_{\delta}(t)$ as the column vector whose kth entry is $p(s_{\delta k}\delta t)$, where this function p now refers to $\{X_n\}$.

THEOREM 3. In the regular case, the process $\{X_n\}$ given by Theorem 1 is such that $\nu(\delta) = n(\delta)$ for all $\delta \in J'$.

PROOF. If $n(\delta) = \infty$ then $\nu(\delta) = \infty$. So let $n(\delta) < \infty$. To show that $\nu(\delta) = n(\delta)$ we must verify that, for all $s \in G$ and $t \in G$,

(12)
$$p(s\delta t) = \alpha_{\delta}(s)\pi_{\delta}(t).$$

- (a) If $s \in H'$ and $t \in H'$, there is nothing to prove.
- (b) Let $s \in H'$ and $t \in G H'$. Then $t = u\mu_i v$ where $v \in G$ and $u \in H'$. We have

$$\begin{array}{lll} p(s\delta t) \, = \, p(s\delta u \mu_i v) \, = \, q_{\mu i}(s\delta u) r_{\mu i}(v) \, = \, \sum_{k=1}^{n(\delta)} a_{\delta k}(s) q_{\mu i}(s_{\delta k} \delta u) r_{\mu i}(v) \\ & = \, \sum_{k=1}^{n(\delta)} a_{\delta k}(s) p(s_{\delta k} \delta u \mu_i v) \, = \, \alpha_{\delta}(s) \pi_{\delta}'(u \mu_i v) \, = \, \alpha_{\delta}(s) \pi_{\delta}'(t). \end{array}$$

(c) Let $s \in G - H'$ and $t \in H'$. Write $s = u\mu_i v$ where $u \in G$ and $v \in H'$. Then

$$p(s\delta t) = p(u\mu_i v\delta t) = p(u\mu_i)r_{\mu i}(v\delta t) = p(u\mu_i)\beta_{\mu i} \pi_{\mu}'(v\delta t) = p(u\mu_i)\beta_{\mu i}A_{\mu \delta}(v)\pi_{\delta}'(t)$$
$$= p(u\mu_i)[q_{ui}(\varnothing)]^{-1}\alpha_{\delta}(\mu_i v)\pi_{\delta}'(t) = \alpha_{\delta}(u\mu_i v)\pi_{\delta}'(t) = \alpha_{\delta}(s)\pi_{\delta}'(t).$$

(d) Let $s \in G - H'$ and $t \in G - H'$. Write $s = u \mu_i v$ and $t = w \mu_j y$ where $u \in G$, $v \in H'$, $w \in H'$ and $y \in G$. Then

$$\begin{split} p(s\delta t) &= p(u\mu_{i}v\delta w\mu_{j}y) = p(u\mu_{i})[M_{\mu}(v\delta w)]_{ij}r_{\mu j}(y) \\ &= p(u\mu_{i})[q_{\mu i} \varnothing)]^{-1} \sum_{k=1}^{n(\delta)} a_{\delta k}(\mu_{i}v)q_{\mu j}(s_{\delta k}\delta w)r_{\mu j}(y) \\ &= p(u\mu_{i})[q_{\mu i}(\varnothing)]^{-1} \sum_{k=1}^{n(\delta)} a_{\delta k}(\mu_{i}v)p(s_{\delta k}\delta w\mu_{j}y) \\ &= p(u\mu_{i})[q_{\mu i}(\varnothing)]^{-1} \alpha_{\delta}(\mu_{i}v)\pi_{\delta}'(w\mu_{j}y) = \alpha_{\delta}(u\mu_{i}v)\pi_{\delta}'(w\mu_{j}y) = \alpha_{\delta}(s)\pi_{\delta}'(t). \end{split}$$

This verifies (12) and completes the proof of the theorem.

COROLLARY. If $n(\mu) = 2$, then we can split μ into two Markovian states in such a way that $\nu(\delta) = n(\delta)$ for all $\delta \in J'$.

PROOF. It was shown on page 1037 of [2] that if $n(\mu) = 2$ then we are in the regular case. Hence the preceding theorem applies.

The result stated in the above corollary has been proved by Fox and Rubin [4]. However, they have considered the non-stationary case also whereas the present paper is restricted to the stationary case.

REFERENCES

- [1] Dharmadhikari, S. W. (1963). Function of finite Markov chains. Ann. Math. Statist. **34** 1022-1032.
- [2] Dharmadhikari, S. W. (1963). Sufficient conditions for a stationary process to be a function of a finite Markov chain. *Ann. Math. Statist.* **34** 1033–1041.
- [3] Dharmadhikari, S. W. (1967). Markovianization of a single state of a stationary process. (Abstract). Ann. Math. Statist. 38 1311.
- [4] Fox, Martin and Rubin, Herman. (1967). Functions of processes with Markovian states. Ann. Math. Statist. 39 938-947.
- [5] GILBERT, EDGAR J. (1959). On the identifiability problem for functions of finite Markov chains. Ann. Math. Statist. 30 688-697.